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The initial boundary value problem for inviscid

barotropic fluid motion
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0. Introduction.

In his paper [2], Ebin showed the local in time existence of solutions
to the initial boundary value problem for inviscid barotropic fluid motion
in a bounded domain provided that the initial velocity is subsonic and the
initial density is nearly constant. The purpose of the present article is to
prove without the above assumptions the existence and continuous dependence
of solutions for the data.

The inviscid barotropic fluid motion in a bounded domain 2C R® with
smooth boundary 02 is governed by the standard equations of fluid me-
chanics ;

%‘ + “P—;SB)* Vo=K
(0.1) in (0, T)x Q.
%tp_ +podivyo=0

Here d/dt denotes the material derivative,

gt———ﬁ—H)-V, vl = ) v

and v (t, ©)=(v, vy v5), K(t, x)=(Ky, Ky, Ky), p(2, ), p(p(t x) denote the
velocity, the external force, the density, the pressure of fluid motion at time
¢ and position xE R, respectively. For physical reasons we assume that p
and the derivative p'(p) in p are both positive. In addition to (0.1) we
prescribe the initial data at =0 and the boundary condition on (0, T) X942
(O. 2) 7)(0) = Ty, p(O) = Do on ’

(0. 3) {v,ny =0 on (0, T') X 0R

where n=n(z) denotes the unit outerward normal to 2 at €02 and <v, n)

or v+n denotes the standard inner product of v and 7 in R2

The main result is



The initial boundary value problem for inviscid barotropic fluid motion 157

THEOREM. Suppose that the pressure p belongs to C*'(R), the data
(voy 00y K) belong to H (0, RYx X(T, Q, R%) (s=3; integer) and satisfy the
compatibility conditions up to order s. Then there exists a positive constant
T,<T such that the initial boundary value problem (0.1)-(0. 3) has a unique
solution (v, ) in X (T4, 2, RY. Morcover, let (v§”, of”, K™) € H (2, RY X
X(T, 9, R%) converge to (vy, po K) cH'(Q, RYx X (T, 2, R in H' (2, RY) x
X TNT, Q,R%. Then there exist a positive constant To,=T such that the
solution (v, @) for (v§™, oi”, K™) converge to the solution (v, p) for (ve,

o0, K) in X 7 (Ty, 2, RY).

For the notations see Section 2.

We can also prove the similar results for another dimensional flows.

For the uniqueness of solutions see Serrin and for the initial value
problem see Kato [5].

The proof of existence of solutions will be done in the direction of
Ebin’s paper. However, to remove his assumptions we need three new
points of view. The first point is to use a system of integro-differential
equations in stead of his system of differential equations which is equivalent
to (0.1)~(0.3). The second point is to give a different interpretation of the
second order hyperbolic equation in this system and to use the idea of
Rauch and Massey [9]. The third point is to show the sharp estimates
for gradient part of v (see [Proposition 3.4 and Lemma 5. 1).

In preparation for manuscripts of this article, T. Nishida imformed to
me Veiga’s article; Un theoreme d’existence dans la dynamique des fluides
compressibles, C. R. Acad. Sc. Paris, Serie B. t. 289 (17 Decembre 1979).
The equivalent system used in his article is different from our system (1. 13)-
(1.15) and he has announced the existence theorem in L* or L'-category
with respect to time.

Our plan of this article is as follows.

Equivalent system of equations.

Function spaces and compatibility conditions. "
Linearized equations and estimates for their solutions.
Invariant set under iterations.

Proof of [Thecrem.

Estimates for log p.

Estimates for v.

NS s

1. Equivalent system of equations

Following we introduce new functions

g=logp, alg)=7p(e).
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Then we obtain a system of equations for (v, g);

@ 2 talgrg=K

(1. 1) o in (0, T)x 2,
(8) 7‘;]— +divo=0

(1 2) ‘U(O) - vOa Q(O) - gO on 'Q ’

(1. 3) {v,n> =0 on (0, T)x0R.

