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1. Introduction. The well-known integral formula of Minkowski was
generalized by C. C. Hsiung to integral formulas of a closed hypersurface
in an (’n+1) -dimensional Euclidean space [2]. Y. Katsurada and H. Kojy\^o
obtained integral formulas of a more general case, namely of a closed sub-
manifold in a Riemannian manifold [4]. These integral formulas are used
to characterize some closed hypersurfaces or submanifolds. For example we
have the following theorem [8]

THEOREM A. Let M be a closed convex hypersurface of a Euclidean
space E^{n+1} and M_{l} the l-th mean curvature. If M_{l} is constant for an
integer I, 1\leqq l\leqq n-1 , then M is totally umbilical, hence a sphere.

Theorems which take the place of the above theorem in the case of
a closed hypersurface and a closed submanifold in a Riemannian manifold
were obtained by M. Tani [7] and Y. Katsurada [3] respectively.

In [8] Newton’s formulas and some related formulas are used. These
formulas were first used by M. Konishi (her name was M. Tani at that
time) in [7]. In the present paper we derive them by a simpler method
and then use Yano’s method in [8] after a slight modification to get some
integral formulas for a closed submanifold and finally to get a theorem similar
in some respect to Theorem A. In our theorem, however, the Riemannian
connection induced on the submanifold is assumed to be flat and our aim is
to get a necessary and sufficient condition of the submanifold to lie on some
hypersphere of the ambient Euclidean space.

In \S 2 we prove Newton’s formulas and their derived ones by using
a generating function and get some formulas which may be useful in various
cases. In \S 3 we prove the main theorem. In the present paper we always
use the following technique. When H is an n-matrix valued function on
M with only real eigenvalues, we define H(c)=H+cE where E is the unit
n-matrix and c is a constant such that all eigenvalues of H(c) are positive
on M. In \S 4 this technique is applied to a closed hypersurface so that
we can take off the convexity condition in Theorem A. This section does
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not fit the title as the Riemannian connection of the hypersurface considered
is not flat.

2. Preliminaries. Let M be an n-dimensional compact orientable Rie-
mannian manifold and H a (1, 1) -tensor field on M satisfying

(2. 1) \nabla_{k}h_{j}^{i}=\nabla_{j}h_{k}^{i} .

Here and in the sequel Latin indices i,j, k, \cdots run the range 1, \cdots , n, h_{j}^{i}

are the local components of H and \nabla denotes Riemannian connection. It
will be convenient to consider H as a matrix valued function on M where
the (i,j) -element is h_{j}^{i} . We define H(c) by

(2. 2) H(c)=H+cE

where E is the unit n-matrix and denote its eigenvalues by \lambda_{1}(c) , \cdots , \lambda_{n}(c) .
If we put

(2. 3) det (\lambda E+H(c))

=\lambda^{n}+\cdots+s_{l}(c)\lambda^{n-l}+\cdots+s_{n}(c) ,

then s_{l}(c) is the l-th fundamental symmetric function of \lambda_{1}(c) , \cdots , \lambda_{n}(c) . From
s_{l}(c) we define M_{l}(c) by

(2. 4) s_{l}(c)=(\begin{array}{l}nl\end{array}) M_{l}(c)

As is well-known we have the identity

log (1+ \lambda_{i}u)=\lambda_{i}u-\frac{1}{2}(\lambda_{i}u)^{2}+\frac{1}{3}(\lambda_{i}u)^{3}-\cdots

from which we can easily deduce

(2. 5) \sum_{l=0}^{\infty}s_{l}(c)u^{l}=\exp[\sum_{m=1}^{\infty}(-1)^{m+1}\frac{1}{m}p_{m}(c)u^{m}]

where

p_{m}(c)= \sum_{i=1}^{n}(\lambda_{i}(c))^{m} ,

s_{0}(c)=1 and s_{k}(c)=0 if k>n .
Differentiating both members of (2. 5) with respect to u and then mul-

tiplying by u we get

\sum_{l=1}^{\infty}ls_{l}(c)u^{l}=\sum_{k=0}^{\infty}s_{k}(c)u^{k}\sum_{m=1}^{\infty}(-1)^{m+1}p_{m}(c)u^{m}

As u is an arbitrary variable, this gives Newton’s formulas,
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(2. 6) ls_{l}(c)-s_{l-1}(c)p_{1}(c)+\cdots

+(-1)^{l-1}s_{1}(c)p_{l-1}(c)+(-1)^{l}p_{l}(c)=0 .

