Continuity of Julia sets and its Hausdorff dimension of $P_{c}(z)=z^{d}+c$

Wei Zhuang
(Received October 14, 2011; Revised February 17, 2012)

Abstract

Given $d \geq 2$ consider the family of monic polynomials $P_{c}(z)=z^{d}+c$, for $c \in \mathbb{C}$. Denote by J_{c} and $H D\left(J_{c}\right)$ the Julia set of P_{c} and the Hausdorff dimension of J_{c} respectively, and let $\mathcal{M}_{d}=\left\{c \mid J_{c}\right.$ is connected $\}$ be the connectedness locus; for $d=2$ it is called the Mandelbrot set. We study semihyperbolic parameters $c_{0} \in \partial \mathcal{M}_{d}$: those for which the critical point is not recurrent by $P_{c_{0}}, 0 \in J_{c_{0}}$, and without parabolic cycles. We prove that if $P_{c_{n}} \rightarrow P_{c_{0}}$ algebraically, then for some $C>0$,

$$
d_{H}\left(J_{c_{n}}, J_{c_{0}}\right) \leq C\left|c_{n}-c_{0}\right|^{1 / d}
$$

where d_{H} denotes the Hausdorff distance. If, in addition, $P_{c_{n}} \rightarrow P_{c_{0}}$ preserving critical relations, then $P_{c_{n}}$ is semihyperbolic for all $n \gg 0$, and

$$
H D\left(J_{c_{n}}\right) \rightarrow H D\left(J_{c_{0}}\right)
$$

Key words: Julia set, Hausdorff dimension, net, conformal measure.

1. Introduction and main results

Let $R(z)$ be a rational map of degree $d=\operatorname{deg} R \geq 2$ on the complex sphere $\overline{\mathbb{C}}$. The Julia set $J(R)$ of a rational function R is defined to be the closure of all repelling periodic points of R, its complement set is called Fatou set $F(R)$. It is known that $J(R)$ is a perfect set (so $J(R)$ is uncountable, and no point of $J(R)$ is isolated), and also that if $J(R)$ is disconnected, then it has infinitely many components.

Let \mathcal{C} be the set of critical points of a rational map R. Then the set of critical values of R^{n} is

$$
\operatorname{Ctv}_{n}(R)=R(\mathcal{C}) \cup R^{2}(\mathcal{C}) \cup \cdots R^{n}(\mathcal{C}) .
$$

The ω-limit set of the set $\operatorname{Ctv}_{n}(R)$ of critical values of $R: \overline{\mathbb{C}} \mapsto \overline{\mathbb{C}}$ is defined by

$$
\Omega(R)=\bigcap_{n=0}^{\infty} \overline{\bigcup_{k=n}^{\infty} R^{k}\left(\operatorname{Ctv}_{n}(R)\right)}
$$

In other words $z \in \Omega(R)$ if and only if there exist $c \in C t v_{n}(R)$ and a sequence $n_{k} \rightarrow \infty(k \geq 1)$ of positive integers such that $z=\lim _{k \rightarrow \infty} R^{n_{k}}(c)$.

We call a critical point c of R recurrent if $c \in \Omega(R)$; otherwise c is called non-recurrent, denoted by NCP maps.

In this paper we consider the NCP maps $R: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ called semihyperbolic maps: those for which the critical points are not recurrent by R and without parabolic cycles.

We say rational maps R_{n} converge to R algebraically if $\operatorname{deg} R_{n}=\operatorname{deg} R$ and, when R_{n} is expressed as the quotient of two polynomials, the coefficients can be chosen to converge to those of R. Equivalently, $R_{n} \rightarrow R$ uniformly in the spherical metric.

Given that $R_{n} \rightarrow R$ algebraically. Let $b \in J(R)$ be a preperiodic critical point, satisfying $R^{i}(b)=R^{j}(b)$ for some $i>j>0$. Suppose for all such b and for all $n \gg 0$, the maps R_{n} have critical points $b_{n} \in J\left(R_{n}\right)$ with the same muliplicity as $b, b_{n} \rightarrow b$ and $R_{n}^{i}\left(b_{n}\right)=R_{n}^{j}\left(b_{n}\right)$. Then we say $R_{n} \rightarrow R$ preserving critical relations.