We shall derive an equivalent system to (1.1)-(1. 3). Applying d/d:t to
(1.1 p), we get

d? . 0V .
S Hdiv- 2 ol (div o) =0,

Using (1.1 a) and the identity
(1. 4) div((v+F)u) = v+ (div w) +tr (Do) (Dw))

where (Dv) (Du) means the product of matrices Dv=(0v,/dz:) and (0u,/ox),
we then obtain

d? . : .
(1. 5) dg —div(a(g)Pg) =tr((Dv}f) ~divK  in (0, T)x Q.
Differentiating (1. 3) with respect to ¢ and using (1.1 a), we get
(1. 6) {(v-r)v+alg)Pg—K,n)=0  on (0, T)xdQ.
From (1.1 p) and (1.2) we have
0 :
L7 gO=0n 5 O=—(wFgtdive) on 2.

To derive the rest of the system, we decompose a vector field v into
its solenoidal and gradient parts,

v=w+lVf,
where the solenoidal part of v satisfies
(1. 8) divw=0 in 2, {(w,n>=0 on 692.

This decomposition is orthogonal in L}, R%). As is well known (for in-

stance see Ladyzhenskaya [8]), a function f can be taken as a solution of
Neumann problem ;

(1.9) df =divo in 2, Jf,n>=<{v,n> on 2,
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and w is defined by v—Ff, We also define the projection operators P and

Q’
Pv=w, Qu=TFf.
From (1.1 g), (1. 3) and (1.9) we have

dg .
df = ——- 0, T)x L,
w1y @ 0T
Ffny=0 on (0, T')x 09 .
Applying P to (1.1 a), we get

ow

= +P ((v-V)w+(w-V>Vf—K) =—P (a(g)Vg+(Vf-V)Vf) :

Since

alrg=r | pedy,
VFDITF =T TLTFI2

and P annihilates gradient parts, we obtain

(1. 11)

(1.12) %?+P<(U'V)w+(w"7)7f> =PK in (0, T)x,

w(0) = Py, on 2.

Conversely, let (w, f, g) be a solution of equations (1. 5)-(1. 7), (1. 10) and
(1.12). Then it was proved in that (v, ), v=w+Vf, is a solution of
(1. 1)=(1. 3).

In view of the solvability for elliptic boundary value problems, we use
here the following system of integro-differential equations for (w,f, g) with
v=w+Vf;

2
—dd-t‘l— —div(a(g)7g) = tr((Do)?) —div K
1 (¢ d .
(1.13) Af = — ‘;i’ + 191 Sﬂ dfg dx in (0, T)X 2,
ow

4P ((v-")wt(w-N)f) = PK

w(0) = Pv,, ¢(0) =g,

(1.14) P _ on 2,
“a'% (0) = —(vo+Fgo+div vy)
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<a(g)Vg+(‘v-V) v, n> ={(K, ny
Ffyny=0

Here [2| stands for the volume of Q.

(1. 15) n (0, T)xa0.

We shall show that this system is equivalent to (1.1)~(1.3). Let (v, q),
v=w-+Vf, be a solution of (1.13)-(1.15) and let

dg
b(t)—S s dzx.

Then, using (1. 14) and the divergence theorem, we get
b(O)z—jS<vo,n>dS:o (S=00),

where the last equality follows from the compatibility condition for vy. Note
that w is solenoidal and thus 4f=divwv. Then it follows from (1. 4) and
(1.13) that

dt
=div((v-7)v+alg)Fg—K) .

2
0 dg _dg V(clg)

Using (1.15) and the divergence theorem, we get

ab
o ©=0.

Thus we know that the system (1.13)-(1.15) is equivalent to (1. 1)-(1. 3).

