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Introduction. In this paper we study finitely generated projective mod-
ules over a hereditary noetherian prime ring (henceforth, we denote an
HNP ring, for abbreviation). We mainly concern with the genus of finitely
generated projective modules. When one deals with an order over a De-
dekind domain, the genus can be investigated by localization (cf. [7, § 27,
35]). In our (noncommutative) case, the localization at a maximal invertible
ideal studied in [5, § 3] is very useful. As is stated in [5, § 3], the localiza-
tion of an HNP ring at a maximal invertible ideal is either a Dedekind
prime ring or a semilocal HNP ring defined in §1. Although finitely ge-
nerated projective modules over a Dedekind prime ring were perfectly studied
in [I], the another case is not treated anywhere. Therefore, we investigate
those over a semilocal HNP ring in § 1 and give a necessary and sufficient
condition when two finitely generated projective modules are in the same
genus and also prove the following. '

(1.15) THEOREM. Let R be a semilocal HNP ring with its radical
I and M, N, K finitely generated projective modules in the same genus
such that K/KI contains all S,=&;. Then there exists a finitely generated
projective module L in the genus such that NOK=MPL.

In §2, we treat of an HNP ring R with enough invertible ideals and
show that two finitely generated projective modules are in the same genus
iff their localization M; and N; are in the same genus as R;-modules for
all maximal invertible ideals I, where R; is the localization of R at I. The
generalization of (1. 15) is obtained in (2. 7).

Finally, in § 3, applying the above results we try to define the ideal
class group for some HNP ring.

Throughout this paper, R is an HNP ring which is not artinian and
Q is the maximal quotient ring of R. We shall shortly mention definitions
and notation which will be frequently used in this paper. For more detailed
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description, the reader is referred to [1,2,3]. Let X*=Homg (X, R) for a
right R-module X. Let P, ---, P,_; be a nontrivial cycle of idempotent maxi-
mal ideals of R with #>1 [2]. We consider an invertible maximal ideal
as a trivial cycle. However, in this paper, a cycle is always nontrivial unless
otherwise stated. When a maximal invertible ideal I is an intersection of
a cycle Py, -+, P,_;, we say that “I=P,N --- NP,_,” or “I=P,N --- N P,_; is
an intersection of a cycle” or “I is an intersection of a cycle”. We denote
the Goldie dimension of a module M by rank M and the length of com-
position series of M (if it exists) by /(M). A right bounded ring is a ring
such that every nonzero right ideal contains a nonzero ideal. A right and
a left bounded ring is called bounded. When every nonzero ideal of R con-
tains an invertible ideal, we say that R has enough invertible ideals.

1. Semilocal HNP rings. Let R be an HNP ring and M, N finitely
generated projective R-modules. We say that M and N are in the same
genus, denoted by M\/ N, if rank M=rank N and M/MP=N/NP for all
maximal ideals P of R [3, §4]. We shall investigate the behavior of the
genus in this sense.

(1.1) Lemma. Let R be an HNP ring and M, N finitely generated
projective modules with NCM. Then N is an essential submodule of M
iff M/N is artinian.

Proor. Let X be an essential submodule of Y and f(X)=0 for some
feY*. We can find a regular element ¢ of R with yce X for any y&Y.
Then 0=f{yc)=fy) ¢ implies f(y)=0, that is f=0. Thus we have Y*C X*.
Let N be essential in M and M=M;DM,D---DON a descending chain of
submodules of M. Then M§fcC MFfcC---C N* is an ascending chain of sub-
modules of N* which terminates. Thus we have M}=M} =--- for some
integer n, and then M,=M,,;=--- by the reflexivity of M;. The converse
is obtained by the similar way to [1, Theorem 1. 3].

(1. 2) LemMA. Let R be an HNP ring, M, N finitely generated projec-
tive R-modules and I=Py,N\---NP,_; a maximal invertible ideal. Then
M/MI=N/NI iff M/|MP,=N|NP; for every i (0<i<t—1).

Proor. This follows directly from M/MI=M/MP®---PM/MP,_,.