In this paper we study dynamics of polynomials $P_{c}=z^{d}+c, d \geq 2$, such that the critical point 0 is not recurrent and $0 \in J_{c}$. These polynomials are semihyperbolic in the sense of [1].
$H D$ denotes the Hausdorff dimension; $n \gg 0$ means for all n sufficiently large. We have the following main theorem:

Main Theorem Let $c_{0} \in \partial \mathcal{M}_{d}$ be such that $P_{c_{0}}$ is semihyperbolic. If $P_{c_{n}} \rightarrow P_{c_{0}}$ algebraically, then for some $C>0$,

$$
d_{H}\left(J_{c_{n}}, J_{c_{0}}\right) \leq C\left|c_{n}-c_{0}\right|^{1 / d}
$$

where d_{H} denotes the Hausdorff distance.
If, in addition, $P_{c_{n}} \rightarrow P_{c_{0}}$ preserving critical relations, then $P_{c_{n}}$ is semihyperbolic for all $n \gg 0$, and

$$
H D\left(J_{c_{n}}\right) \rightarrow H D\left(J_{c_{0}}\right)
$$

2. Preliminaries and the construction of a net

Let X be a connected complex manifold. A holomorphic family of rational maps, parameterized by X, is a holomorphic map $R: X \times \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$. We denote this map by $R_{\lambda}(z)$, where $\lambda \in X$ and $z \in \overline{\mathbb{C}}$; then $R_{\lambda}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a rational map.

Let x be a basepoint in X. A holomorphic motion of a set $E \subset \overline{\mathbb{C}}$ parameterized by (X, x) is a family of injections

$$
\phi_{\lambda}: E \rightarrow \overline{\mathbb{C}}
$$

one for each λ in X, such that $\phi_{\lambda}(e)$ is a holomorphic function of λ for each fixed e, and $\phi_{x}=i d$.

Given a holomorphic family of rational maps R_{λ}, we say the corresponding Julia sets $J\left(R_{\lambda}\right) \subset \overline{\mathbb{C}}$ move holomorphically if there is a holomorphic motion

$$
\phi_{\lambda}: J\left(R_{x}\right) \rightarrow \overline{\mathbb{C}}
$$

such that $\phi_{\lambda}\left(J\left(R_{x}\right)\right)=J\left(R_{\lambda}\right)$ and

$$
\phi_{\lambda} \circ R_{x}(z)=R_{\lambda} \circ \phi_{\lambda}(z)
$$

for all z in $J\left(R_{x}\right)$. Thus ϕ_{λ} provides a conjugacy between R_{x} and R_{λ} on their respective Julia sets. The motion ϕ_{λ} is unique if it exists, by density of periodic cycles in $J\left(R_{x}\right)$.

The Julia sets move holomorphically at x if they move holomorphically on some neighborhood U of x in X.

A periodic point z of R_{x} of period n is persistently indifferent if there is a neighborhood U of x and a holomorphic map $\mathcal{W}: U \rightarrow \overline{\mathbb{C}}$ such that $\mathcal{W}(x)=z, R_{\lambda}^{n}(\mathcal{W}(\lambda))=\mathcal{W}(\lambda)$, and $\left|\left(R_{\lambda}^{n}\right)^{\prime}(\mathcal{W}(\lambda))\right|=1$ for all λ in U. (Here $\left.\left(R_{\lambda}^{n}\right)^{\prime}(z)=d R_{\lambda}^{n} / d z.\right)$
Lemma 2.1 ([2], Characterizations of stability) Let R_{λ} be a holomorphic family of rational maps parameterized by X, and let x be a point in X. Then the following conditions are equivalent:

1. The number of attracting cycles of R_{λ} is locally constant at x.
2. The maximum period of an attracting cycle of R_{λ} is locally bounded at x.
3. The Julia set moves holomorphically at x.
4. For all y sufficiently close to x, every periodic point of R_{y} is attracting, repelling or persistently indifferent.
5. The Julia set J_{λ} depends continuously on λ (in the Hausdorff topology) on a neighborhood of x.
Suppose in addition that $c_{i}: X \rightarrow \overline{\mathbb{C}}$, are holomorphic maps parameterizing the critical points of R_{λ}. Then the following conditions are also equivalent to those above:
6. For each i, the function $\lambda \mapsto R_{\lambda}^{n}\left(c_{i}(\lambda)\right), n=0,1,2, \ldots$ form a normal family at x.
7. There is a neighborhood U of x such that for all λ in $U, c_{i}(\lambda) \in J_{\lambda}$ if and only if $c_{i}(x) \in J_{x}$.