2. Function spaces and compatibility conditions.

We first state the definitions of function spaces and their basic properties
which are used frequently in this article (for instance, see Nierenberg [8],

Sobolev [11]). We consider generally functions defined in a bounded domain
QC R with smooth boundary 92. Let H'(, R™) denote the Sobolev space
consisting of all R™-valued functions which have L?-derivatives up to order
s. Then H'(2, R™ is a Hilbert space equipped the standard inner product
and norm ;

(hoh= 3 | @ fogde,

Ifle=(F 0% (f.9eH (@ Rm),

where (-,+) stands for the inner product of R™, §*=(3/0x)- -(0/0x,)*» and
la| =ay+- Fa, (a= (&, -, ;). We can also define the Sobolev space H'
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(02, R™) for s& R whose inner product and norm will be denoted by ( “y*)s.00
and ||+|ls ;0. Furtheremore, we use the Sobolev space H'((0, T)x ) (s=0;
integer) whose norm will be denoted by ||+||s.o.mxs. We also use H' (0, T)
X 0%)) consisting of all distributions £ in (0, 7) X 82 such that f=F in (0, T) X
0f for some FEH (Rxa%) (s, real). Its norm is defined by

HfHS,(O,T) x3Q = iI}:{f HFHs,nxaa ’

where infimum is taken over all such F.
We shall arrange the basic properties of function spaces.

(P 1) Let & s be non-negative integers such that £+n/2<s. Then
2, sup [3° f(z)| =c[| f1ls

lal<k xeQ

for any f&H (2, R, where c is a constant depending on k, s, n, 2 and
|+| denotes the norm of R™

(P II) Let 7, s, ¢ be non-negative integers such that »=<min {s, ¢,
s+t—n/2}. Then

I gll-=cll Fllslglle

for any f€ H (2, R), g= H! (2, R™), where ¢ is a constant depending on r,
s, t, n, .

We introduce the space C*([0, T], H' (2, R™) consisting of bounded -
times continuously differentiable H (2, R™)-valued functions in [0, 7]. Then
we can define a Banach space Xi(T, 0, R™) which is simply denoted by
XAT), X,(2) or X,

X)="Uc([0,T], H"(2,R").
k=0
Its norm is defined by
ak
1Mt = sup || At 1AMt = 15Ol
We also introduce a Banach space Y,(T, 2, R™);
={f; 3f/at* (k=0,1,-,s—7) are bounded measurable
H7k(Q, R™-valued functions in [0, T]} .

. . S .. .
Its norm is the same as in X,. Similarly we can define such function spaces

on 02. Hereafter X, and Y, will be denoted by X' and Y’
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Next we describe the compatibility conditions for the initial boundary

value problem (1.1)-(1.3). Let (v, g)€ X’ be a solution of (1.1)-(1.3). Then

we have /

Y 0) = — ((wreP) vu-+ algo Pao— K (0)

| .
ig— (0) _ (‘vongO—l"le ‘Z)o) .

Furthermore, differentiating (1. 1) with respect to #, we verify that the initial
values of 9*v/dt* and o*g/ot* (k=1,---,s) can be written successively by the
data (vy, go, K) and their derivatives. When the data and their derivatives
satisfy these relations, we say that *v/d*t and 0%g/d*t satisfy the equation
(1.1) at £=0. On the other hand, differentiating (1.3) with respect #, we

get

K
(2. 1)y —%;7,{—(0),;1):0 on 892 (k=0,1, -, s—1).

These are the relations among the data (vy, ¢, K). Thus we call these
the compatibility conditions up to order s for the data (vy, go K).

3. Linearized equations and estimates for their solutions.

In this section we shall consider the linearized equations of (1. 13)—(1. 15)
and state the estimates for their solutions which are used in the proof of

MTheorem. The proofs will be found in Sections 6 and 7.

We assume that (v, g)EXs (s=3) are given so that {v,n>=0 on 02,
a(g)—<v, n*=d>0 in a neighborhood of 32 and a(g)>d.

