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\S 1. Introduction

In [4] J. Kuelbs has shown that every tight probability measure on
a Fr\’echet space has a separable Banach support and then that every tight
probability measure on a countable strict inductive limit of Fr\’echet spaces
which satisfies a 0-1 law (^{*}) has a separable Banach support.

On the other hand, in [9] H. Sato has shown that every Borel pr0-
bability measure on a Fr\’echet space has a Banach support and then that
every convex-tight Radon probability measure on a locally convex Hausdorff
space which satisfies a 0-1 law (^{**}) has a Banach support.

In this paper, we shall give a refinement of their results for some suitable
class of locally convex spaces.

It is well known (cf. [2]) that every Fr\’echet space E is topologically
isomorphic to a projective limit of a sequence of Banach spaces E_{n} . In
particular, if for each n a Banach space E_{n} is topologically isomorphic to
a subspace of an \mathscr{L}_{p} -space, then we shall say that a Fr\’echet space E is a
complete countably \mathscr{L}_{p} space (1 \leqq p<\infty) .

In Section 4, it can be shown that every Borel probability measure on
a complete countably \mathscr{L}_{p} space E has a Banach support F which is linearly
isometric to a subspace of L^{p}(\nu) , for some measure \nu . Furthermore if E
is separable then the Banach space F is linearly isometric to a subspace of
L^{p} (0, 1) . As a corollary, we have that every Borel probability measure on
a nuclear Fr\’echet space has a separable Hilbertian support.

Now, it is easily seen that for every (LF)-space E which is not isomorphic
to a Fr\’echet space there exists a convex-tight Radon probability measure
\mu on E which has no Banach support. However, if we assume the following
condition :
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\int^{For} every sequence x_{1}^{*} , x_{2j}^{*}x_{3}^{*} , \cdots , in E^{*} we have
(^{**})

|\mu (X\in E ; sup |\langle x_{n}^{*} , x\rangle|<\infty) =0 or 1

Then \mu has a Banch support (cf. [9]).

It can be shown that every Borel probability measure on an inductive
limit of a properly increasing sequence of complete separable countably \mathscr{L}_{p} -

spaces which satisfies a 0-1 law (^{**}) has a separable Banach support which
is linearly isometric to a subspace of L^{p} (0, 1) . As a corollary, we have that
every Borel probability measure on an inductive limit of a properly increasing
sequence of nuclear Fr\’echet spaces which satisfies a 0-1 law (^{**}) has a
separable Hilbertian support.

For 2<p<\infty , it is known that there exists a mean zero Gaussian
measure on L^{p}(0,1) which has no Hilbertian support. However, if 1\leqq p\leqq 2 ,

then it can be shown that every mean zero Gaussian measure on an induc-
tive limit of a properly increasing sequence of complete separable countably
\mathscr{L}_{p}-spaces has a separable Hilbertian suport.

In Section 5, as their applications we shall discuss the partially admissible
shifts of Borel probability measures on locally convex spaces. These gener-

ah.ze the results of D. Xia [17], A. V. Skorohod [11] and the author [12],

[14].
Throughout the paper we assume that all linear spaces are with real

coefficients.

\S 2. Definitions and notations

Let E be a linear topological space, and let \mu be a Borel probability

measure on E.
DEFINITION 2. 1. Let F be a Borel measurable linear subspace of E

equipped with a linear topology \tau for which the natural injection from (F, \tau)

into E is continuous. Then we shall say that \mu is supported by F if \mu(F)=1 .
In particular, if (F9\tau) is a Hilbert space, then we shall say that \mu has a
Hilbertian support.

Similarly, Banach support and normed support are defined.
A Borel probability measure \mu on E is tight if for each \epsilon>0 there

exists a compact subset K of E such that \mu(K)>1-\epsilon . \mu is convex-tight
if there exists an increasing sequence of convex balanced compact subsets
\{K_{n}\} of E such that \mu(\cup K_{n})=1 . \mu is Radon if for each \epsilon>0 and each
Borel set A there exists a compact subset K\subset A such that \mu(A\cap K^{c})<\epsilon .

Obviously, every convex-tight measure is tight, and every Radon measure
is tight. If E is quasi-complete, then every tight measure is convex-tight.
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A Borel probability measure is a mean zero Gaussian measure if each
continuous linear functional on E has a Gaussian distribution with mean
zero.

\S 3. Lemmas

In this section, we shall devote several lemmas which are very useful
in the ensuing discussions.

Let E be a linear space and |\cdot| be a seminorm on E. We denote by
\hat{E}_{1\cdot 1} a Banach space associated with the seminorm |\cdot| .

First, we shall study a complete countably \mathscr{L}_{p}-space. For 1\leqq p<\infty ,
a Fr\’echet space E is said to be a complete countably \mathscr{L}_{p}-space if it can be
represented as a topological projective limit of a sequence of Banach spaces
E_{n} such that for each nE_{n} is topologically isomorphic to a subspace of
an \mathscr{L}_{p}-space.

As usual, by L^{p}(\nu)=L^{p}(\Omega, \Sigma, \nu);1\leqq p\leqq\infty , we denote the Banach space
of equivalence classes of measurable functions on (\Omega, \Sigma, \nu) whose p’ th power
is integrable (respectively, are essentially bounded if p=\infty). If (\Omega, \Sigma, \nu) is
the usual Lebesgue measure space on [0, 1] , we denote L^{p}(\nu) by L^{p}(0,1) .