Suppose H depends on a variable t differentiably. Then we get from
(2. 5)

\sum_{l=0}^{\infty}s_{s}’(c)u^{l}+\sum_{k=0}^{\infty}s_{k}(c)u^{k}\sum_{m=1}^{\infty}(-1)^{m}\frac{1}{m}p_{m}’(c)u^{m}=0

hence

(2. 7) s_{l}’(c)-s_{l-1}(c)p_{1}’(c)+ \frac{1}{2}s_{l-2}(c)p_{2}’(c)+\cdots

+(-1)^{l-1} \frac{1}{l-1}s_{1}(c)p_{l-1}’(c)+(-1)^{l}\frac{1}{l}p_{l}’(c)=0

where f’ stands for \partial f/\partial t . We can also consider the gradient of each func-
tion and get

(2. 8) \nabla s_{l}(c)-s_{l-1}(c)\nabla p_{1}(c)+\frac{1}{2}s_{l-2}(c)\nabla p_{2}(c)+\cdots

+(-1)^{l^{-1\frac{1}{l-1}s_{1}(c)\nabla p_{l-1}(c)+(-1)^{l}\frac{1}{l}\nabla p_{l}(c)=0}} .

Now we define the matrix valued function B_{l}(c) by

(2. 9) B_{l}(c)= \sum_{m=0}^{l}(-1)^{m}s_{m}(c)H(c)^{l-m}

If we take any vector field v on M and if a (1, 1) -tensor field V is defined
as the covariant derivative of v, namely \nabla_{u}v=Vu for any vector field u,
then we have
(2. 10) div (Bt \{c) v)=trace(B_{l}(c)V) ,

where, at each point of M, V is considered as a matrix whose (i,j) -element
is the local component \nabla_{j}v^{i} of V for any i and j.

In order to prove (2. 10) we just observe

\nabla_{k}h_{j}^{i}(c)=\nabla_{j}h_{k^{i}}(c)

where hii\{c) =h_{j}^{i}+c\delta_{j}^{i} . Hence we can thoroughly follow the method in [8]
and get

div (H(c)^{l}v)

=\nabla_{i}(h_{i_{1}}^{i}(c)h_{i_{2}}^{i_{1}}(c)\cdots\cdots h_{i_{l}}^{i_{l-1}}(c)v^{i}\iota)

= trace(H(c)^{l}V)+\sum_{m=1}^{l}\frac{1}{m}(\nabla_{i}p_{m}(c))(H(c)^{l-m}v)^{i} ,
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div (B_{l}(c)v)

= \sum_{k=0}^{l} (-1)^{k} div (s_{k}(c)H(c)^{l-k}v)

=trace(B_{l}(c)V)

+ \sum_{k=0}^{l}(-1)^{k}(\nabla_{i}s_{k}(c))(H(c)^{l-k}v)^{i}

+ \sum_{k=0}^{l}(-1)^{k}s_{k}(c)\sum_{m=1}^{l-k}\frac{1}{m}(\nabla_{i}p_{m}(c))(H(c)^{l-k-m}v)^{i}

As the two sums in the last member cancel each other because of (2. 8),
we get (2. 10). Thus we have proved the following lemma.

LEMMA 2. 1. If an n-matrix valued function H on M satisfifies (2. 1),
then the n-matrix valued function B_{l}(c) defifined by (2. 2), (2. 3) and (2. 9)
satisfifies (2. 10) for any vector fifield v on M.

Now let us assume that M admits a non-trivial vector field v satisfying
(2. 11) \nabla_{k}\nabla_{j}v^{i}=\nabla_{j}\nabla_{k}v^{i}

and H is given by

(2. 12) h_{j}^{i}=\nabla_{j}v^{i} .