First we solve the equations for §;

e
(@) %%—div(a(g)VQ)zF in (0, T)x 92,

.1 (B d0=0¢n LO=06 on2,
(r) <Fg,n>=nh on (0, T) X 0R .

F=tr <(Dv)2> —div K, ¢y =—(vg*Vgo+div vy)

h={K—(v-F)v, n)/alg).

The equation (3.1 a) is strictly hyperbolic and the boundary is non-charac-
teristic for (3.1 a) because a(g)=d and <{v,n)=0 on the boundary.
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Assume that (v (0), g (0))=(vy, 9o) and *v/d*, d*g/o*t (k=1, o+, s—1) sat-
isfy the equation (1.1) at t=0. Then the compatibility conditions (2.1); lead
to the ones for the data (g, g,, A, F).

ProposiTION 3.1. Suppose that the data (gy, ¢y, h, F) satisfy the com-
patibility conditions up to order s. Then the initial boundary value problem
(3.1) has a unique solution e X (T') such that

PH1G() 12| G O) e [F O -

(3. 2) .
+ [ PO de+ 1)
(1=k=s—1, |[F(0)][x=0),
22| G ()] [5s = qu t) (116 (0)| s+ | | F (0)] o=
(3.3)

r
2 |TIF @ 1B e 01000

where p’s are polynomials of ||v||xs, ||a(9)|lxs and q,(t) is a polynomial of
o @llxs=, [lalg @)z

REMARK. Since {v, n)=0 on 9%, v-F is a tangential differential operator
on 0. Therefore {(v-F)v, n) can be regarded as a function —(, (v, V)7i>

which belongs to X'. Here v.=v—<v, 7iyfi and the unit vector 7 is the
extension of n to a neighbourhood of 32.

Next we solve the requations for f;

(@ 4f =G in (0, T)x 2,

(3. 4) )
(B Ffynp=0 on (0, T)x0R2,

where

and ¢ is the solution of (3.1).

REMARK. The linearized equation used in is

. 3 Ao
—df = 5] +w-rg+rforg

and then it has been necessary that ||§(0)||xs is small.

Since S G dx=0, we can obtain

2
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PrROPOSITION 3.2. Then boundary value problem (3.4) has a wunique
solution f€ X, modulo constants such that

(3. 5) WOzt =cl|GOllxr—  (1SkSs—1),
(3. 6) W F O =q:@)| GOl |x*

where q,(t) is a polynomial of ||v(t)||x— and ¢, is a constant depending on
Q2 and k.

Finally we solve the equations for w;

0w

657 @ - +P(w-+@-nrf)=PK in(0,T)x2,
() ®(0)=Puv, on @,

where f is the solution of (3. 4).

PROPOSITION 3.3. The initial value problem (3.7) has a unique solu-
tion we X’ such that

.8 ol SO+ [ PRz dr (15kSs-D),
5.9 lo@lkse w0+ | e Pl de,
310 122 @l<a(le@lln- 17l D@l

where ps=cs(||v||xs+1IV Fllxt) and C’s are constants depending on k, s and £.
Using the equations (3.1), (3.4) and (3.7) we can obtain

PROPOSITION 3.4. Vf belongs to X' and satisfies

7

BAY DT A Ol S an) (161119110

(ol 1K)

where d=w+Tf, g(t) is a polynomial of ||[v(®)llxs-, lla(g@)llxs— and ¢
is a constant depending on s and £.

4. Invariant set under iterations.

Let (v, g0, K)E H' (2, RY x X (T, 2, R?) (s=3) be satisfies the compatibility
conditions up to orders s and let (v, g)=X* be given so that {v,7)>=0 on
the boundary, (v (0), g (0)=(vy, ¢o) and d*v/dt*, d*g/ot* (k=1,--+,s—1) satisfy
the equation (1.1) at t=0. Then it follows from the results in Section 3
that the system of problems (3.1), (3.4) and (3.7) has a unique ‘solution
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(%, )= X’ with D=w+V f. Therefore, we have a mapping @ defined by

?(v, 9) =(9, ) .