Lemma 3. 1. Let 1\leqq p<\infty . In order that a Fr\’echet space E is a
complete countably \mathscr{L}_{p} -space, it is necessary and sufficient that there exists
a countable basis of continuous seminorms |\cdot|_{n} on E such that for each n
a Banach space\hat{E}_{I\cdot I_{n}} is linearly isometric to a subspace of L^{p}(\nu_{n}) , for some
measure \nu_{n} .

PROOF. First we prove the necessity of the condition. Suppose that
E is a complete countably \mathscr{L}_{p}-space. Since every \mathscr{L}_{p}-space is isomorphic
to a subspace of L^{p}(\nu) for some measure \nu (cf. [6]), we may assume that
E can be represented as a topological projective limit of a sequence of Banach
spaces E_{n} with norm ||\cdot||_{n} such that for each nE_{n} is linearly isometric to
a subspace of L^{p}(\nu_{n}) , for some measure \nu_{n} . Let T_{n} be the natural map from
E in to E_{n} .

Define
|x|_{n}=||T_{n}x||_{n} for x\in E .

Since a Frecht space E is a projective limit of a sequence of Banach spaces
E_{n} , \{|\cdot|_{n}\} is a countable basis of continuous seminorms on E. It is obvious
that for each n a Banach space \hat{E}_{I\cdot 1_{n}} is linearly isometric to a subspace of
L^{p}(\nu_{n}) .

Next we prove the sufficiency of the condition. Suppose that there
exists a countable basis of continuous seminorms |\cdot|_{n} on E such that for
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each n a Banach space \hat{E}_{1\cdot 1_{n}} is linearly isometric to a subspace of L^{p}(\nu_{n}) ,

for some measure \nu_{n} . Since a Fr\’echet space E can be represented as a
topological projective limit of a sequence of Banach spaces E_{I\cdot 1_{n}} , it follows
that E is a complete countably \mathscr{L}_{p} -space. This completes the proof.

REMARK 3. 1. For 1\leqq p<\infty , since every \mathscr{L}_{2}-space is isomorphic to

a subspace of an \mathscr{L}_{p}-space (cf. [6]), it follows that every complete countably
\mathscr{L}_{2}-space is also a complete countably \mathscr{L}_{p} space For 1\leqq q\leqq p\leqq 2 , since
every \mathscr{L}_{p}-space is isomorphic to a subspace of L^{q}(\nu) for some measure \nu

(cf. [1], [6]), it follows that every complete countably \mathscr{L}_{p}-space is also a
complete countably \mathscr{L}_{q}-space.

Now, we shall give some examples of complete countably \mathscr{L}_{p} spaces
(1) Let f2 be a nonempty open subset of R^{n} , and let L^{p}(\Omega) be a usual

Banach space (1\leqq p\leqq\infty) . We denote by L_{c}^{p}(\Omega) the totality of all functions
belonging to L^{p}(\Omega) which have a compact support.

Then, it is well known (cf. [15], p. 132) that L_{c}^{p}(\Omega) is a strict inductive
limit of an increasing sequence of L^{p} spaces Thus, (L_{c}^{p}(\Omega))_{b}^{*} (strong dual
of L_{c}^{p}(\Omega)) is a projective limit of a sequence of L^{q}-spaces, and so it is a
complete countably \mathscr{L}_{q} space (1/p+1/q=1) .

(2) A sequence space of K\"othe L= \bigcap_{n}l^{p}(\lambda_{m,n}) , 0<\lambda_{m,n}<\lambda_{m,n+1} (for all

m, n=1,2, \cdots) , is a complete separable countably \mathscr{L}_{p} space (1\leqq p<\infty) .
(3) A projective limit of a sequence of Hilbert spaces is a complete

countably \mathscr{L}_{2}-space. In particular, every nuclear Fr\’echet space is a complete
separable countably \mathscr{L}_{2}-space.

Lemma 3. 2. Let E be a linear topological space, and let \mu be a Borel
probability measure on E. If E is semimetrizable, then there exists a

bounded balanced closed subset B of E such that \mu(\cup nB)=1 .
PROOF. Since E is semimetrizable, by the same way as in Theorem 1

of [9], we have that there exists a sequence of bounded balanced closed
subsets B_{n} of E such that \mu(\cup B_{n})=1 .

Let \{V_{n}\} be a countable basis of neighbourhoods of zero in E such
that V_{1}\supset V_{2}\supset V_{3}\supset\cdots . For each n, since B_{n} is bounded, there exists an
\epsilon_{n}>0 such that \epsilon_{n}B_{n}\subset V_{n} . We denote by B the balanced closed hull of
a set \cup\epsilon_{n}B_{n} . Then the set B is a desired one. This completes the proof.

REMARK 3. 2. In Lemma 3. 2., if E is locally convex, then we may
assume that B is convex, and hence \mu has a seminormed support. Further-
more if E is separated (i. e . Hausdorff), then \mu has a normed support, and
also if E is complete, then \mu has a Banach support.

These results were obtained by H. Sato [9].
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Let E be a Hausdorff linear topological space. Then, E is said to be
quasi-complete if every bounded closed subset of E is complete, and E is
said to be a Lusin space if there exists a Polish space F and a continuous
bijective mapping from F onto E.

Lemma 3. 3. Let E be a locally convex Hausdorff space, and let \mu

be a Borel probability measure on E. If the measure \mu is supported by a
locally convex quasi-complete Lusin space F, then the restriction on F of
\mu , we denote it by \mu_{F}, is also a Borel probability measure on F. Further-
more if \mu is a mean zero Gaussian measure, then \mu_{F} is also a mean zero
Gaussian measure on F.