By (1.2) if idempotent maximal ideals P, ---, P,_; form a cycle, then

we study the genus at a maximal invertible ideal I=PFP,N .--N P,_; instead
of all P’s. We shall state the lemma which plays a critical role in this

paper.
(1.3) LEmMma. Let R, M, and N be the same as (1.2), M|[N=.S simple,
and I a maximal invertible ideal of R.
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1) If I=P is a maximal ideal, then M/MP=N/NP.
2) Assume that I=P,N---NP,_, is an intersection of a cycle.
1) If SI#0, then M/MI=N/NI
n) If SI=0, that is, SP;=0 for some i (0<i<t—1), then M/MIP
Si1=N/NIDS;, where S; is a simple R-module with S;P;=0(0<<t—1)
and S_1=S;_,.
Proor. 1) Let SP=0, that is, MPCN. Then the exact sequences

0—N/MP— M| MP— M/N—0, 0— MP/NP—N/NP—N/MP—0
are those of R/P-modules. Thus they split and we have;
M/MP = N|MPHPM|N , N/NP = N/MPPHMP/NP.

On the other hand, it holds by [3, Theorem 33] that;

(1. 4) rank M=rank N=I(M/MT')=I(N/NTI') for every maximal invertible
ideal I'.
Therefore, {(MP/NP)={(M/N)=1, that is, MP/NP is a simple R/P-module.
Hence MP/NP=M]|N, and then M/MP=N/NP.

Let SP+#0, that is, MP+N=M. Then an exact sequence

0—(NN MP)/NP—N/NP— M/ MP—0
is one of R/P-modules. Thus it splits and we have;
N/NP = M]MPE(NN MP)/NP .

Again, by (1.4) /(N/NP)=I[(M/MP), and then (NN MP)/NP=0, that is,
N/NP= M| MP.

2) i) This is proved by the same way as the case SP+0 of 1). ii) Since
MICN, we have;

M/MI= N/MI®M|/N , N/NI=N/MIPMI/NI

by the similar way to 1). Again, by (1.4) MI/NI is simple. Since P,=
IP, ,I"* by [3, Theorem 14], MIP;,_,I"'CN, that is, MIP, ,cNI. Thus
MIINI=S;_, and M/MIDS, = N/NIPS,.

DEFINITION. A ring R is called a semilocal HNP ring if R satisfies
the following ;

1) R is an HNP ring.

2) The Jacobson radical of R is I=P,N---NP,_,, where {Py, -+, P,_}}
is a trivial or nontrivial cycle of idempotent maximal ideals and they are
the only maximal ideals of R.

3) [ is a maximal invertible ideal of R and all invertible ideals of R
are powers of I. ‘



4 K. Nishida

Remark. If R is a semilocal HNP ring, then R is bounded by [2,
Theorem 4.13]. A localization R; of an HNP ring R at a maximal invertible
ideal I is a semilocal HNP ring by [5, Theorem 3. 6].

Let R be an HNP ring and I=PyN---NP,_, a maximal invertible ideal
of R. Put &,={S,, ---, S;-1} be a set of the representatives of the noniso-
morphic simple R/I-modules, that is, S;s are the simple R/I-modules with
S,P,=0. We shall regard an index j of P; or S; as an element of Z/tZ,
where Z is the ring of rational integers. Thus j=;5 mod. ¢ means §;=S;
and P;=P;. When we fix a maximal invertible ideal I, we sometimes write

& instead of &;.

(1.5) THEOREM. Let R be a semilocal HNP ring with its radical
I=P,N---NP,.;, N, M finitely generated projective R-modules such that
NC M and rank N=rank M. Then M\/ N iff every simple module of &;
appears in the composition factors of M|N for the same times, that is, for
some integer k>0, the set of the composition factors of M|N coincides with
SU--US (k-times).

Proor. By (1.1) we let [(M/N)=s and N=N,CN,C---CN,=M a
composition series of M/N. We put N;/N;_;=S;, S;,€@ (1<i<s) by hy-
pothesis. Since S, P;,=0, it holds that Ni/ N IDS;, 1= N;_o/N; . IDS,, (i=
1,-,s) by (1.3). Therefore, we have

(1.6) MIMIDS, ® @S, +=NINIBS,®-®S,,
If M\/N, then by (1.6), we have

1.7) S - P DS, 1 =8,D- DS,

Consider the two sets A={4—1, -, 4—1} and B={4, ---, 4} of indices of
S’s in (1.7). Let n; be the number of times of i€Z/tZ in A. Then i+1
appears n; times in B. Thus n,=m=---=n,_,=k, since A=B by (1.7).
Hence the set of composition factors of M/N equals SU---US (k-times).
The converse follows from (1.6) at once.