Let BB.cH s(.Q, RY), Bchs(T, 2, R®) be closed balls with center 0 and
radius R;, R,, respectively. Then we define a positive constant d;

4d =infimum of a(g) in |g|=ZcR,

where ¢ is the constant in Sobolev lemma (PI). Furtheremore, we choose

a fixed neighborhood U of 92 such that
a(ge) — {ve, ny2=2d for all (vy, go) EB; .
To find the fixed point of ® we first consider a subset E(C, T) of X ;

E(C, T)={@ 9 €X' (T); (v(0),9(0)) =(vy, g) € By,
d*v/ot® and o*g/or* (k=1, ---,s—1) satisfy
the equation (1. 1), (v, n>=0 on (0, T) X 02,
a(g)—<v, ny*=d on U, a(g)=2d and
]| x5 + 19l x5y = C}

Now we shall show the following

ProprosITION 4.1. Suppose that K& B,. Then there exist positive con-
stants C, T and ¢ depending only on 2 and R; (j=1, 2) such that E(C, T)
is invariant under @ provided that ||v(0)||xs-<4.

To prove |Proposition 4.1 we first need

Lemma 4.1. Let (9, §)=9(v, g) for (v, 9)eE(C, T). Then d*0/ot* and
o*g/ot* (k=1, ---,s—1) satisfy the equation (1.1) at t=0.

Proor. From the initial conditions for ¢ and @ we have
g(0) =go, w(0)= w,

(4.1) o4 .
% (0) = —(voeFgy+div vy) ,

where vy=wy+V f; is the orthogonal decomposition of v,. To show
(4. 2) 6(0) =7y,

it is enough to prove that Ff(0)=Ff, that is, V (f(0)—f,) is solenoidal.
In fact, it follows from (2. 1), (3.4) and (4.1) that

div(Vf(m—Vﬁ,) = ”Té?sm (opnddS=0  in 92,



166 R. Agemi

TV for n) =<vp, ny =0 on aQ.
Next we shall show
@3 20 =—(wrutalg)ra—K©).

Note that 0 is solenoidal and thus 4f=divé. Then it follows from (1. 4),
(3.1 @) and (3.4 a) that

. . .
d 8§ d v-V(ﬂ)

ot dt — dr dt

(4.4)
=div((v+F)d+alg)7§— K) +tr (Do) — (Dv) (D?).

Differentiating (3. 4) with respect to ¢ and evaluating (4.4) at t=0, we can
verify from (4.1) and (4. 2) that

div«—g; Vf) (0)+Q((voF) vo+alg) P go— K (0)>)

=107 ). {wo T ot alg)Pgo— K (0, m)dS,

where Q denotes the projection to gradient parts of vector fields. Using
the compatibility condition (2.1),, that is, {(ve*F)ve+a(go)¥Vgo— K(0), n>=0,
we obtain

45 (27f)0=-Q(w v+ al@lo-K©).
On the other hand, using the relation (1.11) we can rewrite (3.7 a) as
@6 T2y P(foer) o) f S )P f+alg)Pg) = PK.

Then we have

ow
ot
Therefore (4.3) follows from (4.5) and (4. 7).

That 9%]/0t? satisfies the equation (1.1) at ¢=0 follows from (4. 3) and
(4. 4). Differentiating (4.4) and (4. 6) with respect to ¢, we can prove suc-
cessively the assertion of Lemma 4. 1.

(4.7) (0) = — P ((v0-P) votalgn) Pgo— K (0)) .