The definition of conformal measures for rational maps was first given by Sullivan as a modification of the Patterson measures for limit sets of Fuchsian groups. A more general definition, showing the connection to ergodic theory, has been given by M. Denker and M. Urbański earlier. Let $t \geq 0$, a probability measure m on $J(R)$ is called t-conformal for $R: J(R) \rightarrow J(R)$ if $m(J(R))=1$ and

$$
m(R(A))=\int_{A}\left|R^{\prime}\right|^{t} d m
$$

for every Borel set $A \subset J(R)$ such that $\left.R\right|_{A}$ is injective.
Let R be an NCP map. Denote by $\Lambda(R)$ the set of all parabolic periodic points of R (these points belong to the Julia set and have an essential influence on its fractal structure), and $\operatorname{Crit}(R)$ of all critical points of R. We put

$$
\operatorname{Crit}(J(R))=\operatorname{Ctit}(R) \cap J(R) .
$$

Set

$$
\operatorname{Sing}(R)=\bigcup_{n \geq 0} R^{-n}(\Lambda(R) \cup \operatorname{Crit}(J(R)))
$$

Definition 2.1 We define the conical set $\operatorname{Con}(R)$ of R as follow. First, say x belongs to $\operatorname{Con}(R, r)$ if for any $\epsilon>0$, there is a neighborhood U of x and $n>0$ such that $\operatorname{diam}(U)<\varepsilon$ and

$$
R^{n}: U \rightarrow B\left(R^{n}(x), r\right)
$$

is a homeomorphism. Then set

$$
\operatorname{Con}(R)=\bigcup_{r>0} \operatorname{Con}(R, r)
$$

We have $x \in \operatorname{Con}(R)$ if and only if arbitrary small neighborhood of x can be blow up univalently by the dynamics to balls of definite size centered at $R^{n}(x)$.

Lemma $2.2([3]) \quad$ If $R: J(R) \rightarrow J(R)$ is an NCP map, then

$$
\operatorname{Con}(R)=J(R) \backslash \operatorname{Sing}(R)
$$

Note that Curtis T. McMullen used the term radial Julia set $J_{\text {rad }}(R)$ instead of conical set $\operatorname{Con}(R)$ in analogy with Kleinian groups; see ref. [4].

By paper [4], we have the set $\operatorname{Sing}(R)$ is countable.
Let $0<\lambda<1$. Then there exist an integer $m \geq 1, C>0$, an open topological disk U containing no critical values of R up to order m and analytic inverse branches $R_{i}^{-m n}: U \rightarrow \overline{\mathbb{C}}$ of $R^{m n}\left(i=1, \ldots, k_{n} \leq d^{n m}, n \geq\right.$ $0)$, satisfying:
(1) $\forall n \geq 0, \forall 1 \leq i \leq k_{n+1}, \exists 1 \leq j \leq k_{n}, R^{m} \circ R_{i}^{-m(n+1)}=R_{j}^{-m n}$,
(2) $\operatorname{diam}\left(R_{i}^{-m n}(U)\right) \leq c \lambda^{n}$ for $n=0,1, \ldots$ and $i=1, \ldots, k_{n}$,
(3) for each fixed $n \geq 1$, for all $i=1, \ldots, k_{n}$ the sets $\overline{R_{i}^{-m n}(U)}$ are pairwise disjoint and $\overline{R_{i}^{-m n}(U)} \subset U$.

By Definition 2.1 and Lemma 2.2, the conical set $J_{c}(R)$ is a hyperbolic set. Now we state as a lemma the following consequence of (1)-(3).

Lemma 2.3 Let $R(z)$ be a semihyperbolic map. For each n, let $\mathcal{N}_{n}=$ $\bigcup\left\{R_{j}^{-n}(U): j=1, \ldots, k_{n}\right\}$ and let $\mathcal{N}=\bigcup \mathcal{N}_{n}$. Then \mathcal{N} is a net of $\operatorname{Con}(R)$, i.e. any two sets in \mathcal{N} are either disjoint or one is a subset of the other.