PROOF. The first part of a statement is an immediate consequence of
Corollary 3 of [10].

Next we prove the second part. Let \mu be a mean zero Gaussian measure
on E. Then, by the first part, \mu_{F} is a Borel probability measure on F.
Since F is a quasi-complete Lusin space, it follows from [10] that \mu_{F} is
a convex-thight measure on F. Thus, there exists an increasing sequence
of convex balanced compact subsets \{K_{n}\} of F such that \mu(\cup K_{n})=1 .

Let d be a topology on F^{*} (the topological dual of F) induced by the
uniform convergence on all K_{n} . Then, d is locally convex semimetrizable,
and coarser than the Mackey topology \tau(F^{*}, F) .

Now, let j be a natural injection from F into E, and let j^{*} be the
adjoint of j. Since j:Farrow E is injective, j^{*}(E^{*}) is dense in F^{*} for the Mackey
topology \tau(F^{*}, F) . Since the topology d is semimetrizable, and coarser than
the Mackey topology \tau(F^{*}, F) , it follows that j^{*}(E^{*}) is sequentially dense
in F^{*} for the topology d.

Thus, for each x^{*} in F^{*} there exists a sequence x_{1}^{*} , x_{2f}^{*}\cdots , in E^{*} such
that j^{*}(x_{n}^{*})arrow x^{*} in F^{*} for the topology d, and this implies that j^{*}(x_{n}^{*})arrow x^{*}

in F^{*}a . s . \mu_{F} . Since for each nj^{*}(x_{n}^{\star}) is a Gaussian random variable, it
follows that x^{*} is also a Gaussian one. This completes the proof.

Lemma 3. 4. Let E be a separable Banach space which is isomorphic
to a subspace of L^{p} (0, 1) (for 1\leqq p\leqq 2), and let H be a linear subspace of
E, and suppose that H itself is a separable Hilbert space. Also, suppose
that the inclusion map i from H into E is continuous. Let \mu be a contin-
uous cylinder measure on H which satisfifies the following two conditions;

(1) \overline{M}_{\mu} is second category in H, where \overline{M}_{t^{p}} denotes the set of partially
admissible shifts of the cylinder measure \mu . {For the defifinition of partially
admissible shifts ; see [14] )

(2) \mu can be extended to a \sigma-additive measure \tilde{\mu} on E.
Then, the measure \tilde{\mu} has a separable Hilbertian support.
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PROOF. It follows from Corollary 4. 3 of [14] that the map i:Harrow E

can be decomposed through a Hilbert-Schmidt operator. Hence, using the
theorem of Minlos [7], we have that \tilde{\mu} has a separable Hilbertian support.

COROLLARY 3. 1. Let E be a separable Banach space which is isomor-
phic to a subspace of L^{p} (0, 1) (for 1\leqq p\leqq 2), and let \mu be a mean zero
Gaussian measure on E. Then \mu has a separable Hilbertian support.

PROOF. It follows from the theorem of Sato [8] that there exists a
separable Hilbert space H such that (i, H, E) is an abstract Wiener space
and \mu is a \sigma-additive extension of the canonical Gaussian cylinder measure
\mu_{H} on H, where i is the inclusion map from H into E.

Since \mu_{H} certainly satisfies the conditions (1) and (2) of Lemma 3. 4, it
follows that \mu has a separable Hilbertian support.

REMARK 3. 3. In the proof of Corollary 3. 1, a Hilbert space H is not
necessarily dense in E. It is well known that (i, H, E) is an abstract Wiener
space in a sense of Gross iff for each nonempty open subset U of E\mu(U)>0
holds.

\S 4. Hilbertian support of probability measures

In this section, we shall study the Hilbertian support of Borel probability
measures on some locally convex spaces.

First, we prove the following fundamental lemma.
Lemma 4. 1. Let E be the topological inductive limit of a properly

increasing sequence E_{1}\subset E_{2}\subset\cdots of complete countably \mathscr{L}_{p} space (for 1\leqq

p<\infty) . Let F be a Banach space and T be a continuous linear map from
F into E. Then, the map T can be decomposed as follows;

FGE\overline{J}\overline{K}

T=K\circ J where G is a Banach space which is linearly isometric to a sub-
space of L^{p}(\nu) for some measure \nu , J is a continuous linear map and K is
a one-tO-One continuous linear map, respectively. Furthermore if F is sepa-
rable then the Banach space G can be taken as a subspace of L^{p} (0, 1) .

PROOF. It follows from the theorem of Grothendieck (cf. [2], p. 225)
that there exists n such T(F)\subset E_{n} and T is a continuous linear map from
F into E_{n} . Hence, without loss of generality, we may assume that E is a
complete countably \mathscr{L}_{p}-space. It follows from Lemma 3. 1 that there exists
a countable basis of continuous seminorms |\cdot|_{n} on E such that for each n
a Banach space E_{1\cdot I_{n}} is linearly isometric to a subspace of L^{p}(\nu_{n}) , for some
measure space (\Omega_{n}, \Sigma_{n}, \nu_{n}) . Let S be a closed unit ball of the Banach space
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F. Then T(S) is a bounded subset of E, so that there exists a_{n}>0 such
that

a_{n}|x|_{n}\leqq 1 for all x\in T(S) , and n=1,2, \cdots ,

holds.

Define

||x||=( \sum_{n=1}^{\infty}2^{-n}a_{n}|x|_{n}^{p})^{1/p} , for x\in E ,

and put G=\{x\in E;||x||<\infty\} . Then, obviously G is a linear subspace of
E, and ||\cdot|| is a norm on G since E is Hausdorff.