Then we have V=H, hence V=H(c)-cE, and in view of (2. 10)

div (B_{l}(c)v)=trace(B_{l}(c)H(c))-c trace (B_{l}(c))

As we have

trace (B_{l}(c))= \sum_{m=0}^{l} (-1)^{m}s_{m}(c) trace (H(c)^{l-m})

= \sum_{m=0}^{l}(-1)^{m}s_{m}(c)p_{l-m}(c) ,

trace (B_{l}(c)H(c))= \sum_{m=0}^{l} (-1)^{m}s_{m}(c)p_{l+1-m}(c)r

we get in view of (2. 6)

trace (B_{l}(c))=(-1)^{l}(n-l)s_{l}(c) ,

trace (B_{l}(c)H(c))=(-1)^{l}(l+1)s_{l+1}(c) ,

hence

(2. 13) div (B_{l}(c)v)=(-1)^{l}\{(l+1)s_{l+1}(c)-c(n-l)s_{l}(c)\}
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Substituting (2. 4) into the second member and integrating over M, we get
the following integral formulas

(2. 14) \int_{M}(M_{l+1}(c)-cM_{l}(c))*1=0 , l=0,1 , \cdots , n-1

If M admits a non-trivial vector field u satisfying

(2. 15) \nabla_{k}\nabla_{j}u^{i}=\nabla_{j}\nabla_{k}u^{i} ,

we can take H where the local components are given by

(2. 16) h_{j}^{i}=\delta_{j}^{i}-\nabla_{j}u^{i}

Then we have div (B_{l}(c)u)=trace(B_{l}(c)U) where U=(1+c)E-H(c) , hence

div (B_{l}(c)u)=(1+c) trace (B_{l}(c))- trace (B_{l}(c)H(c))

This gives the integral formulas

(2. 17) \int_{M}(M_{l+1}(c)-(1+c)M_{l}(c))*1=0 , l=0,1 , \cdots , n-1

Thus we have proved the following lemma.

Lemma 2. 2. Let us assume that a non-trivial vector fifield v on a
compact orientable Riemannian manifold M of dimension n satisfifies (2. 11)

and that a(1,1) -tensor fifield {namely an n-matrix valued function) H(c)
is defifined by

h_{j}^{i}(c)=\nabla_{j}v^{i}+c\delta_{j}^{i}

If M_{0}(c) , M_{1}(c) , \cdots , M_{n}(c) are defifined by (2. 3) and (2. 4), then we have the
integral formulas (2. 14). If u is a non-trivial vector fifield on M satisfying
(2. 15), H(c) is defifined by

h_{j}^{i}(c)=(1+c)\delta_{j}^{i}-\nabla_{j}u^{i} .

then we have the integral formulas (2. 17).

The integral formulas (2. 14) and (2. 17) are essentially the same.

3. Main theorem. Let M be an n-dimensional submanifold in a Eu-
clidean (n+p) space E^{n+p} isometric to a compact orientable flat Riemannian
manifold. We consider only the case n\geqq 2 , p\geqq 2 .

A fixed point O is taken in E^{n+p} which serves as the initial point of
any position vector X. The scalar product of vectors A and B of E^{n+p} is
denoted by A.B. Any point of M is denoted by a position vector X and
at the same time by local coordinates x^{1} , \cdots , x^{n} in a relevant coordinate
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neighborhood. Thus X is a function of x^{1}, \cdots , x^{n} there. The Riemannian
metric on M is locally given by the components g_{ji}=(\partial_{j}X)\cdot(\partial_{i}X) where
\partial_{i}X=\partial X/\partial x^{i} and the Riemannian connection is denoted by \nabla .

Let us define a vector field u on M by the local components

u^{i}=g^{ik}(X\cdot\partial_{k}X)

H_{ji} defined by
H_{ji}=\nabla_{j}\partial_{i}X i,j=1, \cdots , n

compose the second fundamental tensor of M and we get

\nabla_{j}u^{i}=\delta_{j}^{i}+(X\cdot H_{jk})g^{ki} .
As the Riemannian connection of M is flat, u satisfies (2. 15) and the matrix
valued function H=[h_{j}^{i}] where the (i,j) -component is given by

h_{J^{i}}=-(X\cdot H_{jk})g^{ki}

satisfies (2. 1). Hence, if H(c)=[h_{j}^{i}(c)] is defined by

(3. 1) h_{j^{i}}(c)=-(X\cdot H_{jk})g^{ki}+c\delta_{j}^{i}

and M_{0}(c) , M_{1}(c) , \cdots , M_{n}(c) by (2. 3) and (2. 4), the latter satisfy the integral
formulas (2. 17).