Consider the net \mathcal{N}, given by Lemma 2.3. For $n \geq 0$, the preimages of the sets \mathcal{N}_{i} under R^{n} that intersect $J(R)$ are called the nth step pieces of the net. Note that for $n \geq 1$ the collection of all the nth step pieces also is a net; we call it a refinement of the net \mathcal{N}.

Lemma 2.4 Let W be an nth step piece of the net \mathcal{N}_{i}, then the inverse of

$$
P_{c_{0}}^{n}: W \rightarrow \mathcal{N}_{i}=P_{c_{0}}^{n}(W)
$$

extends in a injective way to a neighborhood of $\overline{\mathcal{N}_{i}}$, only depending on i.
Proof. Refining the net if necessary, we will prove that for some $m \geq 1$ all the m th step pieces (or some of the m th step pieces) of the net are compactly contained in some \mathcal{N}_{i}. Then the net formed by the m th step pieces will be the desired net. Thus it is enough to prove that the diameters of the m th step pieces of the net converge uniformly to zero as $m \rightarrow \infty$.

Let $\varepsilon>0$, and $N \geq 1$ be such that we can partition each \mathcal{N}_{i} in at most N connected sets of diameter less than $\varepsilon>0$. If necessary we can refine the disks \mathcal{N}_{i} small enough, then $P_{c_{0}}$ is injective in each cover of the net. Let W be an m th step piece of the net, so that $P_{c_{0}}^{m}$ is injective in W. Then by the property (2) of net we have $\operatorname{diam}(W) \rightarrow 0$ as $m \rightarrow \infty$. The proof of this lemma is complete.

As in immediate consequence, together with the Koebe Distortion Theorem, we obtain the Bounded Distortion Property.

Lemma 2.5 (Bounded Distortion Property) For any $k \geq 0$ the distortion of $P_{c_{0}}^{k}$ in each of the kth step pieces of the net is bounded by some constant $K>1$, independent of k.

3. Proof of the main Result

Proof of the Main Theorem.
Step 1: Since $P_{c_{0}}$ is a semihyperbolic map, it has no Siegel disks and Herman rings. For each $x \in F\left(P_{c_{0}}\right)=\overline{\mathbf{C}}-J_{c_{0}}$ (the Fatou set of $P_{c_{0}}$), under iteration $P_{c_{0}}^{i}(x)$ converges to an attracting or super-attracting fixed-point c of $P_{c_{0}}$. Then this behavior persists under algebraic perturbation of $P_{c_{0}}$. In fact there is a small neighborhood U of c such that $P_{c_{n}}(U) \subset U$ for all $n \gg 1$. Thus $U \subset F\left(P_{c_{n}}\right)$, and we have shown a neighborhood of c persists in the Fatou set for large n. Therefore the multiplier of an attracting cycle of a semihyperbolic map P_{λ} is constant as λ varies small, and hence the number of repelling cycles of P_{λ} is constant in the neighborhood of λ. Thus the repelling periodic points of sufficiently high period move holomorphically and without collision as λ varies small. Since the repelling points are dense
in the Julia set, the Julia set moves holomorphically by the λ-lemma ($[2$, Theorem 4.1]). It follows by Lemma 2.1 (Characterizations of stability) that the Julia set moves holomorphically at c_{0}, and there is a unique holomorphic motion

$$
\phi_{c_{n}}: J_{c_{0}} \rightarrow \overline{\mathbb{C}}
$$

such that $\phi_{c_{n}}\left(J_{c_{0}}\right)=J_{c_{n}}$ and

$$
\begin{equation*}
\phi_{c_{n}} \circ P_{c_{0}}=P_{c_{n}} \circ \phi_{c_{n}}(z) \tag{3.1}
\end{equation*}
$$

for all z in $J_{c_{0}}$.
Since the holomorphic motion $\phi_{c_{n}}$ is a holomorphic function of c_{n} in a neighborhood of c_{0}, and $\phi_{c_{0}}=i d$. We have

