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Introduction. In this paper we study finitely generated projective mod-
ules over a hereditary noetherian prime ring (henceforth, we denote an
HNP ring, for abbreviation). We mainly concern with the genus of finitely
generated projective modules. When one deals with an order over a De-
dekind domain, the genus can be investigated by localization (cf. [7, \S 27,
35]). In our (noncommutative) case, the localization at a maximal invertible
ideal studied in [5, \S 3] is very useful. As is stated in [5, \S 3], the localiza-
tion of an HNP ring at a maximal invertible ideal is either a Dedekind
prime ring or a semilocal HNP ring defined in \S 1. Although finitely ge-
nerated projective modules over a Dedekind prime ring were perfectly studied
in [1], the another case is not treated anywhere. Therefore, we investigate
those over a semilocal HNP ring in \S 1 and give a necessary and sufficient
condition when two finitely generated projective modules are in the same
genus and also prove the following.

(1. 15) THEOREM. Let R be a semilocal HNP ring with its radical
I and M, N, K fifinitely generated projective modules in the same genus
such that K/KI contains all S_{\lambda}\in \mathfrak{S}_{I} . Then there exists a fifinitely generated
projective module L in the genus such that N\oplus K\cong M\oplus L .

In \S 2, we treat of an HNP ring R with enough invertible ideals and
show that two finitely generated projective modules are in the same genus
iff their localization M_{I} and N_{I} are in the same genus as R_{I} modules for
all maximal invertible ideals I, where R_{I} is the localization of R at I. The
generalization of (1. 15) is obtained in (2. 7).

Finally, in \S 3, applying the above results we try to define the ideal
class group for some HNP ring.

Throughout this paper, R is an HNP ring which is not artinian and
Q is the maximal quotient ring of R. We shall shortly mention definitions
and notation which will be frequently used in this paper. For more detailed
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description, the reader is referred to[1,2,3]. Let X^{*}=Hom_{R}(X, R) for a
right R module X. Let P_{0} , \cdots , P_{t-1} be a nontrivial cycle of idempotent maxi-
mal ideals of R with t>1[2] . We consider an invertible maximal ideal
as a trivial cycle. However, in this paper, a cycle is always nontrivial unless
otherwise stated. When a maximal invertible ideal I is an intersection of
a cycle P_{0}, \cdots , P_{t-1} , we say that “

I=P_{0}\cap\cdots\cap P_{t-1}
” or “

I=P_{0}\cap\cdots\cap P_{t-1} is
an intersection of a cycle or “I is an intersection of a cycle We denote
the Goldie dimension of a module M by rank M and the length of com-
position series of M (if it exists) by l(M). A right bounded ring is a ring
such that every nonzero right ideal contains a nonzero ideal. A right and
a left bounded ring is called bounded. When every nonzero ideal of R con-
tains an invertible ideal, we say that R has enough invertible ideals.

1. Semilocal HNP rings. Let R be an HNP ring and M, N finitely
generated projective R-modules. We say that M and N are in the same
genus, denoted by M\vee N, if rank M=rank N and M/MP\cong N/NP for all
maximal ideals P of R[3,\S 4]. We shall investigate the behavior of the
genus in this sense.

(1. 1) LEMMA. Let R be an HNP ring and M, N fifinitely generated
projective modules with N\subset M. Then N is an essential submodule of M
iff M/N is artinian.

PROOF. Let X be an essential submodule of Y and f(X)=0 for some
f\in Y^{*} . We can find a regular element c of R with yc\in X for any y\in Y.
Then 0=f(yc)=f(y) c implies f(y)=0, that is f=0. Thus we have Y^{*}\subset X^{*} .
Let N be essential in M and M=M_{0}\supset M_{1}\supset\cdots\supset N a descending chain of
submodules of M. Then M_{0}^{*}\subset M_{1}^{*}\subset\cdots\subset N^{*} is an ascending chain of sub-
modules of N^{*} which terminates. Thus we have M_{n}^{*}=M_{n+1}^{*}=\cdots for some
integer n, and then M_{n}=M_{n+1}=\cdots by the reflexivity of M_{i} . The converse
is obtained by the similar way to [1, Theorem 1. 3],

(1. 2) Lemma. Let R be an HNP ring, M, N fifinitely generated projec-
tive R modules and I=P_{0}\cap\cdots\cap P_{t-1} a maximal invertible ideal. Then
M/MI\cong N/NI iff M/MP_{i}\cong N/NP_{i} for every i (0\leq i\leq t-1) .

PROOF. This follows directly from M/MI\cong M/MP_{0}\oplus\cdots\oplus M/MP_{t-1} .
By (1. 2) if idempotent maximal ideals P_{0} , \cdots , P_{t-1} form a cycle, then

we study the genus at a maximal invertible ideal I=P_{0}\cap\cdots\cap P_{t-1} instead
of all P_{i}’s. We shall state the lemma which plays a critical role in this
paper.