We have now learned that, under the situation of (1.5), the set of
composition factors of M/N is @U--- US provided M\ N. We shall further
study this situation and show that M/N has a ‘good’ composition series.
To do so, we prepare definitions and lemmas.

DEFINITION. 1) Let a&Z/tZ and 8 a positive integer. A normal chain
I'* of mod. ¢ is an ordered set {a,a+1,---,a+p—1} where atjEZ/tZ
0<j<p—1). We write ["={a,a+1,---,a+p—1) in order to distinguish
from a mere set {o,a+1,---,a+pf—1}. B is called the length of a normal
chain I™®.

2) For the case I.={a, -+, 7, ---, a+B—1), we say that y appears in I"..
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3) We call I'%*" a composition of I'2 and I provided a+ B=7.

4) We call I''t a contraction of I provided p>t.

5 We let [I'5, %, - ]=[ay, -, 4 +pi—1, @ -+, @+ p2—1, --:] for nor-
mal chains 1'% of mod. ¢ and call it a chain of mod. z. Note that [a;, as,
=%, I, -] for ;e Z[tZ.

When there is no confusion, we simply call normal chain or chain.

Let # be a nonempty set of normal chains of mod. ¢. Consider the
following condition ;

(1.8) let ¢(?)=Urio{a,a+1, -, a+p—1}, then «(P)=Z[tZU---UZ]
tZ (k-times) for some positive integer k.

(1.9) PROPOSITION. Let & be a nonempty set of normal chains of mod.
t which satisfies (1.8). Then we have a set P, consisting of the compositions
of mormal chains in P, all of whose normal chains have the length divided
by ¢.

Proor. We shall prove by induction on k£ in (1.8). For k=1, the
number of elements of ¢(%) is t. If ["=P, then #={["} which satisfies
the assertion. Thus we assume that every normal chain of & has the length
p<t. Put Ie®? with p<¢. If I, for all y, then there is [ %
such that e#a+p and a+p appears in I". Since a+pS—1 also appears in
Iy ¢(P) contains a+pf—1 twice which is a contradiction. Thus we have
I',,=%, and get I'%** from I and I,, By iteration we reach I at last.

Let £>1 and assume the proposition for k—1. If I, then we have
the assertion for ' =2 —{I"\}. Thus the proposition holds. If I Z with
B>t, then we have the assertion for ' =(Z—{[%})U{l%%. Let I} be
a normal chain with ¢|§ which is composed of the subset A of £’ including
I""t, Then we can get the composition I"*¢ from the set (A—{I"%"}) U{[%}
such that ¢|(6+¢). Thus the proposition holds.

Finally, we assume that every normal chain 7% of & satisfies f<¢t. By
the similar way to the case of k=1, we can find a positive integer B, and
obtain the composition I":*% of I and [y, €. By iteration we reach
the composition [ +#m of normal chains in & such that B+---4p.>t.
Let m be the smallest such integer and &' =2 —{I", I, -+, % s}
(P =(P— %, Ty oy iy iy, ) UL 4n=t}) for the case of gi+---+
Bn=t(Bi+--++Bn>t). Then by the similar way to the preceding paragraph
we can show the proposition in this case. This completes the proof.

Now, let I=P,N---NP,_; be a maximal invertible ideal of an HNP
ring R and M, N finitely generated projective R-modules such that NC M
and [(M/N)=Fkt. We let
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(1.10) N=N,CN,C---CN=M
be a composition series of M/N with N;/N,_,=S,,€®; (i=1, ---, k). Con-
sider the chain [4, -+, 4] of indices of S,. Then we say that the com-
position series (1.10) is good with respect to I, if the following holds;

(L.11)  [Ag41s =5 Aarned =[I%,] for some e;€ZtZ (0<i<k—1).