$$
\left|\phi_{c_{n}}(z)-z\right|=\left|\phi_{c_{n}}(z)-\phi_{c_{0}}(z)\right|
$$

for all z in $J_{c_{0}}$. By item 5 in Lemma 2.1, the Julia set $J_{c_{n}}$ depends continuously on c_{n} (in the Hausdorff topology) on a neighborhood of c_{0}. So we have

$$
\begin{equation*}
\left|\phi_{c_{n}}(z)-z\right|=\left|\phi_{c_{n}}(z)-\phi_{c_{0}}(z)\right| \sim\left|c_{n}-c_{0}\right| \tag{3.2}
\end{equation*}
$$

where $A \sim B$ means $C^{-1} B<A<C B$ for two numbers A and B and some implicit constant C.

Let $w=\phi_{c_{n}}(z) \in J_{c_{n}}$, where $\forall z \in J_{c_{0}}$. Then it follows by (3.1) and (3.2) that

$$
\begin{aligned}
|w-z| & \sim\left|P_{c_{n}}^{-1}\left(\phi_{c_{n}}(z)\right)-P_{c_{0}}^{-1}(z)\right| \sim\left|P_{c_{0}}^{-1}\left(\phi_{c_{n}}(z)\right)-P_{c_{0}}^{-1}(z)\right| \\
& \sim\left|P_{c_{0}}^{-1}\left(\phi_{c_{n}}(z)-z\right)\right| \sim\left|\phi_{c_{n}}(z)-z\right|^{1 / d} \sim\left|c_{n}-c_{0}\right|^{1 / d} .
\end{aligned}
$$

It follows that $\forall z \in J_{c_{0}}, w=\phi_{c_{n}}(z) \in J_{c_{n}}$,

$$
\operatorname{dist}(w, z) \sim\left|c_{n}-c_{0}\right|^{1 / d}
$$

Thus we get that for any small $\epsilon>0$ the Julia sets $J_{c_{n}}$ are contained in the ϵ-neighborhood of $J_{c_{0}}$ for all $n \gg 0$.

Therefore

$$
d_{H}\left(J_{c_{n}}, J_{c_{0}}\right) \sim\left|c_{n}-c_{0}\right|^{1 / d} .
$$

So we obtain

$$
d_{H}\left(J_{c_{n}}, J_{c_{0}}\right) \leq C\left|c_{n}-c_{0}\right|^{1 / d}
$$

for some constant $C>0$ only depending on $P_{c_{0}}$, where d_{H} denotes the Hausdorff distance.

Step 2: Since $P_{c_{n}}$ and $P_{c_{0}}$ have the same critical point 0 , we have if $0 \in J_{c_{0}}$, then $0 \in J_{c_{0}}$ is preperiodic, and so is $0 \in J_{c_{n}}$ and $P_{c_{n}}$ has no parabolic cycles for all $n \gg 0$ by our assumption that critical point relations are preserved. Hence $P_{c_{n}}$ is semihyperbolic.

Now we only prove that

$$
H D\left(J_{c_{n}}\right) \rightarrow H D\left(J_{c_{0}}\right) .
$$

Let $h=H D\left(J_{c_{0}}\right)$ be the Hausdorff dimension of the Julia set $J_{c_{0}}$ of the semihyperbolic map $P_{c_{0}}$. It follows by [6] that there exists exactly one h conformal measure μ and this measure is atomless (the μ measure of a point is zero). The unique h-conformal measure for $P_{c_{0}}: J_{c_{0}} \rightarrow J_{c_{0}}$ supported on $J_{c_{0}}$ has exponent $h=H D\left(J_{c_{0}}\right)$. For all $n \gg 0, P_{c_{n}}$ is a semihyperbolic map. The unique h_{n}-conformal probability measure μ_{n} for $P_{c_{n}}: J_{c_{n}} \rightarrow J_{c_{n}}$ supported on $J_{c_{n}}$ has exponent $h_{n}=H D\left(J_{c_{n}}\right)$ and it is atomless; see ref. [6]. Thus to prove that

$$
\lim _{n \rightarrow \infty} H D\left(J_{c_{n}}\right)=H D\left(J_{c_{0}}\right)
$$

it is enough to prove that there is a neighborhood $B_{r}(0)$ of the critical point $0 \in J_{c_{0}}$ such that

$$
\lim _{r \rightarrow 0} \lim _{n \rightarrow \infty} \mu_{n}\left(B_{r}(0)\right)=0
$$