Since it is easily seen that the set \{x\in E;||x||\leqq 1\} is bounded convex
balanced closed in E, it follows from [15] that G is a Banach space with
norm ||\cdot|| and the inclusion map K from G into E is continuous.

Now, it is obvious that ||\cdot|| is finite on T(S) and, hence, on T(F) .
From this it follows that T is a linear map from F into G, and the graph
of T is closed in F\cross G since the inclusion map K:Garrow E is continuous.
Thus, by the closed graph theorem (cf. [16]), the map T is continuous from
F into G.

In order to prove the first assertion, it suffices to show that the Banach
space G is linearly isometric to a subspace of L^{p}(\nu) for some measure \nu .

Let \Omega=\bigcup_{n}\Omega_{n} and \Sigma= {A\subset\Omega;A\cap\Omega_{n}\in\Sigma_{n} for all n}, where we may

assume that sets \{\Omega_{n}\} are pairwise disjoint. Then it is obvious that \Sigma is
a \sigma-algebra consisting of subsets of \Omega .

Define a measure \nu on (\Omega, \Sigma) and a map f from G into L^{p}(\nu) as follows;

\nu(A)=\sum_{n=1}^{\infty}2^{-n}a_{n}\nu_{n}(A\cap\Omega_{n}) , for A\in\Sigma :

and for each x\in G

(f(x))(\omega)=(g_{n}\circ f_{n}(x))(\omega) , if \omega\in\Omega_{n} ,

where we denote by f_{n} the quotient map from E into \hat{E}_{1\cdot I_{n}} and by g_{n} the
linear isometry from \hat{E}_{\dagger\cdot I_{n}} into L^{p}(\nu_{n}) , respectively.

Then, obviously the map f is linear, and furthermore we have

||f(x)||_{L^{p}(\nu)}^{p}= \int_{\Omega}|(f(x))(\omega)|^{p}d\nu(\omega)

= \sum_{n=1}^{\infty}2^{-n}a_{n}\int_{\Omega_{n}}|(g_{n}\circ f_{n}(x))(\omega)|^{p}d\nu_{n}(\omega)
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= \sum_{n=1}^{\infty}2^{-n}a_{n}||g_{n}\circ f_{n}(x)||_{L^{p}(\nu_{n})}^{p}

= \sum_{n=1}^{\infty}2^{-n}a_{n}|x|_{n}^{p}=||x||^{p} , for x\in G

This shows that the map f from G into L^{p}(\nu) is linear isometry. Thus,
we proved the first assertion.

Next, we prove the second assertion. Suppose that the Banach space
F is separable. Then, T(F) is a separable linear subspace of G and, hence,
of L^{p}(\nu) . On the other hand, it is well known (cf. [6]) that for every sepa-
rable subspace X of L^{p}(\nu) , the closed sublattice generated by X is a separable
L^{p}(\mu) -space for some measure \mu , and every separable L^{p}(\mu) -space is linearly
isometric to a subspace of L^{p}(0,1) .

From this, if we denote by G_{0} the closure of T(F) in G, then G_{0} is
a Banach space which is linearly isometric to a subsapce of L^{p} (0, 1) . This
completes the proof.

REMARK 4. 1. In Lemma 4. 1, as is shown in the proof, the Banach
space G is a Borel subset of E_{n} for some n, but is not necessarily a Borel
subset of E. However, if F is separable then G is also separable and, hence,
it is a Borel subset of E (cf. [10]).

As an immediate consequence of this lemma, we have
THEOREM 4. 1. Let E be a complete countably \mathscr{L}_{p}-space (1\leqq p<\infty) ,

and let \mu be a Borel probability measure on E. Then, \mu has a Banach
support F which is linearly isometric to a subspace of L^{p}(\nu) , for some
measure \nu . Furthermore if E is separable, then the Banach space F is

linearly isometric to a subspace of L^{p} (0, 1) .
PROOF. It follows from Remark 3. 2 that \mu has a Banach support.

Furthermore if E is separable, then \mu is a Radon measure and, hence, it
also follows from the theorem of Kuelbs [4] that \mu has a separable Banach
support. Thus, using Lemma 4. 1 and Remark 4. 1, the assertion can be
easily proved.

COROLLARY 4. 1. Every Borel probability measure on a nuclear Fr\’echet
space has a separable Hilbertian support.

Now, it is easily seen that every convex-tight measure on a locally
convex Hausdorff space is supported by an inductive limit of an increasing
sequence of Banach spaces. On the other hand, it is known (cf. [9]) that
every convex-tight Radon measure on a locally convex Hausdorff space is
supported by a dual of a locally convex metrizable space.

Since an inductive limit of an increasing sequence of Banach spaces is
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a barrelled (DF)-space, and also since a strong dual of a locally convex
metrizable space is a complete (DF)-space (cf. [2]), it will be very natural
to consider thc^{\Delta} existence of a Banach support of a convex-tight Radon
measure on a (DF)-space. Concerning with this, we have

PROPOSITION 4. 1. Let E be a(DF) -space. Then the.following condi-
tions are equivalent.

(1) Every convex-tight Radon measure on E has a normed support.
(2) E is relatively bounded.
PROOF. First, we prove the part of (1)\Rightarrow(2) . Since E is a (DF)-space,

it has a fundamental sequence of bounded sets B_{1}\subset B_{2}\subset\cdots . We may
assume that for each n the set B_{n} is convex balanced closed since E is a
locally convex space. We denote by E_{n} the linear hull of B_{n} . Then, ob-
viously we have that E_{n}= \bigcup_{k}kB_{n} for all n , and E_{1}\subset E_{2}\subset\cdots .