(1. 3) Lemma. Let R, M, and N be the same as (1. 2), M/N=S simple,
and I a maximal invertible ideal of R.
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1) If I=P is a maximal ideal, then M/MP-N/NP.
2) Assume that I=P_{0}\cap\cdots\cap P_{t-1} is an intersection of a cycle.

i) If SI\neq 0 , then M/MI\cong N/NI.
ii) If SI=0, that is, SP_{i}=0 for some i(0\leq i\leq t-1) , then M/MI\oplus

S_{i-1}\cong N/NI\oplus S_{i} , where S_{j} is a simple R-module with S_{j}P_{j}=0(0\leq j\leq t-1)

and S_{-1}=S_{t-1} .
PROOF. 1) Let SP=0, that is, MP\subset N. Then the exact sequences
0- N/MParrow M/MParrow M/Narrow 0 , 0arrow MP/NParrow N/NParrow N/MParrow 0

are those of R/P-modules. Thus they split and we have;

M/MP\cong N/MP\oplus M/N . N/NP\cong N/MP\oplus MP/NP .

On the other hand, it holds by [3, Theorem 33] that;
(1. 4) rank M=rankN\Rightarrow l(M/MI’)=l(N/NI’) for every maximal invertible

ideal I’
Therefore, l(MP/NP)=l(M/N)=1 , that is, MP/NP is a simple R/P-module.
Hence MP/NP\cong M/N, and then M/MP\cong N/NP.

Let SP\neq 0 , that is, MP+N=M. Then an exact sequence

0- (N\cap MP)/NParrow N/NParrow M/MParrow 0

is one of R/P-modules. Thus it splits and we have;

N/NP\cong M/MP\oplus(N\cap MP)/NP-

Again, by (1. 4) l(N/NP)=l(M/MP), and then (N\cap MP)/NP=0 , that is,
N/NP\cong M/MP.

2) i) This is proved by the same way as the case SP\neq 0 of 1). ii) Since
MI\subset N, we have;

M/MI\cong N/MI\oplus M/N’. N/NI\cong N/MI\oplus MI/NI

by the similar way to 1). Again, by (1. 4) MI/NI is simple. Since P_{i}=

IP_{i-1}I^{-1} by [3, Theorem 14], MIP_{i-1}I^{-1}\subset N, that is, MIP_{i-1}\subset NI. Thus
MI/NI\cong S_{i-1} and M/MI\oplus S_{i-1}\cong N/NI\oplus S_{i} .

DEFINITION. A ring R is called a semilocal HNP ring if R satisfies
the following;

1) R is an HNP ring.
2) The Jacobson radical of R is I=P_{0}\cap\cdots\cap P_{t-1} , where \{P_{0}, \cdots, P_{t-1}\}

is a trivial or nontrivial cycle of idempotent maximal ideals and they are
the only maximal ideals of R.

3) I is a maximal invertible ideal of R and all invertible ideals of R
are powers of I.
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REMARK. If R is a semilocal HNP ring, then R is bounded by [2,

Theorem 4. 13]. A localization R_{I} of an HNP ring R at a maximal invertible
ideal I is a semilocal HNP ring by [5, Theorem 3. 6].

Let R be an HNP ring and I=P_{0}\cap\cdots\cap P_{t-1} a maximal invertible ideal
of R. Put \mathfrak{S}_{I}=\{S_{0}, \cdots, S_{t-1}\} be a set of the representatives of the nonis0-
morphic simple R/I-modules, that is, S_{i}’s are the simple R/I-modules with
S_{i}P_{i}=0 . We shall regard an index j of P_{j} or S_{j} as an element of Z/tZ,

where Z is the ring of rational integers. Thus j\equiv j’mod . t means S_{j}=S_{f’}

and P_{j}=P_{j’} . When we fix a maximal invertible ideal I, we sometimes write
\mathfrak{S} instead of \mathfrak{S}_{I} .

(1. 5) THEOREM. Let R be a semilocal HNP ring with its radical
I=P_{0}\cap\cdots\cap P_{t-1} , N, M fifinitely generated projective R-modules such that
N\subset M and rank N=rank M. Then M\vee N iff every simple module of \mathfrak{S}_{I}

appears in the composition factors of M/N for the same times, that is, for
some integer k\geq 0 , the set of the composition factors of M/N coincides with
\mathfrak{S}\cup\cdots\cup \mathfrak{S} [k-times).

PROOF. By (1. 1) we let l(M/N)=s and N=N_{0}\subset N_{1}\subset\cdots\subset N_{s}=M a
composition series of M/N. We put N_{i}/N_{i-1}=S_{\lambda_{i}} , S_{\lambda_{i}}\in \mathfrak{S}(1\leq i\leq s) by hy-
pothesis. Since S_{\lambda_{i}}P_{\lambda_{i}}=0 , it holds that N_{i}/N_{i}I\oplus S_{\lambda_{i}-1}\cong N_{i-1}/N_{i-1}I\oplus S_{\lambda_{i}}(i=

1 , \cdots , s) by (1. 3). Therefore, we have
(1. 6) M/MI\oplus S_{\lambda_{1}-1}\oplus\cdots\oplus S_{\lambda s^{-1}}\cong N/NI\oplus S_{\lambda_{1}}\oplus\cdots\oplus S_{\lambda s} .

If M\vee N, then by (1. 6), we have
(1. 7) S_{\lambda_{1}-1}\oplus\cdots\oplus S_{\lambda_{S}-1}\cong S_{\lambda_{1}}\oplus\cdots\oplus S_{\lambda_{S}} .

Consider the two sets A=\{\lambda_{1}-1, \cdots, \lambda_{s}-1\} and B=\{\lambda_{1^{ }},\cdots, \lambda_{s}\} of indices of
S_{\mu}’s in (1. 7). Let n_{i} be the number of times of i\in Z/tZ in A. Then i+1
appears n_{i} times in B. Thus n_{0}=n_{1}=\cdots=n_{t-1}=k, since A=B by (1. 7).