ProoF OF ProprosiTION 4.1. We shall show that there exist positive
constants C and T depending R; (j=1, 2) such that

(4. 8) 10|zt + |0l =C
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provided that
(4.9) 1Vl + 19l =C.
To prove this assertion we first note that
lo@)llx2=+1g (&)l = |[v(0)] s~ +11g (O)] Lxs— +2C2 .
From (PII) we have
lla(@)llxs = M(C) (1 +]lg]]x)*

where M (C) depends on the supremum of a and its derivatives. Then
the polynomials g, () in (3.3), (3.6) and (3. 11) are estimated by

P1(Ry)+ps(C)2 .
Here and hereafter we denote various polynomials by p,; and consider the
supremum of a and its derivatives as their coefficients. Using properties
(PII) and the remark after Proposition 3.1, we can verify
T
| IF @zt oo mnss =00 (R)+P(C R T
g (O)xss [|1F(O)]|xs—2=ps(Ry, Ro),
Therefore if follows from (3. 3) that

19(0) s Sem @ (po(Ray R)+1(Roy Ry OV T)

Choose T;>0 such that

P(C)Ti=1, pi(Ry, Ry, C) T1=pe(Ry, Ry)
we then obtain
(4.10)  [1g@Ilk = 44 po(Ry, R)  for 0<t<T;.

Similarly, using (3.6), (3.9), (3.10) and (4.10), we can verify that there is
a small constant T,>0 depending on R,, R,, C and 2 such that

(4.11) HGO|lxs+1120(@) Les + 17 F @) A= ps(Ry, Ry)
for 0=¢=<min (7}, 75). From (3.11) and (4.11) we have

*
125 7/ @)1l = (1 (R)+p2(C) po( Ry, Ro)
+¢Cl[0(0)] |-+ Ct+ Ry)

Choose T3>0 and ||v (0)||xs-* such that
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(2(C) pe(Ros R +iC?) Ts=pr(R) ps(Rey R)+ciBRs,
cCllo(0)]| x5 = p1(Ry) ps(Ryy Ry)+cuRe,

we then obtain

@19 DT F Ol S3pu(R) pu(Ry R)+3CR,

for 0<¢t<min (T}, Ty, Ts). Therefore, taking C and T as

C=44 poRy R) + (14+3£1(R)) pa(Ry, R)+3ciRe,

T é min (Tl, TZ’ Ts) ’

we see from (4.10)-(4.12) that the assertion is valid for such C and T.
By the definitions of d and U we see that a(g(s)—<v(#), n)*=d in U

and a(g)=2d for small ¢&. Hence it is enough to show the existence of an
element (v, 9)€E(C,T) for some C and small 7. To this end we shall
consider the following problem instead of (3.1);

d%g

dt?

~div(a(g)Pg)=F  in (0, T)x2,
(4. 13) ,

)
; g
g(O) = o, at (O> =0 on Q.

Extend (v, go) and (v, g) to the space R?® such that their norms are estimated
by constant times of norms in £ and consider (4.13) as the initial value
problem in (0, T)x R%. Then we can verify that (4.13) has a solution (%,
g)e X' which satisfies (3.3) without boundary norms. Thus we have a
mapping @ defined by (9, §)=@' (v, g), where (9, ) is a solution of the
system (3. 4), (3.7) and (4. 13).

We now prove that (v, g)=(@")*"* (v gs) belongs to E(C,T) for some
C and small 7. In the same way as the proof of Lemma 4.1 we can
verify that o*v/o"t and d*¢/d*t (k=1,---,s—1) satisfy the equation (1.1) at
t=0, because the boundary condition (3.1 7) is not used there. The X’
norm of @' (v, o) is estimated by pe(Ry, Ro)+pio(Ry, Ro) T.  Let C=2pg(Ry, R;).
Then, using the foregoing method, we can verify that for small 7 the
X' -norm of (v, g) is smaller than C. Thus the proposition is proved.