Since $P_{c_{0}}$ is semihyperbolic, there exists $l>1$ such that $P_{c_{0}}^{l}(0)=w \in \omega(0)$, where the set $\omega(0)$ of accumulation points of the orbit of 0 is a hyperbolic set of $P_{c_{0}}$. By the completely invariant property of the Julia set, it is enough that we only prove the following

$$
\lim _{r \rightarrow 0} \lim _{n \rightarrow \infty} \mu_{n}\left(B_{r}(w)\right)=0
$$

In fact any weak accumulation point ν of μ_{n} gives a $P_{c_{0}}$-invariant measure for $P_{c_{0}}: J_{c_{0}} \rightarrow J_{c_{0}}$. The previous limit implies that $\mu_{n} \rightarrow \mu=\nu$, and it follows that $h_{n} \rightarrow h$. Hence, we obtain that

$$
H D\left(J_{c_{n}}\right) \rightarrow H D\left(J_{c_{0}}\right) .
$$

Since $P_{c_{0}}$ is semihyperbolic, we consider the net \mathcal{N} as in Lemma 2.3 and consider constants $C_{0}>0$ and $\theta_{0} \in(0,1)$. Let $w \in \omega(0)$ be any point, then we have

$$
\begin{equation*}
\left|\left(P_{c_{n}}^{m}\right)^{\prime}(w)\right|^{-1} \leq C_{0} \theta_{0}^{m} \tag{3.3}
\end{equation*}
$$

for all $m \geq 1$ and $n \gg 0$. Moreover we may suppose that there is a uniform Bounded Distortion property: There is a constant $K>1$ so that for every $k \geq 1$ and every k th step piece W of the net \mathcal{N}_{i}, the distortion of $P_{c_{n}}^{k}$ in W is bounded by K for all $n \gg 0$; see Lemma 2.5.

Let $w \in \omega(0)$ be any point and B_{q} be the $q t h$ step piece containing $u_{w}=P_{c_{0}}^{l}(w)$ and V_{q} be the pull-back of B_{q} by $P_{c_{0}}^{l}$ containing w. Since $P_{c_{n}} \rightarrow P_{c_{0}}$ algebraically and $d_{H}\left(J_{c_{n}}, J_{c_{0}}\right) \leq C\left|c_{n}-c_{0}\right|^{1 / d}$, we let \widetilde{V}_{q} be the pull-back of B_{q} by $P_{c_{n}}^{l}$ containing $w, n \gg 0$. It follows that for $r>0$ small there is $q=q(r) \rightarrow \infty$, as $r \rightarrow 0$ so that $B_{r}(w) \subset \widetilde{V}_{q}$ for all $n \gg 0$. So we only need to prove that

$$
\lim _{n \rightarrow \infty} \lim _{q \rightarrow \infty} \mu_{n}\left(\tilde{V}_{q}\right)=0
$$

Let D be a disc containing w, small enough so that $\left.P_{c_{n}}^{l}\right|_{D}$ is at most of degree d. Refining the net if necessary, suppose that $B_{1} \subset P_{c_{n}}^{l}(D)$. Since the probability measure μ_{n} is atomless for all $n \gg 0$, we have

$$
\mu_{n}\left(\widetilde{V}_{q}\right)=\sum_{m \geq q} \mu_{n}\left(\widetilde{V}_{m}-\widetilde{V}_{m+1}\right)
$$

Note that for $m \geq 1$ we have

$$
\mu_{n}\left(\widetilde{V}_{m}-\widetilde{V}_{m+1}\right) \leq d \mu_{n}\left(B_{m}-B_{m+1}\right) \inf _{\left(\widetilde{V}_{m}-\widetilde{V}_{m+1}\right) \cap J_{c_{n}}}\left|\left(P_{c_{n}}^{l}\right)^{\prime}(z)\right|^{-h_{n}}
$$