Hence the set of composition factors of M/N equals \mathfrak{S}\cup\cdots\cup \mathfrak{S} [k-times).

The converse follows from (1. 6) at once.
We have now learned that, under the situation of (1. 5), the set of

composition factors of M/N is \mathfrak{S}\cup\cdots\cup \mathfrak{S} provided M\vee N. We shall further
study this situation and show that M/N has a ‘good’ composition series.
To do so, we prepare definitions and lemmas.

DEFINITION. 1) Let \alpha\in Z/tZ and \beta a positive integer. A normal chain
\Gamma_{\alpha}^{\beta} of mod. t is an ordered set \{\alpha, \alpha+1, \cdots, \alpha+\beta-1\} where \alpha+j\in Z/tZ

(0\leq j\leq\beta-1) . We write \Gamma_{\alpha}^{\beta}=\langle\alpha, \alpha+1, \cdots, \alpha+\beta-1\rangle in order to distinguish
from a mere set \{\alpha, \alpha+1, \cdots, \alpha+\beta-1\} . \beta is called the length of a normal
chain \Gamma_{\alpha}^{\beta} .

2) For the case \Gamma_{\alpha}^{\beta}=\langle\alpha, \cdots, \gamma, \cdots, \alpha+\beta-1\rangle , we say that \gamma appears in \Gamma_{\alpha}^{\beta} .
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3) We call \Gamma_{\alpha}^{\beta+\delta} a composition of \Gamma_{\alpha}^{\beta} and \Gamma_{\gamma}^{\delta} provided \alpha+\beta=\gamma .
4) We call \Gamma_{\alpha}^{\beta-t} a contraction of \Gamma_{\alpha}^{\beta} provided \beta>t .
5) We let [\Gamma_{\alpha_{1}^{1}}^{\beta}, \Gamma_{\alpha_{2}^{2}}^{\beta}, \cdots]=[\alpha_{1^{ }},\cdots, \alpha_{1}+\beta_{1}-1, \alpha_{2^{ }},\cdots, \alpha_{2}+\beta_{2}-1, \cdots] for nor-

mal chains \Gamma_{\alpha_{i}}^{\beta_{i}} of mod. t and call it a chain of mod. t . Note that [\alpha_{1},
\alpha_{2} ,

\ldots]=[\Gamma_{\alpha_{1}}^{1}, \Gamma_{\alpha_{2}}^{1}, \cdots] for \alpha_{i}\in Z/tZ.
When there is no confusion, we simply call normal chain or chain.
Let \mathscr{P} be a nonempty set of normal chains of mod. t . Consider the

following condition ;
(1. 8) let c( \mathscr{P})=\bigcup_{\Gamma_{\alpha}\epsilon \mathscr{H}}\beta\{\alpha, \alpha+1, \cdots, \alpha+\beta-1\} , then c(\mathscr{P})=Z/tZ\cup\cdots\cup Z/

tZ (k-times) for some positive integer k.
(1. 9) PROPOSITION. Let \mathscr{P} be a nonempty set of normal chains of mod.

t which satisfifies (1. 8). Then we have a set \mathscr{P}_{0} , consisting of the compositions
of normal chains in \mathscr{P} , all of whose normal chains have the length divided
by t .

PROOF. We shall prove by induction on k in (1. 8). For k=1 , the
number of elements of c(\mathscr{P}) is t . If \Gamma_{\alpha}^{t}\in \mathscr{P} , then \mathscr{P}=\{\Gamma_{\alpha}^{t}\} which satisfies
the assertion. Thus we assume that every normal chain of \mathscr{P} has the length
\beta<t . Put \Gamma_{\alpha}^{\beta}\in \mathscr{P} with \beta<t . If \Gamma_{\alpha+\beta}^{\gamma}\not\in \mathscr{P} for all \gamma , then there is \Gamma_{\epsilon}^{\eta}\in \mathscr{P}

such that \epsilon\neq\alpha+\beta and \alpha+\beta appears in \Gamma_{\epsilon}^{\eta} . Since \alpha+\beta-1 also appears in
\Gamma_{\epsilon}^{\eta} , c(\mathscr{P}) contains \alpha+\beta-1 twice which is a contradiction. Thus we have
\Gamma_{\alpha+\beta}^{\gamma}\in \mathscr{P} , and get \Gamma_{\alpha}^{\beta+\gamma} from \Gamma_{\alpha}^{\beta} and \Gamma_{\alpha+\beta}^{\gamma} . By iteration we reach \Gamma_{\alpha}^{t} at last.