Now we can write (2. 17) in the form

\int_{M}M_{l}(c)*1=(1+c)^{l}\int_{M}*1

If M_{l}(c) is constant for some l, we have

M_{l}(c) \int_{M}M_{1}(c)*1=(1+c)M_{l}(c)\int_{M}*1=(1+c)\int_{M}M_{l}(c)*1

=(1+c)^{l+1} \int_{M}*1=\int_{M}M_{l+1}(c)*1 ,

hence

(3. 2) \int_{M}\{M_{l}(c)M_{1}(c)-M_{l+1}(c)\}*1=0

On the other hand, if c is such that the eigenvalues of H(c) are all positive
at every point of M, we have

M_{l}(c)M_{1}(c)-M_{l+1}(c)\geqq 0 .
Hence we have in this case

M_{l}(c)M_{1}(c)-M_{l+1}(c)=0-.
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This proves that the eigenvalues \lambda_{i}(c) of H(c) satisfy \lambda_{1}(c)=\lambda_{2}(c)=\cdots=\lambda_{n}(c)

as it is already known [8] and consequently H has also the same property.
Thus we have proved the following lemma.

Lemma 3. 1. If, for some real number c such that H(c) has only
positive eigenvalues at every point of M, one of M_{1}(c) , \cdots , M_{l-1}(c) is constant
on M, then the eigenvalues \lambda_{i} of H satisfy \lambda_{1}=\lambda_{2}=\cdots=\lambda_{n} at each point ofM.

If the condition of Lemma 3. 1 is satisfied, we have
(3. 3) X\cdot H_{ji}=\varphi g_{ji}

where \varphi is a constant because of (2. 1). In view of the identity
\nabla_{j}(X\cdot\partial_{i}X)=g_{ji}+X\cdot H_{ji}

we get from (3. 3)

\nabla^{j}(X\cdot\partial_{i}X)=(1+\varphi)g_{ji}

and

\frac{1}{2}\nabla_{i}(||X||^{2})=n(1+\varphi) .

As M is compact and orientable we get 1+\varphi=0 , hence ||X|| is a constant,
namely, M lies on some hypersphere of E^{n+p} whose center is O.

In order to express M_{l}(c) by M_{1}(0) , \cdots , M_{l}(0) , namely, the scalars be-
longing to H itself, we expand both members of the identity

det (\lambda E+H)=\det((\lambda-c)E+H(c))

into polynomials of \lambda and (\lambda-c) respectively. Then we get

(3. 4) M_{l}(c)= \sum_{m=0}^{i} (\begin{array}{l}lm\end{array}) M_{m}(0)c^{l-m}

Thus we can state the following main theorem.
THEOREM 3. 2. Let M be an n-dimensional closed submanifold of

E^{n+p}, n\geqq 2 , p\geqq 2 , isometric to a compact orientable flat Riemannian mani-
fold. Let X be the position vector of the point of M, g_{ji} the Riemannian
metric and \nabla the Riemannian connection. From the matrix valuedfunction
H on M defifined by H=[h_{j}^{i}] where

h_{j}^{i}=-X\cdot\nabla_{j}\nabla^{i}X

we defifine M_{l} by

det ( \lambda E+H)=\sum_{l=0}^{n} (\begin{array}{l}nl\end{array}) M_{l}\lambda^{n-l}e
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Then a necessary and sufficient condition for the submanifold M to lie on
a hypersphere of E^{n+p} centered at the origin O is that there exist a constant

c and an integer l such that H(c)=H+cE has only positive eigenvalues
at every point of M, 1\leqq l\leqq n-1 , and

\sum_{m=0}^{l} (\begin{array}{l}lm\end{array}) M_{m}c^{l-m}

is constant on M.

That the condition is necessary is almost obvious. The essential part

of this theorem is that the condition is sufficient. This theorem reminds
us of a paper [3] of Y. Katsurada, but in our theorem the submanifold
has flat Riemannian connection. The field X of position vector in E^{n+p} is
a vector field of homothetic transformation of E^{n+p} . When restricted on
the submanifold M we can put X=\alpha N_{(XJ}+B_{(X)} where N_{(X)} is a field of
unit normal vector to M and B_{(X)} is the tangential component of X. In
[3] N_{(X)}\cdot H_{ji} plays the central role but in our study X\cdot H_{ji} , namely, \alpha N_{(B}\cdot H_{ji} ,
\alpha=N_{(B}\cdot X, plays the central role.