If (1.11) holds, then (1.10) has the property that Ny ;/Nyy;o1=S. 151
where S,,1;-:€0 (0<i<k—1; 1<j<z). The importance of the existence
of such a series will become clear in (1.14).

Next, consider the nonzero uniserial modules C, C’ of finite length such
that every composition factor of the composition series of them is in &;.
If CIi#0, then CI/CIi*! is simple, for R/I is semisimple and C is uniserial.
Thus COCID--DCF=0 is a composition series of C for some . Let
CF1=S5,e©. Since CFF'P,=0 and P, ;=I'P,I"* by [3, Theorem 14], we
have CIF-¢-1P,, ,=CIF1P,[7*=0, that is, CIF-*Y/CIFt=S, ., S...€0 1<i<L
B—1). Thus we get the ordered set {S,, S.iy -+-» Se4s—p Of composition
factors of C whose indices yields the normal chain 7/® of mod. ¢ and we
call this normal chain /™% the normal chain of (the composition series of)
C. Let I, I'%,, be normal chains of C, (', respectively. Then a composi-
tion series 0CClP'C---cCcCPRCIc---cCPHC" of CPC’ corresponds
with the composition I%'7, This composition series has the ordered set
{Ses Sattr s Satpts Satpy **» Satprr—1f of composition factors. Summarizing the
above results we get the following.

(1.12) LEmMA. The notation and the assumption are the same as above.
A nonzero uniserial module C with [(C)=8 and CF'=S,, S,.€0, gives
a normal chain I of C according to the above way. Further, if another
nonzero uniserial module C' gives a normal chain I, then the composition
series 0CClPtC...cCcCPRC I C---cCPC' corresponds with I,

(1.13) TueoREM. Let R be a semilocal HNP ring with its radical
I=P,N---NP,_y and M, N finitely generated projective modules such that
NCM and MN\/N. Then M/N has a composition series (1.10) which sat-
isfies (1.11).

Proor. Since M/N is an R/I¥-module and R/I* is a serial ring, M/N
is a direct sum of nonzero uniserial modules, say M/N=C/P---PC,. As
in (1.12), every C; gives a normal chain I'}; and the set 2 ={I'}s; 1<j<q}
satisfies the condition (1.8) by (1.5). Thus, by (1.9) and (1.12), we have
MIN=D,@---BDy(b<a) such that I(D,)=tn; and each D, has the composi-
tion series 0=E,CE C - CE;,,=D; and E;/E; 1=S,,45 S.,+,€0 for o,
Z[tZ and positive integers 7;. Hence we can construct the composition
series of M/N which satisfies (1.11) from those of Dy’s.
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(1.14) LemMA. Let R be a semilocal HNP ring with its radical I=
Py\N---NPy and M, N, K finitely generated projective R-modules in the
same genus such that NCM, [(M/N)=t, and K/KI contains all S,=&;.
Then there exists a finitely generated projective R-module L in the genus
with KON=MPL.

Proor. By (1.13) there exist A€ Z/tZ and a composition series N=N,C
N, C---CN,=M of M|N such that N;/N,_;=S,,:_1, Sizi-1€6 1<i<e—1).
Consider the exact sequences 0—N— N,—S,—0 and 0—L,—K—S,—0. Then
we have NOK=N,PL, by Schanuel’s Lemma, and K/KIPS,_,=L,/LIPS,
by (1.3). Thus we can get the exact sequence 0— L,—L;—S;;;—0 and go
up the next step. By iteration we get finitely generated projective modules
L; 1<i<¢) such that NOL, =N, ;PLi1, L/LIDS: i 1=L;11/Lis IPS,1s
(1<i<t—1). Therefore, putting L=L;, we have NPK=M®PL and K/KI
DS =L/ LIPS, ;1= L/ LIPS,_,, that is, L\ K.

(1.15) THEOREM. Let R be a semilocal HNP ring with its radical
I and M, N, K finitely generated projective modules in the same genus such
that K/KI contains all S;&S;. Then there exists a finitely generated pro-
Jective module L in the genus such that NOK=MPDL.

Proor. This follows from [1, Lemma 1.4], (1.5), (1.13), (1. 14).

(1.16) CoroLLARY. If M, N are right R-ideals of Q in the same
genus as R, then MAODN=L®R for a right R-ideal L of Q in the genus.