Let k>1 and assume the proposition for k-1 . If \Gamma_{\alpha}^{t}\in \mathscr{P} , then we have
the assertion for \mathscr{P}’=\mathscr{P}-\{\Gamma_{\alpha}^{t}\} . Thus the proposition holds. If \Gamma_{\alpha}^{\beta}\in \mathscr{P} with
\beta>t , then we have the assertion for \mathscr{P}’=(\mathscr{P}-\{\Gamma_{\alpha}^{\beta}\})\cup\{\Gamma_{\alpha}^{\beta-t}\} . Let \Gamma_{\gamma}^{\delta} be
a normal chain with t|\delta which is composed of the subset A of \mathscr{P}’ including
\Gamma_{\alpha}^{\beta-t} . Then we can get the composition \Gamma_{\gamma}^{\delta+t} from the set (A-\{\Gamma_{\alpha}^{\beta-t}\})\cup\{\Gamma_{\alpha}^{\beta}\}

such that t|(\delta+t) . Thus the proposition holds.
Finally, we assume that every normal chain \Gamma_{\alpha}^{\beta} of \mathscr{P} satisfies \beta<t . By

the similar way to the case of k=1 , we can find a positive integer \beta_{2} and
obtain the composition \Gamma_{\alpha}^{\beta_{1}+\beta_{2}} of \Gamma_{\alpha^{1}}^{\beta} and \Gamma_{\alpha^{2}+\beta_{1}}^{\beta}\in \mathscr{P} . By iteration we reach
the composition \Gamma_{\alpha}^{\beta_{1}+\cdots+\beta_{m}} of normal chains in \mathscr{P} such that \beta_{1}+\cdots+\beta_{m}\geq t .
Let m be the smallest such integer and \mathscr{P}’=\mathscr{P}-\{\Gamma_{\alpha}^{\beta_{1}}, \Gamma_{\alpha+\beta_{1}}^{\beta_{2}}, \cdots, \Gamma_{\alpha+\beta_{1}+\cdots+\rho_{m-1}}^{\beta_{m}}\}

(\mathscr{P}’=(\mathscr{P}-\{\Gamma_{\alpha}^{\beta_{1}}, \Gamma_{\alpha+\beta_{1}}^{\beta_{2}}, \cdots, \Gamma_{\alpha+\beta_{1}+\cdots+\rho_{m-1}}^{\beta_{m}}\})\cup\{\Gamma_{\alpha}^{\beta_{1}+\cdots+\rho_{m}-t}\}) for the case of \beta_{1}+\cdots+

\beta_{m}=t(\beta_{1}+\cdots+\beta_{m}>t) . Then by the similar way to the preceding paragraph
we can show the proposition in this case. This completes the proof.

Now, let I=P_{0}\cap\cdots\cap P_{t-1} be a maximal invertible ideal of an HNP
ring R and M, N finitely generated projective R-modules such that N\subset M

and l(M/N)=kt. We let
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(1. 10) N=N_{0}\subset N_{1}\subset\cdots\subset N_{kt}=M

be a composition series of M/N with N_{i}/N_{i-1}\cong S_{\lambda_{i}}\in \mathfrak{S}_{I}(i=1, \cdots, kt) . Con-
sider the chain [\lambda_{1}, \cdots, \lambda_{kt}] of indices of S_{\lambda_{i}} . Then we say that the com-
position series (1. 10) is good with respect to I, if the following holds;

(1. 11) [\lambda_{it+1^{ }},\cdots, \lambda_{(i+1)l}]=[\Gamma_{a_{i}}^{t}] for some \^a Z/tZ (0\leq i\leq k-1) .
If (1. 11) holds, then (1. 10) has the property that N_{it+j}/N_{it+j-1}\cong S_{\alpha_{i}+j-1}

where S_{\alpha_{i}+j-1}\in \mathfrak{S}(0\leq i\leq k-1;1\leq j\leq t) . The importance of the existence
of such a series will become clear in (1. 14).

Next, consider the nonzero uniserial modules C, C’ of finite length such
that every composition factor of the composition series of them is in \mathfrak{S}_{I} .
If CI^{i}\neq 0 , then CI^{i}/CI^{i+1} is simple, for R/I is semisimple and C is uniserial.
Thus C\supset CI\supset\cdots\supset CI^{\beta}=0 is a composition series of C for some \beta . Let
CI^{\beta-1}\cong S_{\alpha}\in \mathfrak{S} . Since CI^{\rho-1}P_{\alpha}=0 and P_{\alpha+i}=I^{i}P_{\alpha}I^{-i} by [3, Theorem 14], we
have CI^{\rho-i-1}P_{\alpha+i}=CI^{\beta-1}P_{\alpha}I^{-i}=0 , that is, CI^{\beta-i-1}/CI^{\beta-i}\cong S_{\alpha+i}, S_{\alpha+i}\in \mathfrak{S}(1\leq i\leq

\beta-1) . Thus we get the ordered set \{S_{\alpha}, S_{\alpha+1}, \cdots, S_{a+\rho-1}\} of composition
factors of C whose indices yields the normal chain \Gamma_{\alpha}^{\beta} of mod. t and we
call this normal chain \Gamma_{\alpha}^{\beta} the normal chain of (the composition series of)
C. Let \Gamma_{\alpha}^{\beta} , \Gamma_{\alpha+\beta}^{\gamma} be normal chains of C, C’ , respectively. Then a composi-
tion series 0\subset CI^{\beta-1}\subset\cdots\subset C\subset C\oplus C’I^{r-1}\subset\cdots\subset C\oplus C’ of C\oplus C’ corresponds
with the composition \Gamma_{\alpha}^{\beta+\gamma} . This composition series has the ordered set
\{S_{\alpha}, S_{a+1}, \cdots, S_{a+\beta-1}, S_{\alpha+\beta}, \cdots, S_{\alpha+\beta+\gamma-1}\} of composition factors. Summarizing the
above results we get the following.