4. A sufficient condition of a closed hypersurface of E^{n+1} to be
totally umbilical. We treat in this section a closed hypersurface where
naturally the Riemannian connection is not flat. The reason that such a
section is added in this paper is that we use the technique used in \S 2 and
\S 3. Besides using this technique the method in [8] especially pages 82\sim 86

is imitated. In the last part, however, some other means are also taken.
After all our aim is to find a more lenient condition as a necessary and
sufficient condition.

Let h_{ji} be the local components of the second fundamental tensor of
a closed hypersurface M in E^{n+1} where the inner normal is taken and H
be a matrix valued function on M, H=[h_{j}^{i}] , h_{j}^{i}=h_{jk}g^{ki} . If k is the least
value of the principal curvature of M, H(c)=H+cE has only positive eigen-
values on M for c satisfying c+k>0 .

Let M_{1}(c) , \cdots , M_{n}(c) be the scalars obtained by (2. 3), (2. 4) from H(c)

and M_{1}, \cdots , M_{n} be the corresponding ones from H. Then we have (3. 4)

again. M_{1}, \cdots , M_{n} satisfy the integral formulas [8]

(4. 1) \int_{M}(M_{l}+\alpha M_{l+1})*1=0 l=0,1 , \cdots , n-1

from which we get in view of (3. 4)

(4. 2) \int_{M}\{(1-c\alpha)M_{l}(c)+\alpha M_{l+1}(c)\}*1=0 l=0,1 , \cdots , n-1
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If we have M_{l}(c)=constant for some integer, 1\leqq l\leqq n-1 , then we can
deduce from (4. 2)

(4. 3) \int_{M}\alpha\{M_{l}(c)M_{1}(c)-M_{l+1}(c)\}*1=0 .

If moreover c+k>0 , then we have M_{l}(c)M_{1}(c)\geqq M_{l+1}(c) . Let us assume
\alpha>0 . Then we get M_{l}(c)M_{1}(c)=M_{l+1}(c) from (4. 3) and the eigenvalues
\lambda_{i}(c) of H(c) satisfy \lambda_{1}(c)=\lambda_{2}(c)=\cdots=\lambda_{n}(c) . In such a way we can conclude
that M is totally umbilical.

Thus we can state the following theorem.
THEOREM 4. 1. Let M be a closed hypersurface of E^{n+1} such that at

no point P of M the position vector lies in the tangent hyperplane at P,
and let k be the least value of the principal curvature of M. If there
exist a number c and an integer l, 1\leqq l\leqq n-1 , such that c+k>0 and

(4. 4) \sum_{m=0}^{l} (\begin{array}{l}lm\end{array}) M_{m}c^{l-m}=constant

on M, then M is totally umbilical, hence a sphere.
If l=1 we have the well-known sufficient condition M_{1}=constant[1]

[5][6] .
If M is convex we can replace k by 0. In this case we can prove the

following theorem.
THEOREM 4. 2. If a closed convex hypersurface M of E^{n+1} satisfifies

a_{1}M_{1}+a_{2}M_{2}+\cdots+a_{n-1}M_{n-1}=constant

for some set of non negative constants a_{1} , \cdots , a_{n-1} where a_{1}+\cdots+a_{n-1} is
positive, then M is totally umbilical.

PROOF. Using the integral formulas in [8], page 86, we get from

\int_{M}\sum_{l=1}^{n-1}a_{l}M_{l}(1+\alpha M_{1})*1=\sum_{l=1}^{n-1}a_{l}M_{l}\int_{M}(1+\alpha M_{1})*1=0

and

\int_{M}\sum_{l=1}^{n-1}a_{l}(M_{l}+\alpha M_{l+1})*1=0 ,

the following formula,

\int_{M}\alpha\sum_{l=1}^{n-1}a_{l}(M_{1}M_{l}-M_{l+1})*1=0 .

Since M is convex we can choose the origin of the position vector in such
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a way that \alpha has definite sign and moreover M_{1} , \cdots , M_{n} satisfy M_{1}M_{l}-M_{l+1}\geqq

0 . As a_{1} , \cdots , a_{n-1} are non negative we get M_{1}M_{l}-M_{l+1}=0 if a_{l}>0 . As

such an integer l exists, M is totally umbilical.

Similarly, we can loosen also the sufficient condition of Theorem 4. 1.
Asimilar modification is also possible in Lemma 3. 1 and Theorem 3.2.
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