2. HNP rings with enough invertible ideals. We shall apply the
results of §1 to the case that R is an HNP ring with enough invertible
ideals and study the genus of finitely generated projective right R-modules.
However, we let R be an HNP ring with not necessarily enough invertible
ideals for a while. Let I be a maximal invertible ideal of R and R; a locali-
zation of R at I [5, §3]. Then R; is a bounded HNP ring with enough
invertible ideals, moreover, R; is either a Dedekind prime ring provided I is
a maximal ideal or a semilocal HNP ring provided I=P,N---NP,_; is an
intersection of a cycle [5, Theorem 3.6]. Let A= U{B™'; B is an invertible
ideal of R} be a quotient ring of R by [5, Proposition 2. 3].

(2.1) LEMMA. Let R be an HNP ring and S a simple right R-module.
Then the following hold.

1) If SI=0 for some mazximal invertible ideal I of R, then SRQR;=S
and SQRy =0 for any maximal invertible ideal I #+1 of R.

2) If S is faithful or SP=0 for some idempotent maximal ideal P
of R which doesn’t belong to a cycle, then SQR;=0 for any maximal in-
vertible ideal I of R.
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Proor. 1) If I’ is a maximal invertible ideal with I'#1, then I' +I=R
which implies IR; =R;. Thus SRR, =SIQR;=0. Since IA=A, S®A=
SIRQA=0, and then SQR;#0 by [5, Theorem 3.12]. By SQRI=0, SR,
is a semisimple R/I-module which yields SXR;=S by {8, Corollary 1.5,
Proposition 1. 7].

2) If SQR;#0 for a faithful simple module .S where I is a maximal
invertible ideal, then SRR I=SIXR;=0 by [8, Corollary 1.5]. However,
we have SI=.S, and then SQR;=0 which is a contradiction. Hence SQR;
=0. The latter case is proved by the similar way to 1).

In the rest of this section, we always assume that R is an HNP ring
with enough invertible ideals. Therefore, every simple R-module S is either
faithful or SI=0 for a maximal invertible ideal I, moreover, since every
maximal ideal of R either is invertible or belongs to a cycle, we have that,
for finitely generated projective R-modules M, N, M\/ N iff rank M=rank N
and M/MI=N/NI for all maximal invertible ideals I. We write M;=MXR;
for a finitely generated projective R-module M.

(2.2) LEmMa. Let I=P,N---NP,_; be a maximal invertible ideal and
M, N finitely generated projective R-modules such that MDN and M;\V/ Ny.
Then every simple module in ©; appears k-times in the composition factors
of M|N for an integer k>0.

Proor. This follows directly from (1.5) and (2. 1).

(2.3) THEOREM. Let M, N be finitely generated projective R-modules
such that rank M=rank N and NCM. Then M\ N iff M;\/N; for all
mazximal invertible ideals 1.

Proor. If M/ N, then M;\/N; by M/ M I=M/MIXR;. Conversely,
by (1.3) we have M/MI=N/NI for a maximal invertible ideal I which is
either maximal or an intersection of a cycle such that I doesn’t annihilate
any composition factor of M/N. Let I,--, I, be all maximal invertible
ideals which are intersections of a cycle such that every I, annihilates some
composition factors of M/N. Then by (2.2) the composition factors of
M|N includes each simple module of &;; by kj-times for a positive integer
k;(1<j<m). Therefore, by (1.3) the similar method to (1. 6) yields M/MI;D
X = N/INL;B X where Xj:@sjeglj&(l <j<m). Hence M/MI;=N/NI;
(1<j<m). This completes the proof.

(2.4) LEmMA. Let X, Y, Z be finitely generated projective R-modules
such that XcYCZ and Y/ X=S, Z]Y=T, where S and T are simple mod-
ules. If one of the following holds, then there exists a module Y' such
that XcY CZ and Y|X=T, Z|Y =S.

1) T is faithful and S is unfaithful.
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2) T is annihilated by an invertible maximal ideal and SET.
3) T is annihilated by an idempotent maximal ideal P such that P=
Py, -, P,y form a cycle and S is annihilated by a maximal ideal P'#P,_,.