(1. 12) Lemma. The notation and the assumption are the same as above.
A nonzero uniserial module C with l(C)=\beta and CI^{\beta-1}\cong S_{a} , S_{\alpha}\in \mathfrak{S} , gives
a normal chain \Gamma_{\alpha}^{\beta} of C according to the above way. Further, if another
nonzero uniserial module C’ gives a normal chain \Gamma_{\alpha}^{r_{+\rho}}, then the composition
series 0\subset CI^{\beta-1}\subset\cdots\subset C\subset C\oplus C’I^{\gamma-1}\subset\cdots\subset C\oplus C’ corresponds with \Gamma_{\alpha}^{\beta+\gamma} .

(1. 13) THEOREM. Let R be a semilocal HNP ring with its radical
I=P_{0}\cap\cdots\cap P_{t-1} and M, N fifinitely generated projective modules such that
N\subset M and M\vee N. Then M/N has a composition series (1. 10) which sat-
isfifies (1. 11).

PROOF. Since M/N is an R/I^{kt} module and R/I^{kt} is a serial ring, M/N
is a direct sum of nonzero uniserial modules, say M/N=C_{1}\oplus\cdots\oplus C_{a} . As
in (1. 12), every C_{j} gives a normal chain \Gamma_{\alpha_{j}}^{\beta_{j}} and the set \mathscr{P}=\{\Gamma_{\alpha_{j}}^{\beta_{j}} ; ^{1}\leq j\leq a\}

satisfies the condition (1. 8) by (1. 5). Thus, by (1. 9) and (1. 12), we have
M/N\cong D_{1}\oplus\cdots\oplus D_{b}(b\leq a) such that l(D_{i})=tn_{i} and each D_{i} has the composi-
tion series 0=E_{0}\subset E_{1}\subset\cdots\subset E_{tn_{i}}=D_{i} and E_{j}/E_{j-1}\cong S_{\alpha_{i}}+j’ S_{a_{i}+j}\in \mathfrak{S} for \alpha_{i}\in

Z/tZ and positive integers n_{i} . Hence we can construct the composition
series of M/N which satisfies (1. 11) from those of D_{i}’s.
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(1. 14) Lemma. Let R be a semilocal HNP ring with its radical I=
P_{0}\cap\cdots\cap P_{t-1} and M, N, K fifinitely generated projective R modules in the
same genus such that N\subset M, l(M/N)=t, and K/KI contains all S_{\lambda}\in \mathfrak{S}_{I} .
Then there exists a fifinitely generated projective R-module L in the genus
with K\oplus N\cong M\oplus L .

PROOF. By (1. 13) there exist \lambda\in Z/tZ and a composition series N=N_{0}\subset

N_{1}\subset\cdots\subset N_{t}=M of M/N such that N_{i}/N_{i-1}\cong S_{\lambda+i-1} , S_{\lambda+i-1}\in \mathfrak{S}(1\leq i\leq t-1) .
Consider the exact sequences 0arrow Narrow N_{1}arrow S_{\lambda}arrow 0 and 0- L_{1}arrow Karrow S_{\lambda}arrow 0 . Then
we have N\oplus K\cong N_{1}\oplus L_{1} by Schanuel’s Lemma, and K/KI\oplus S_{\lambda-1}\cong L_{1}/L_{1}I\oplus S_{\lambda}

by (1. 3). Thus we can get the exact sequence 0arrow L_{2}arrow L_{1}arrow S_{\lambda+1}arrow 0 and go
up the next step. By iteration we get finitely generated projective modules
L_{i}(1\leq i\leq t) such that N_{i}\oplus L_{i}\cong N_{i+1}\oplus L_{i+1} , L_{i}/L_{i}I\oplus S_{\lambda+i-1}\cong L_{i+1}/L_{i+1}I\oplus S_{\lambda+i}

(1\leq i\leq t-1) . Therefore, putting L=L_{t} we have N\oplus K\cong M\oplus L and K/KI
\oplus S_{\lambda-1}\cong L/LI\oplus S_{\lambda+t-1}\equiv L/LI\oplus S_{\lambda-1} , that is, LvK.

(1. 15) THEOREM. Let R be a semilocal HNP ring with its radical
I and M, N, K fifinitely generated projective modules in the same genus such
that K/KI contains all S_{\lambda}\in \mathfrak{S}_{I} . Then there exists a fifinitely generated prO-
jective module L in the genus such that N\oplus K\cong M\oplus L .

PROOF. This follows from [1, Lemma 1. 4], (1. 5), (1. 13) (1. 14).
(1. 16) COROLLARY. If M, N are right R-ideals of Q in the same

genus as R, then M\oplus N\cong L\oplus R for a right R-ideal L of Q in the genus.
2. HNP rings with enough invertible ideals. We shall apply the

results of \S 1 to the case that R is an HNP ring with enough invertible
ideals and study the genus of finitely generated projective right R-modules.
However, we let R be an HNP ring with not necessarily enough invertible
ideals for a while. Let I be a maximal invertible ideal of R and R_{I} a locali-
zation of R at I[5, \S 3] . Then R_{I} is a bounded HNP ring with enough
invertible ideals, moreover, R_{I} is either a Dedekind prime ring provided I is
a maximal ideal or a semilocal HNP ring provided I=P_{0}\cap\cdots\cap P_{l-1} is an
intersection of a cycle [5, Theorem 3. 6]. Let A=\cup\{B^{-1} ; B is an invertible
ideal of R} be a quotient ring of R by [5, Proposition 2. 3].