Now, we assume the condition (1). To prove the condition (2), it suffices
to show that there exists n such that E_{n}=E. For otherwise, without loss
of generality, we may assume that E_{1}\subseteqq E_{2}\subseteqq\cdots\subseteqq E_{n<}\subset\cdots . Thus, there exists
a sequence \{x_{n}\} in E such that x_{1}\in E_{1} , x_{n+1}\in F_{\lrcorner}^{\neg}n+1\cap E_{n}^{c} for n=1,2, \cdots ,.
Let \mu\{x_{n}\}=2^{-n} for n=1,2, \cdots ,. Then, \mu is a convex-tight Radon measure
on E, so that by the assumption (1) \mu has a normed support. Denote by B
the closed unit ball of the normed space F. Then, for each n, x_{n} must
be absorbed by B since x_{n} is contained in F. Since B is bounded, and
also since \{B_{n}\} is a fundamental sequence of bounded sets, it follows that
there exists N such that B\subset B_{n} for all n\geqq N, so that \{x_{k}\}\subset E_{n} for all
n\geqq N. As a consequence, we have x_{N+1}\in E_{N}, and this is a contradiction.

The part of (2)\Rightarrow(1) is obvious. This completes the proof.
R\iota_{d}^{\backslash }MARK42 . A locally convex Hausdorff space E is called to be rela-

tively 1)ounded if there exists a barrel which is bounded. Then it is obvious
that E is relatively bounded iff there exists a norm ||\cdot|| on E such that
the original topology on E is coarser than the ||\cdot|| topology.

As an immediate consequence of Proposition 4. 1, we have
COROLLARY 4. 2. Let E be a(DF) -space which is barrelled or complete.

Then the following conditions are equivalent.
( 1\grave,| Every convex-tight Radon measure on E has a normed support.
(2) E is normable.
PROPOSITION 4. 2. Let E be an inductive limit of a properly increasing

sequence E_{1}\subset E_{2}\subset\cdots of Fr\’echet spaces. Then there exists a convex-tight
Radon measure on E which has no Banach support.

PROOF. Since the sequence of Fr\’echet spaces \{E_{n}\} is properly increasing,
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there exists a sequence \{x_{n}\} in E such that x_{1}\in E_{1} , x_{n+1}\in E_{n+1}\cap E_{n}^{c} for n=
1,2 , \cdots ,. Let \mu\{x_{n}\}=2^{-n} for n=1,2, \cdots ,. Then \mu is a convex-tight Radon
measure on E. When this, we may show that \mu has no Banach support.
For otherwise, there exists a Banach subspace F of E such that \mu(F)=1 .
Hence, it follows from the theorem of Grothendieck (cf. [2], p. 225) that
F\subset E_{N} for some N, so that \{x_{n}\}\subseteq E_{N} . This is a contradiction, and we
complete the proof.

Next, we shall study a Banach support of a Borel probability measure
on an (LF)-space. To establish this, it follows from Proposition 4. 2 that
we must need some conditions for a probability measure.

Let E be a locally convex Hausdorff space, and let \mu be a Borel proba-
bility measure on E. Then we introduce the following two conditions:

(*) For any x^{*} in E^{*} , we have \mu(x\in E;\langle x^{*}, x\rangle=0)=0 or 1.
(^{**}) For any sequence \{x_{n}^{*}\} in E^{*} , we have

\mu(x\in E;\sup_{n}|\langle x_{n}^{*}., x\rangle|<\infty)=0 or 1

Lemma 4. 2. (cf. [4], [9])

Let \mu be a Radon measure on a locally convex Hausdorff space E.
Then we have

(1) In order that \mu satisfifies the condition (^{*}) , it is necessary and suffi-
cient that for any closed subspace F of E, \mu(F)=0 or 1.

(2) In order that \mu satisfifies the condition (^{**}) , it is necessary and suffi-
cient that for any convex balanced closed subset B of E, \mu(\cup nB)=0 or 1.

REMARK 4. 3. In (1), the sufficiency of the condition is obvious, and
the necessity of the condition was established by J. Kuelbs in [4]. It is
obvious that if \mu is not a Radon measure but there exists a topological
support of \mu , then the same result as (1) holds.

In (2), the sufficiency of the condition can be easily proved, and the
necessity of the condition was established by H. Sato in [9].

It follows from Theorem 4. 1 and Lemma 4. 2 that the following result
holds.

THEOREM 4. 2. Let E be a strict inductive limit of an increasing
sequence of complete separable countably \mathscr{L}_{p}- spaces (1\leqq p<\infty) , and let \mu

be a Borel probability measure on E which satisfifies the condition (^{*}) . Then,
\mu has a separable Banach support F which is linearly isometric to a subspace
of L^{p}(0,1)

COROLLARY 4. 3. Let E be a strict inductive limit of an increasing
sequence of nuclear Fr\’echet spaces, and let \mu be a Borel probability measure
on E which satisfifies the condition (^{*}) . Then, \mu has a separable Hilbertian
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support.
Here, if we assume that \mu satisfies the condition (^{**}) , then Theorem

4. 2 and Corollary 4. 3 hold for an (LF)-space (not necessarily a strict (LF)-
space). Those are the followings.

THEOREM 4. 3. Let E be an inductive limit of an increasing sequence
E_{1}\subset E_{2}\subset\cdots of complete separable countably \mathscr{L}_{p} spaces (1\leqq p<\infty) , and let
\mu be a Borel probability measure on E which satisfifies the condition (^{**}) .
Then, \mu has a separable Banach support F which is linearly isometric to
a subspace of L^{p}(0,1) .