Proor. Consider an exact sequence 0—S—Z/X—>T—0. If exti(7,.S)=
0, then this sequence splits and we have a desired module Y. However,
it holds by [3, Propositions 2, 4 and Corollary 9] that ext}(7,.S)=0 under
the cases 1), 2), and 3).

(2.5) LEMMA. Let C be a nonzero uniserial R-module of finite length.
Then all composition factors of C are either faithful simple modules, or
annthilated by an invertible maximal ideal, or elements of &; for a max-
tmal invertible ideal I which is an intersection of a cycle. Further, in the
third case, there exists a normal chain of C.

Proor. Let 0=C,CC,C---CC,=C be the composition series of C. If
there exists C} for some i (1<i<n—1) such that C;,_,cC,cC,,, and C//C;_,
=Ci1/Ciy Citt/Ci=Cy/Cyy, then C;=C) by assumption. Thus we have C,,,/C;
=(;/C;_;, whence (2. 5) follows from (2.4) and (1. 12).

(2.6) THEOREM. Let M, N be finitely generated projective R-modules
with NCM. Then M\/ N iff there exists a composition series N=N,C N,
C--CNy=M of M|N which satisfies the following; there exist integers
ky ko, -+, kn=n with 0<k<k,<-.-<k, and maximal invertible ideals I, ---, L,
where each I; is an intersection of t; idempotent maximal ideals, such that ;

1) all the composition factors of Ni/N, are faithful simple modules,

2) all the composition factors of Ny /Ny are annihilated by invertible
mazximal ideals,

3) all the composition factors of N [Ny;_, are annihilated by I,
moreover, Z(Nkj/Nkj_l):tjsj Jfor some positive integer s; and the composition
series Nkj_ICNkj_IHC---CNkj of Ny /Ny, satisfies (1.11) with respect to
I; (1<<m).

Proor. By the iterative use of (2.4) 1) we can find an integer £ such
that 1) holds and all the composition factors of N,/N, are unfaithful. Let
Jy, oy Jdg I, -+, I, are all maximal invertible ideals which annihilate some
composition factor of N,/N, such that J;s are maximal ideals and Is are
intersections of a cycle. Put I=J,N---NJ,NLN--NI, Then I is an
invertible ideal by [2, Propositions 2.5, 2.8] and N,/N; is annihilated by
some power I° of I. Since R/I’ is a serial ring, N,/N; is a direct sum
of nonzero uniserial modules, say N,/N,=C/P---PC,. Thus we get the
integers kg, -+, k,=n which satisfy the theorem by (2.2), (2.5), and the
proof of (1.13). The converse is obtained from (1.3), (1.5), and (2. 3).

1
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Applying the above theorem we obtain the generalization of (1. 15).

(2.7) TueorREM. Let M, N, K be finitely generated projective R-
modules in the same genus such that K/KI contains each S€©; for every
maximal invertible ideal I which is an intersection of a cycle. Then there
exists a finitely generated projective R-module L in the genus such that
NPK=MPL.

Proor. By (1.3) 1), (1. 14), and (2. 6) we only need to prove the theorem
when MJN is a faithful simple module. Let S=M/N be a faithful simple
module and S=R/X for a maximal right ideal X of R. Then it is well-
known that there exists an epimorphism K—.S (cf. [3, §4]). However, we
state the proof for the completeness. Let 7" be a trace ideal of K. Then
T is a nonzero ideal of R and is not contained in X, since R/X is faithful.
Thus there exist f€eK* and weK with f(w)& X which yields an epimor-
phism K—S at once. Let L=Ker(K—S). Then we have NPK=MPL

by Schanuel’s Lemma.

(2.8) CoroLLARY. Let M, N be right R-ideals of Q which are in the
same genus as R. Then there exists a right R-ideal L of Q in the genus
such that M(OPN=RPL.

(2.9) ExampLE. We investigate an example of an HNP ring with
enough invertible ideals. The example is one in [2, § 5]. Let D be a non-
commutative Dedekind domain which is a primitive principal ideal domain
with a unique maximal ideal xD=Dzx such that D/zD is a field. We shall
study the HNP ring

o ol

R= .