(2. 1) Lemma. Let R be an HNP ring and S a simple right R-module.
Then the following hold.

1) If SI=0 for some maximal invertible ideal I of R, then S\otimes R_{I}\cong S

and S\otimes R_{I’}=0 for any maximal invertible ideal I\neq I of R.
2) If S is faithful or SP=0 for some idempotent maximal ideal P

of R which doesn’t belong to a cycle, then S\otimes R_{I}=0 for any maximal in-
vertible ideal I of R.
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PROOF. 1) If I’ is a maximal invertible ideal with I’\neq I, then I’+I=R
which implies IR_{I’}=R_{I’} . Thus S\otimes R_{I’}=SI\otimes R_{I’}=0 . Since IA=A, S\otimes A=

SI\otimes A=0 , and then S\otimes R_{I}\neq 0 by [5, Theorem 3. 12]. By S\otimes R_{I}I=0 , S\otimes R_{I}

is a semisimple R/I-module which yields SC\cross R_{I}\cong S by [8, Corollary 1. 5,
Proposition 1. 7].

2) If S\otimes R_{I}\neq 0 for a faithful simple module S where I is a maximal
invertible ideal, then S\otimes R_{I}I=SI\otimes R_{I}=0 by [8, Corollary 1. 5]. However,
we have SI=S, and then S\otimes R_{I}=0 which is a contradiction. Hence S\otimes R_{I}

=0. The latter case is proved by the similar way to 1).
In the rest of this section, we always assume that R is an HNP ring

with enough invertible ideals. Therefore, every simple R module S is either
faithful or SI=0 for a maximal invertible ideal I, moreover, since every
maximal ideal of R either is invertible or belongs to a cycle, we have that,
for finitely generated projective R-modules M, N, MN iff rank M=rankN
and M/MI\cong N/NI for all maximal invertible ideals I. We write M_{I}=M\otimes R_{I}

for a finitely generated projective R module M.
(2. 2) Lemma. Let I=P_{0}\cap\cdots\cap P_{t-1} be a maximal invertible ideal and

M, N fifinitely generated projective R-modules such that M\supset N and M_{I}\vee N_{I} .
Then every simple module in \mathfrak{S}_{I} appears k-times in the composition factors
of M/N for an integer k\geq 0 .

PROOF. This follows directly from (1. 5) and (2. 1).

(2. 3) THEOREM. Let M, N be fifinitely generated projective R-modules
such that rank M=rankN and N\subset M. Then M\vee N iff M_{I}\vee N_{I} for all
maximal invertible ideals I.

PROOF. If M\vee N, then M_{I}\vee N_{I} by M_{I}/M_{I}I\cong M/MI\otimes R_{I} . Conversely,
by (1. 3) we have M/MI\cong N/NI for a maximal invertible ideal I which is
either maximal or an intersection of a cycle such that I doesn’t annihilate
any composition factor of M/N. Let I_{1} , \cdots , I_{m} be all maximal invertible
ideals which are intersections of a cycle such that every I_{j} annihilates some
composition factors of M/N. Then by (2. 2) the composition factors of
M/N includes each simple module of \mathfrak{S}_{I_{j}} by k_{j}-times for a positive integer
k_{j}(1\leq j\leq m) . Therefore, by (1. 3) the similar method to (1. 6) yields M/MI_{j}\oplus

X_{j}^{(k_{j})}\cong N/NI_{j}\oplus X_{j}^{(k_{j})} where X_{j}=\oplus_{s_{\lambda}\epsilon \mathfrak{S}I_{j}}S_{\lambda}(1\leq j\leq m) . Hence M/MI_{j}\cong N/NI_{j}

(1\leq j\leq m) . This completes the proof.
(2. 4) Lemma. Let X, Y, Z be fifinitely generated projective R-modules

such that X\subset Y\subset Z and Y/X\cong S, Z/Y\cong T, where S and T are simple mod-
ules. If one of the following holds, then there exists a module Y’ such
that X\subset Y’\subset Z and Y/X\cong T, Z/Y’\cong S.

1) T is faithful and S is unfaithful.
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2) T is annihilated by an invertible maximal ideal and S\neq T

3) T is annihilated by an idempotent maximal ideal P such that P=
P_{0} , \cdots , P_{t-1} form a cycle and S is annihilated by a maximal ideal P’\neq P_{t-1} .

PROOF. Consider an exact sequence Oarrow Sarrow Z/Xarrow Tarrow 0 . If ext_{R}^{1}(T, S)=

0, then this sequence splits and we have a desired module Y’ . However,
it holds by [3, Propositions 2, 4 and Corollary 9] that ext_{R}^{1}(T, S)=0 under
the cases 1), 2), and 3).

(2. 5) Lemma. Let C be a nonzero uniserial R-module of fifinite length.
Then all composition factors of C are either faithful simple modules, or
annihilated by an invertible maximal ideal, or elements of \mathfrak{S}_{I} for a \max-
imal invertible ideal I which is an intersection of a cycle. Further, in the
third case, there exists a normal chain of C.