PROOF. Since E is an inductive limit of an increasing sequence of
Polish spaces, it is easily seen (cf. [10]) that \mu is a convex-tight Radon meas-
ure on E. Since the measure \mu satisfies the condition (^{**}) , it follows from
Lemma 4. 2 that \mu has a Banach support G, so that there exists N such
that \mu(E_{N})=1 , by the theorem of Grothendieck (cf. [2], p. 225). Hence,
using Theorem 4. 2, we complete the proof.

COROLLARY 4. 4. Let E be an inductive limit of an increasing sequence
of nuclear Fr\’echet spaces, and let \mu be a Borel probability measure on E
which satisfifies the condition (^{**}) . Then, \mu has a separable Hilbertian
support.

THEOREM 4. 4. Let E be an inductive limit of an increasing sequence
of complete separable countably \mathscr{L}_{p} spaces (1\leqq p\leqq 2) . Then, every mean
zero Gaussian measure on E has a separable Hilbertian support.

PROOF. Let \mu be a mean zero Gaussian measure on E. Since every
Gaussian measure satisfies the condition (^{**}) (cf. [5]), it follows from TheO-
rem 4. 3 that \mu has a separable Banach support F which is linearly isometric
to a subspace of L^{p}(0,1) . Hence, it follows from Lemma 3. 3 that \mu can
be considered a mean zero Gaussian measure on F. Thus, using Lemma
3. 4, we have the assertion.

Finally, we shall study a Banach support of a Borel probability measure
on a dual space of a locally convex Hausdorff space.

Let E be a locally convex Hausdorff space, and let \{||\cdot||_{a}\}_{\alpha\in A} be a basis
of continuous seminorms on E. We denote by \hat{E}_{\alpha} the Banach space associated
with a seminorm ||\cdot||_{\alpha} . Then, E is called a Schwarz space if for each
continuous seminorm ||\cdot||_{\alpha} there exists a continuous seminorm ||\cdot||_{\beta}\geqq||\cdot||_{\alpha}

such that the natural map from \hat{E}_{\beta} into \hat{E}_{\alpha} is compact. It is obvious that
every nuclear space is a Schwarz space. E is called a quasi-barrelled space
if every barrel in E which absorbs all the bounded sets of E is a neigh-
bourhood of zero. It is obvious that all barrelled spaces and all bornological



68 Y. Takahashi

spaces are quasi-barrelled, and it is known (cf. [2]) that all locally convex
metrizable spaces are quasi-barrelled.

THEOREM 4. 5. Let E be a quasi-barrelled Schwarz space, and let \mu

be a Radon measure on E_{b}^{*} (the strong dual E) which satisfifies the con-
dition (^{**}) . Suppose that there exists a basis of continuous seminorms
\{||\cdot||_{a}\}_{\alpha\in A} such that for each ||\cdot||_{a} the associated Banach space \hat{E}_{a} is is0-
morphic to a quotient space of an \mathscr{L}_{p}-space. Then, \mu has a separable
Banach support F which is linearly isometric to a subspace of L^{q}(0,1)

(1<p\leqq\infty, 1/p+1/q=1) .
PROOF. Since \mu is Radon, there exists a compact subset K of E_{b}^{*} such

that \mu(K)>0 . We denote by B the convex balanced closed hull of K in
E_{b}^{*}

. and by B^{0} the polar set of B in E, respectively. Then, B is obviously
bounded in E_{b}^{*} and, hence, B^{0} is a barrel in E which absorbs all the bounded
sets of E. From this and the assumption of E, it follows that the set B^{0}

must contain some neighbourhood of zero in E, so that there exists a con-
tinuous seminorm ||\cdot||_{\alpha} such that B\subset E_{\alpha}^{*} , where the strong dual of \hat{E}_{a} be
denoted by E_{\alpha}^{*} .

On the other hand, since E is a Schwarz space, there exists a continuous
seminorm ||\cdot||_{\beta}\geqq||\cdot||_{a} such that the natural map from \hat{E}_{\beta} into \hat{E}_{\alpha} is compact
and, equivalently, the inclusion map from E_{a}^{*} into E_{\beta}^{*} is compact. From
this, E_{a}^{*} can be considered a separable linear subspace of the Banach space
E_{\beta}^{*} and, hence, if we denote by F the closure of E_{\alpha}^{*} in the Banach space
E_{\beta}^{*} then F is a separable Banach space and the inclusion map from F into
E_{b}^{*} is continuous.

Since the measure \mu satisfies the condition (^{**}) , it follows from Lemma
4. 2 that \mu(B)>0 implies \mu(\cup nB)=1 and, hence, \mu(F)=1 . This shows that
\mu has a separable Banach support F.

Now, to complete the proof, it sufficies to show that the Banach space
F is linearly isometric to a subspace of L^{q}(0,1) . For by the assumption
the Banach space \hat{E}_{\beta} is isomorphic to a quotient space of an \mathscr{L}_{p} space, so
that the Banach space E_{\beta}^{*} is isomorphic to a subspace of an \mathscr{L}_{q} space (cf.

[6] ) and, hence, F is also so. Thus, the assertion can be proved in a quite
similar way as in the proof of Lemma 4. 1. This completes the proof.

COROLLARY 4. 5. Let E be a quasi-barrelled nuclear space, and let \mu

be a Radon measure on E_{b}^{*} which satisfifies the condition (^{**}) . Then \mu has
a separable Hilbertian support. In particular, every mean zero Gaussian
Radon measure on E_{b}^{\star_{1}} has a separable Hilbertian support.