D D

Let Po——:(xD D ) P1:< D D), and I:Poﬂpl-—:(xD D . Then PO
zD D zD zD D  xD

and P; are idempotent maximal ideals which are the only maximal ideals of
R and form a cycle by [2, § 5], whence I is an invertible maximal ideal and
R has enough invertible ideals by [2, Corollary 4.7]. Consider the following ;

ROPDOIDPP,=PIDEDPIP,=P,P)I.

Let Sy=R/P,, S;=R/P, be the unfaithful simple modules. Then by a
routine computation we have P/I=S,, I/P,P,=S, P,P,/P=S, IP/P,IP,=S.,.
Thus RV IV PN P IP, by (2.3), in fact, R/IZI/EP=DR/B=SPS, and
P,/P,I=P,IP,/P,IP, I=S/PS, Since P,\/P,IP,, we must have P,ON;DN,
DON,DP,IP, such that Ny/P,IP,=S, N,/N;=S:i1, Ni/N,=S, P/Ni=S:1
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AEZ[2Z, by (2.6). Indeed, the chain P,DIDP,P,DIDP,IP, satisfies I/
PP, =S, P,P/2=S,.

3. In this section, we make a brief attempt to define an ideal class
group for some HNP ring R. Let R be an HNP ring with enough invertible
ideals and CI(R) the set of stable isomorphism classes of right R-ideals of
Q which are in the same genus as R, where, as usual, right R-modules
M and N are stably isomorphic if there exists a non-negative integer 7 such
that MPR”=NEPR™. We denote a stable isomorphism class of a right
R-ideal M in CI(R) by [M]. Define an additive structure on Cl(R) by
[M]+[N]1=[K] for [M], [N], [K]ClL(R), providled MON=K®R (cf. (2.8)).
Keeping the above notation and hypotheses, we have

(3.1) THEOREM. If R has a unique maximal invertible ideal I which
s an intersection of a cycle and rank R=I[(R/I), then CI(R) is an abelian
group with [R] its identity.

Proor. Let [M]=[M], [N]=[N'] in CI(R) and MON=RPK, MPN'
=R®K’ by (2.8). Then we have MPR® =M PR® and NPR® =N PR®
for some s. Thus KPR = MPONPR® = M PN PR = K'PR@tV,
whence [K]=[K']. Since rank R=[(R/I), we have rank M=1I(M/MI) for
each finitely generated projective module M by [3, Theorem 33]. Let M
be a right R-ideal with M\/R and M@PN=R® for a right R-module N
and a positive integer s. Then M/MIDN/NI=(R/I)® implies N/NI=
(R/D)*P. Assume R/I=ZS™@--- DSy, where S;’s are simple R/I-modules.
Then N/NI=S{m6~@...PSP¢~1 concludes rank N=(s—1) (n,+ -+ +n) =
m. We let N=K@P ---PK,, where each K, is uniform. Then K/K,I
D DK/ Kn [= S0P .. PSFe~1 and each K;/K;I is simple by hy-
pothesis, whence N=L,@---PL,_, with L, VR by (1.3) 1) 1<i<s—1)
which yields N=R*2?@L for a right R-ideal L of Q with L\/R by (2. 8).
Again, by (2.8) we have MPL=RPK for a right R-ideal K in the genus
and KPR P=MPLPR2=MPN=R®, whence [K]=[R] and [M]+
[L]=[R] in CI(R). Therefore, [L] is the inverse of [M] in CI(R). This
completes the proof.

RemARk. By [2, §5] the ring R in (2.9) satisfies the assumption of
(3.1). It also holds that the completion R of an HNP ring R with respect
to a maximal invertible ideal satisfies this assumption by [4, Theorem 2.3
or 6, Theorem 1.1].

We note that a Dedekind prime ring doesn’t necessarily satisfy the
assumption of (3. 1) by [4, Note 3.9]. However, this assumption is used only
to prove the existence of the inverse, so that we can prove the following
by virtue of [1, Theorems 2.2, 2. 4].
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(3.2) TueorEM. Let R be a Dedekind prime ring and Cl(R) the set
of stable isomorphism classes of right R-ideals of Q (cf. (1.3) 1)). Then
CI(R) is an abelian group with [R] its identity.
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