PROOF. Let 0=C_{0}\subset C_{1}\subset\cdots\subset C_{n}=C be the composition series of C. If
there exists C_{i}’ for some i(1\leq i\leq n-1) such that C_{i-1}\subset C_{i}’\subset C_{i+1} and C_{i}’/C_{i-1}

\cong C_{i+1}/C_{i} , C_{i+1}/C_{i}’\cong C_{i}/C_{i-1} , then C_{i}=C_{i}’ by assumption. Thus we have C_{i+1}/C_{i}

\cong C_{i}/C_{i-1} , whence (2. 5) follows from (2. 4) and (1. 13).
(2. 6) THEOREM. Let M, N be fifinitely generated projective R-modules

with N\subset M. Then M\vee N iff there exists a composition series N=N_{0}\subset N_{1}

\subset\cdots\subset N_{n}=M of M/N which satisfifies the following; there exist integers
k, k_{0}, \cdots , k_{m}=n with 0\leq k\leq k_{0}\leq\cdots\leq k_{m} and maximal invertible ideals I_{1} , \cdots , I_{m} ,
where each I_{j} is an intersection of t_{j} idempotent maximal ideals, such that;

1) all the composition factors of N_{k}/N_{0} are faithful simple modules,
2) all the composition factors of N_{k_{0}}/N_{k} are annihilated by invertible

maximal ideals,
3) all the composition factors of N_{k_{j}}/N_{k};-1 are annihilated by I_{j},

moreover, l(N_{k_{j}}/N_{k_{f-1}})=t_{j}s_{j} for some positive integer s_{j} and the composition
series N_{k_{j-1}}\subset N_{k_{j-1}+1}\subset\cdots\subset N_{k_{j}} of N_{k_{j}}/N_{k_{j-1}} satisfifies (1. 11) with respect to
I_{j}(1\leq j\leq m) .

PROOF. By the iterative use of (2. 4) 1) we can find an integer k such
that 1) holds and all the composition factors of N_{n}/N_{k} are unfaithful. Let
J_{1} , \cdots , J_{s}, I_{1} , \cdots , I_{m} are all maximal invertible ideals which annihilate some
composition factor of N_{n}/N_{k} such that J_{i}’s are maximal ideals and I_{i}’s are
intersections of a cycle. Put I=J_{1}\cap\cdots\cap J_{s}\cap I_{1}\cap\cdots\cap I_{m} . Then I is an
invertible ideal by [2, Propositions 2. 5, 2. 8] and N_{n}/N_{k} is annihilated by
some power I^{b} of I. Since R/I^{b} is a serial ring, N_{n}/N_{k} is a direct sum
of nonzero uniserial modules, say N_{n}/N_{k}=C_{1}\oplus\cdots\oplus C_{a} . Thus we get the
integers k_{0}, \cdots , k_{m}=n which satisfy the theorem by (2. 2), (1. 5), and the
proof of (1. 13). The converse is obtained from (1. 3), (1. 5), and (2. 3).
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Applying the above theorem we obtain the generalization of (1. 15).

(2. 7) THEOREM. Let M, N, K be fifinitely generated projective R-
modules in the same genus such that K/KI contains each S\in \mathfrak{S}_{I} for every
maximal invertible ideal I which is an intersection of a cycle. Then there
exists a fifinitely generated projective R-module L in the genus such that
N\oplus K\cong M\oplus L .

PROOF. By (1. 3) 1), (1. 14), and (2. 6) we only need to prove the theorem
when M/N is a faithful simple module. Let S\cong M/N be a faithful simple
module and S\cong R/X for a maximal right ideal X of R. Then it is well-
known that there exists an epimorphism Karrow S (cf. [3, \S 4]). However, we
state the proof for the completeness. Let T be a trace ideal of K. Then
T is a nonzero ideal of R and is not contained in X, since R/X is faithful.
Thus there exist f\in K^{*} and w\in K with f(w)\not\in X which yields an epimor-
phism Karrow S at once. Let L=Ker(Karrow S) . Then we have N\oplus K\cong M\oplus L

by SchanuePs Lemma.
(2. 8) COROLLARY. Let M, N be right R-ideals of Q which are in the

same genus as R. Then there exists a right R ideal L of Q in the genus
such that M\oplus N\cong R\oplus L .

(2. 9) EXAMPLE. We investigate an example of an HNP ring with
enough invertible ideals. The example is one in [2, \S 5]. Let D be a non-
commutative Dedekind domain which is a primitive principal ideal domain
with a unique maximal ideal xD=Dx such that D/xD is a field. We shall
study the HNP ring

R=(\begin{array}{ll}D DxD D\end{array})

Let
P_{0}=(\begin{array}{ll}xD DxD D\end{array})

’
P_{1}=(\begin{array}{ll}D DxD xD\end{array})

’ and
I=P_{0}\cap P_{1}=(\begin{array}{ll}xD DxD xD\end{array})

. Then P_{0}

and P_{1} are idempotent maximal ideals which are the only maximal ideals of
R and form a cycle by [2, \S 5], whence I is an invertible maximal ideal and
R has enough invertible ideals by [2, Corollary 4. 7]. Consider the following;

R\supset P_{1}\supset I\supset P_{1}P_{0}=P_{1}I\supset I^{2}\supset P_{1}IP_{1}=P_{1}P_{0}I