THEOREM 4. 6. Let E be a quasi-barrelled Schwarz space, and let \mu

be a mean zero Gaussian Radon measure on E_{b}^{*} . Suppose that there exists
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a basis of continuous seminorms \{||\cdot||_{a}\}_{a\in A} such that for each ||\cdot||_{a} the also
ciated Banach space \hat{E}_{\alpha} is isomorphic to a quotient space of an \mathscr{L}_{p} space
(2\leqq p\leqq\infty) . Then \mu has a separable Hilbertian support.

Using Theorem 4. 5, the proof can be done in a quite similar way as
in the proof of Theorem 4. 4, and so we omit it.

\S 5. Partially admissible shifts of probability measures

In this section, as an application to the previous section we shall study
the partially admissible shifts of probability measures. Throughout this
section, we assume that all linear spaces are infinite dimensional.

Let E be a linear topological space, and let \mu be a Borel probability
measure on E. Let \mu_{x} (for x\in E) denote the Borel probability measure on
E defined by

\mu_{x}(A)=\mu(A-x) for any Borel set A of E .
DEFINITION 5. 1. An element x of E is called an admissible shift for

the measure \mu if \mu_{x} is absolutely continuous with respect to \mu . The set of
admissible shifts of the measure \mu will be denoted by M_{\mu} .

An element x of E is called a parfially admissible shift for the measure
\mu if \mu_{x} contains a component absolutely continuous with respect to \mu . The
set of partially admissible shifty of the measure \mu will be denoted by \overline{M}_{\mu} .

It 1^{\sigma}. easily seen that M_{\mu}\subset\overline{M}_{\mu} , but in general M_{\mu} does not coincide
with \underline{\prime}\tilde{W}_{\mu} . In the case E is a Banach space, we proved in [14] that the

\backslash e\backslash t\overline{\check{M}}_{\mu} is first category in E.
First we shall show that this fact is also true for every Fr\’echet space.

THEOREM 5. 1. Let \mu be a Borel probability measure on a Fr\’echet
\dot{s}pace E. Then the set \overline{M}_{\mu} is fifirst category in E. In particular, \overline{M}_{\mu} does
not coincide with E.

PROOF. Since a Fr\’echet space E is second category, it sufficies to prove
that the first statement holds. By Remark 3. 2 there exists a bounded
convex balanced closed subset B of E such that \mu(\cup nB)=1 , so that using
Proposition 3. 2 of [14], we have \overline{M}_{\mu}\subset\cup nB .

Now, assume the contrary. Then the the set \cup nB is second category
in E. Since every set nB is closed, at least one of them must have a
nonempty interior and, hence, B itself must have at least one interior point.
Since B is convex balanced, the origin must be an interior point of B.
Thus, B is a neighbourhood of zero in E which is bounded, so that E is
normable (cf. [2]). Since E is complete, E is isomorphic to a Banach space,
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and this is a contradiction to Corollary 4. 4 of [14]. This completes the
proof.

Next, we shall give a finer result than Theorem 5. 1 for some Fr\’echet
spaces.

THEOREM 5. 2. Let E be a Fr\’echet space, and let \mu be a Borel proba-
bility measure on E. Suppose that for each neighbourhood U of zero in
E the polar set of U in E^{*} is sequentially compact for the topology \sigma(E^{*}, E) .
Then, there exists a compact convex balanced subset K of E such that
\tilde{M}_{\mu}\subset\cup nK holds.

PROOF. First we show that there exists a Borel probaility measure
\nu on E such that the measure \nu is equivalent to \mu , and satisfies the following
condition (a) ;

{a) For each continuous seminorm p(x) on E, we have \int_{E}p(x)d\nu(x)<\infty .
For since E is a Fr\’echet space, it follows from Remark 3. 2 that there

exists a bounded convex balanced closed subset B of E such that \mu(\cup nB)=1 .
Let \{||\cdot||_{n}\} be a countable basis of continuous seminorms on E. Then we
may assume that sup \{||x||_{n} ; x\in B\}\leqq 1 for all n since B is bounded.
Define

||x||= \sum_{n=1}^{\infty}2^{-n}||x||_{n} for x\in E,\cdot

and put F=\{x\in E;||x||<\infty\} . Then, obviously we have that the set F is
a Borel measurable linear subspace of E, and \cup nB\subset F implies \mu(F)=1 .
Define

f(x)=/||x||(0 ififx\in E\cap F^{c}x\in F\ulcorner

Then the function f(x) on E is obviously Borel measurable.
Define

\nu(A)=C\int_{A}e^{-J^{(x)}}d\mu(x) for all Borel sets A of E ,

where C is a normalized constant.
Then, obviously \nu is a Borel probability measure on E which is equiva-

lent to the measure \mu , and so it sufficies only to show that \nu satisfies the
condition (a). Let p(x) be a continuous seminorm on E. Then there exist
a positive constant C_{1} and a positive integer N such that the inequality
p(x)\leqq C_{1}||x||_{N}, x\in E, holds.

Hence, we have



Hilbertian support ofprobability measures on locally convex spaces and their applications 71

\int_{E}p(x)d\nu(x)=C\int_{E}p(x)e^{-f(x)}d\mu(x)

=C \int_{F}p(x)e^{-IIx11}d\mu(x)

\leqq C\cdot C_{1} \cdot 2^{N}\int_{F}||x||e^{-IIx||}d\mu(x)<\infty -

Thus, the measure \nu certainly satisfies the condition (a).
Now, define the set S as follows:

S=\{x\in E^{*}; \int_{E}|\langle x^{*}, x\rangle|d\nu(x)\leqq 1\} ,

and denote by K the polar set of S in E. Then obviously the set K is
convex balanced closed, and by the condition (a) K is bounded in E, and
it follows from Lemma 3. 1 of [14] that \overline{M}_{\mu}=\tilde{M}_{\nu}\subset\cup nK.