By formula (3.3), we have

$$
\inf _{\left(\widetilde{V}_{m}-\widetilde{V}_{m+1}\right) \cap J_{c_{n}}}\left|\left(P_{c_{n}}^{l}\right)^{\prime}(z)\right|^{-h_{n}}<C_{1}
$$

for all $n \gg 0$ and some constant C_{1}. By the uniform Bounded Distortion Property and considering that μ_{n} is a probability measure, for some constant C_{2} we have

$$
\mu_{n}\left(B_{m}-B_{m+1}\right) \leq K^{h_{n}}\left|\left(P_{c_{n}}^{m}\right)^{\prime}(w)\right|^{-h_{n}} \leq C_{2} \theta_{0}^{m h_{n}}
$$

for all $w \in B_{m}$. So

$$
\mu_{n}\left(\widetilde{V}_{q}\right) \leq \sum C_{1} C_{2} \theta_{0}^{m h_{n}} \leq \sum C_{3} \theta_{0}^{m h_{n}}
$$

Since

$$
\sum_{m \geq q} \theta_{0}^{m h_{n}}=\frac{\left(\theta_{0}^{h_{n}}\right)^{q}}{1-\theta_{0}^{h_{n}}}
$$

we conclude that

$$
\lim _{n \rightarrow \infty} \lim _{q \rightarrow \infty} \mu_{n}\left(\widetilde{V}_{q}\right)=0
$$

Therefor, we get

$$
H D\left(J_{c_{n}}\right) \rightarrow H D\left(J_{c_{0}}\right) .
$$

The proof of the Main Theorem is finished.
We remark that this theorem is sharp, that is, $O\left(\left|c_{n}-c_{0}\right|^{1 / d}\right)$ cannot be replaced by $o\left(\left|c_{n}-c_{0}\right|^{1 / d}\right)$. Assume that $d=2$ and let $c_{0}=-2$. It is well known, and can be easily checked, that the critical point 0 is preperiodic. It eventually lands on 2 , which is a repelling fixed point. Moreover we have $J_{-2}=[-2,2]$. For any $\varepsilon>0$ let $c_{\varepsilon}=-2-\varepsilon$. The Julia set $J_{c_{\varepsilon}}$ is a Cantor set that lies on the real line and is symmetric with respect to 0 . Its extreme points are $Z_{\varepsilon}=\left(1+\sqrt{1-4 c_{\varepsilon}}\right) / 2$, the positive fixed point, and $-Z_{\varepsilon}$. Let $z_{\varepsilon}=\sqrt{-Z_{\varepsilon}-c_{\varepsilon}}$. One easily compute that $z_{\varepsilon} \sim \sqrt{(2 / 3) \varepsilon}$ and that $\left(-z_{\varepsilon}, z_{\varepsilon}\right) \nsubseteq J_{C_{\varepsilon}}$. We can thus conclude that for ε small enough,

$$
d_{H}\left(J_{c_{\varepsilon}}, J_{-2}\right) \sim \sqrt{\varepsilon}
$$

Since $c_{0}-c_{\varepsilon}=\varepsilon$, there is no hope to find a constant C such that

$$
d_{H}\left(J_{c_{\varepsilon}}, J_{-2}\right) \sim o\left(\left|c_{n}-c_{0}\right|^{1 / d}\right)
$$

References

[1] Carleson L., Jones P. and Yoccoz J.-C., Julia and John. Bol. soc. Brasil. Mat. 25 (1994), 1-30.
[2] McMullen C. T., Complex Dynamics and Renormalization, Princeton University Press, 1994.
[3] Urbański M., Rational functions with no recurrent critical points. Ergod. Th. and Dynam. Sys. 14 (1994), 391-414.
[4] McMullen C. T., Huasdorff dimension and conformal dynamics II: Geometrically finite rational maps. Comment Math. Helv. 75 (2000), 535-593.
[5] Beardon A. F., Iteration of Rational Functions, No. 132 in GTM, Springer, 1991.
[6] Urbański M., Measures and Dimensions in Conformal Dynamics. Bull. Amer. Math. Soc. 40 (2003), 281-321.
[7] Przytycki F., Rivera-Letelier J. and Smirnov S., Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. math. 151 (2003), 29-63.

Department of Mathematics and Physics
Beijing Institute of Petrochemical Technology
Beijing 102617
People's Republic of China
E-mail: zhuangwei@bipt.edu.cn
zhuangw2003@163.com