Let S_{0}\cong R/P_{0}, S_{1}\cong R/P_{1} be the unfaithful simple modules. Then by a
routine computation we have P_{1}/I\cong S_{0}, I/P_{1}P_{0}\cong S_{0}, P_{1}P_{0}/I^{2}\cong S_{1} , I^{2}/P_{1}IP_{1}\cong S_{1} .
Thus RII^{2}, P_{1}P_{1}IP_{1} by (2. 3), in fact, R/I\cong I/I^{2}\cong I^{2}/P\cong S_{0}\oplus S_{1} and
P_{1}/P_{1}I\cong P_{1}IP_{1}/P_{1}IP_{1}I\cong S_{0}\oplus S_{0} . Since P_{1}P_{1}IP_{1} , we must have P_{1}\supset N_{1}\supset N_{2}

\supset N_{3}\supset P_{1}IP_{1} such that N_{3}/P_{1}IP_{1}\cong S_{\lambda} , N_{2}/N_{3}\cong S_{\lambda+1} , N_{1}/N_{2}\cong S_{\lambda} , P_{1}/N_{1}\cong S_{\lambda+1} ,
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\lambda\in Z/2Z, by (2. 6). Indeed, the chain P_{1}\supset I\supset P_{0}P_{1}\supset I^{2}\supset P_{1}IP_{1} satisfies I/
P_{0}P_{1}\cong S_{1} , P_{0}P_{1}/I^{2}\cong S_{0} .

3. In this section, we make a brief attempt to define an ideal class
group for some HNP ring R. Let R be an HNP ring with enough invertible
ideals and Cl (R) the set of stable isomorphism classes of right R ideals of
Q which are in the same genus as R, where, as usual, right R-modules
M and N are stably isomorphic if there exists a non-negative integer r such
that M\oplus R^{(\gamma)}\cong N\oplus R^{(\gamma)} . We denote a stable isomorphism class of a right
R ideal M in Cl (R) by [M] . Define an additive structure on Cl (R) by
[M]+[N]=[K] for [M] , [N] , [K]\in C1(R) , provided M\oplus N\cong K\oplus R (cf. (2. 8).
Keeping the above notation and hypotheses, we have

(3. 1) THEOREM. If R has a unique maximal invertible ideal I which
is an intersection of a cycle and rank R=l(R/I) , then Cl (R) is an abelian
group with [R] its identity.

PROOF. Let [M]=[M’] , [N]=[N’] in Cl (R) and M\oplus N\cong R\oplus K, M’\oplus N’

\cong R\oplus K’ by (2. 8). Then we have M\oplus R^{(s)}\cong M\oplus R^{(s)} and N\oplus R^{(s)}\cong N’\oplus R^{(s)}

for some s. Thus K\oplus R^{(2s\dagger 1)}\cong M\oplus N\oplus R^{(2s)}\cong M\oplus N’\oplus R^{(2s)}\cong K’\oplus R^{(2s+1)} ,
whence [K]=[K’] . Since rank R=l(R/I), we have rank M=l(M/MI) for
each finitely generated projective module M by [3, Theorem 33]. Let M
be a right R ideal with M\vee R and M\oplus N\cong R^{(S)} for a right R module N
and a positive integer s. Then M/MI\oplus N/NI\cong(R/I)^{(S)} implies N/NI\equiv

(R/l)^{(s-1)} . Assume R/I\cong S_{1}^{(n_{1})}\oplus\cdots\oplus S_{k}^{(n_{k})} , where S_{i}’s are simple R/I modules
Then N/NI\cong S_{1}^{(n_{1}(s-1))}\oplus\cdots\oplus S_{k}^{(n_{k^{(s-1))}}} concludes rank N=(s-1)(n_{1}+\cdots+n_{k})=

m. We let N\cong K_{1}\oplus\cdots\oplus K_{m} where each K_{i} is uniform. Then K_{1}/K_{1}I

\oplus\cdots\oplus K_{m}/K_{m}I\cong S_{1}^{(n_{1}(s-1))}\oplus\cdots\oplus S_{k}^{(n_{k^{(s-1))}}} and each K_{i}/K_{i} I is simple by hy-
pothesis, whence N\equiv L_{1}\oplus\cdots\oplus L_{s-1} with L_{i}R by (1. 3) 1) (1 \leq i\leq s-1)

which yields N\cong R^{(s-2)}\oplus L for a right R ideal L of Q with L\vee R by (2. 8).
Again, by (2. 8) we have M\oplus L\cong R\oplus K for a right R ideal K in the genus
and K\oplus R^{(s-1)}\cong M\oplus L\oplus R^{(s-2)}\cong M\oplus N\cong R^{(S)} , whence [K]=[R] and [M]+
[L]=[R] in Cl (R). Therefore, [L] is the inverse of [M] in Cl (R). This
completes the proof.

REMARK. By [2, \S 5] the ring R in (2. 9) satisfies the assumption of
(3. 1). It also holds that the completion \hat{R} of an HNP ring R with respect
to a maximal invertible ideal satisfies this assumption by [4, Theorem 2. 3
or 6, Theorem 1. 1].

We note that a Dedekind prime ring doesn’t necessarily satisfy the
assumption of (3. 1) by [4, Note 3. 9]. However, this assumption is used only
to prove the existence of the inverse, so that we can prove the following
by virtue of [1, Theorems 2. 2, 2. 4].
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(3. 2) THEOREM. Let R be a Dedekind prime ring and Cl (R) the set

of stable isomorphism classes of right R-ideals of Q (cf. (1. 3) 1)) . Then
Cl (R) is an abelian group with [R] its identity.
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