Consequently, to prove this theorem, it sufficies to show that for each
continuous seminorm p(x) on E the set K is totally bounded with respect
to the seminorm p(x) since K is complete. Denote by \hat{E}_{p} the Banach
space associated with a seminorm p(x) , and also denote by E_{K} the linear
subspace of E generated by K. Then it follows from [2] that E_{K} is a
Banach space with the norm ||\cdot||_{K} defined by

||x||_{K}= \inf\{\lambda>0;x\in\lambda K\} for x\in E_{K} ,

and the natural map J from E_{K} into \hat{E}_{p} is continuous, where the map J
is the composition of the inclusion map: E_{K}arrow E and the quotient map:
Earrow\hat{E}_{p} .

We shall finish the proof by showing that the map J is compact. To
do this, it sufficies to show that map J^{*} (the adjoint of J) from (\hat{E}_{p})^{*} into
(E_{K})^{*} is compact. Let \{x_{i}^{*}\} be a bounded sequence of the Banach space
(\hat{E}_{p})^{*} . Then, by the assumption of E, there exists a subsequence \{x_{m_{i}}^{*}\} of
\{x_{i}^{*}\} and x^{*}\in E^{*} such that x_{m_{i}}^{\star_{1}}arrow x^{*} for the topology \sigma(E^{*}, E) .

On the other hand, we have

||J^{*}(x_{m_{i}}^{*})-J^{*}(x^{*})||_{(E_{K})^{*}}= \sup_{x\in K}|\langle x_{m_{i}}^{*}-x^{*}, x\rangle|

\leqq\int_{E}|\langle x_{m_{i}}^{*}-x^{*}, x\rangle|d\nu(x)

Since it can be shown that the sequence \{x_{m_{i}}^{*}-x^{*}\} is contained in (E_{p})^{*}

and bounded in it, by the condition (a), we can apply the Lebesgue’s domi-
nated convergence theorem for this case as follows;
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\varlimsup_{iarrow\infty}||J^{*}(x_{m_{i}}^{*})-J^{*}(x^{*})||_{(E_{K})^{*}}\leqq\varlimsup_{iarrow\infty}\int_{E}|\langle x_{m_{i}}^{*}-x^{*}, x\rangle|d\nu(x)=0

This shows that the map J^{*} from (\hat{E}_{p})^{*} into (E_{K})^{*} is compact, and we
complete the proof.

REMARK 5. 1. In Theorem 5. 2, if E is a reflexive Banach space, then
by the theorem of Eberlein every bounded set in a Banach space E^{*} is
sequentially relatively compact for the topology \sigma(E^{*}, E) , so that the assump-
tion of E can be satisfied. This shows that Theorem 5. 2 generalizes the
author’s result (cf. [14]). On the other hand, in the case E is a separable
Fr\’echet space, every Borel probability measure on E is Radon, so that
Theorem 5. 2 is obviously valid.

Using the closed graph theorem [16], we have

COROLLARY 5. 1. Let E be a Fr\’echet space as in Theorem 5. 2, F be
a barrelled space and T be a continuous linear map from F into E. Let
\mu be a Borel probability measure on E, and suppose that T(F)\subset\overline{M}_{\mu} . Then
the map T from F into E is compact.

Fina11y_{j} we shall prove that in Corollary 5. 1 the map T is of Hilbert-
Schmidt type when E and F belong to some suitable class of Fr\’echet spaces.

THEOREM 5. 3. Let E be a complete separable countably \mathscr{L}_{2} space, F
be a barrelled space and T be a continuous linear map from F into E.
Let \mu be a Borel probability measure on E, and suppose that T(F)\subset\overline{M}_{\mu} .
Then the map T from F into E can be decomposed through a Hilbert-
Schmidt one.

PROOF. If follows from Theorem 4. 1 that \mu has a separable Hilbertian
support H. Hence, by the assumption of \mu and Proposition 3. 2 of [14],

we have that T(.F,)\subset H. Since the inclusion map from H into E is con-
tinuous, it follows from the closed graph theorem [16] that T is a con-
tinuous linear map from F into H. We denote by \mu_{H} the restriction of \mu

on H. They by Lemma 3. 3 \mu_{H} is a Borel probability measure on H, and
obviously \overline{M}_{\mu}=\overline{M}_{\mu_{H}} holds. Thus, by Corollary 4. 2 of [14] we complete the
proof.

THEOREM 5. 4. Let E be a complcte scpaj able countably \mathscr{L}_{1} space, F
be a barrelled space and T be a continuous linear map from F into E.
Let \mu be a Borel prob \acute{"}bi_{l}^{7}ity measure on E. Suppose that the topology of
F is defifined by a family of Hilbertian seminorms, and also suppose that
T(F)\subset\overline{M}_{\mu} . Then the map T from F into E can be decomposed through
a Hilbert-Schmidt one.

PROOF. It follows from Theorem 4. 1 that \mu has a separable Banach
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support G which is linearly isometric to a subspace of L^{1} (0, 1) . Hence,
using Corollary 4. 3 of [14], the proof can be done by the same way as in
the proof of Theorem 5. 3. This completes the proof.
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