5. Proof of theorem.

We shall first show the existence of solutions of (1.13)-(1.15). To this
end we introduce a metric in E(C, T) which is defined by the X (T)—norm
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(compare with the metric in [4]). We denote this metric by dr;
dr (V1 1), (V2 92)) = 10— Vel 110 — Gl Lo
for (v, 9,)€E(C, T) (j=1, 2).
The key step is to prove.

PrOPOSITION b.1. For every ¢ with 0<e<1 there exist positive con-
stants T and 0 depending on ¢, Q, and R; (j=1, 2) such that

dr <Q)(“U1, ¢1), D (v, 92>> =edy <<‘01, g1)s (Vs gz))
provided that ||vy||;<d, where R; are defined in Section 4.

PROOF.  Set (9,,§,)=® (v, 9,); 0;=w;+Vf,; for (v, 9)EE(C,T) (j=
1,2) and set §=¢,— g, W=10,—0s, Vf=F (fi—fs). Then, by the definition
of @, g,V f and @ satisfy the following systems of equations ;

‘ifg —div<a(g1)l7g7> =F in(0,T)xQ,
5.1 j
-1 70) =27 (0)=0 on @,
&g, n>=h on (0, T') X082,
where
d 0
& = o Tl
hr = (K= (v+F) vy, n)/alg) —(K—(v:F) vy, n)/algs),
N 34,
F = tr((Dv)*—(Doy?) +div ((alg) — algs)) P 6 —2<vl—v2>-t7( o)
- gf (91—?)2)“7@24”(’02"7) (0asV Go) —(01+7) (0a2V Gs) .
6.2 4f =G in (0, 7)xQ,
FF,n>=0  on (0,T)xa02,
where
G=— (% +(‘U1—7)2)‘ng> + T}WS!,(Z?; +(v1—‘02>"7€jz>dx .
ow N s
5.3 o P (e nw+(@-n)rf)=PR  in (0, T)x2,

@w(0) =0 on £,
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where
— K = (0,—0y) P+ (20 V) W f1 =V 1) .

Applying the estimate (3.2); to a solution § of (5.1) and using pro-
perties (PII) and Remark after Proposition 3.1, we can verify

(5.4) 16— Gal Lxrcnr < p1(Cs Re) Tz (03, 1), (0, 92))

where we consider the supremum of a and its derivative which denpends
on C as a coefficient of a polynomial p;. From the estimate (3.5); and
(5. 4) we have

(5. 5) HVﬁ—Vf‘zHX“(T) = p:(C, Ry) Tdy <(’U1, 0h)s (Vg gz)> .
Similarly we find from (3. 8), that
(5.6) |1y — Wyl | x ey = ps(C) Tdr <<‘U1, 1), (Vs gz)) .

To estimate 8 (Ff)/ot we need

LEmmMma 5. 1.

I _877( f;—f;) xoe = cilvollal |01 — Vgl [ xker

+24(C, Ry) Tdr <(v1’ 01) (Vs gz)) )

where ¢ is a constant depending on 0.

(5.7)

[Proposition 5. 1. follows from estimates (5. 4)-(5. 7).

ProoF oF LEMMa 5.1. Differentiating the equations for f,; with respect
to ¢t and using the relation (4. 4), we get

A ”a’af% = le U;— tr <<D7)j)2—' (D'Uj) (D‘I‘)‘]>>

17, (A e (Do~ (Do) (D3, de.

where
uj=K—alg)Vg;,—(v;-V)d;.
Furthermore, setting
G;=div u;—tr ((Dv,*—(Dvj) (D)),
Vb;=Qu;

we obtain
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A3, (i Fo—tbib)
(5. 8) = —tr ((Dvy)*—(Dvy)*+ (Do) (DB,) — (Doy) (D))
+ ﬁ S (G,—G)) dx.
From boundary conditions for f; and ¢; we obtain
(75 (i F=F (b=, )
= ((01F) (B~ v) —(03+F) (33— v3), 1) .

Choosing b; suitably, we can assume

(5.9)

0 2 A
|, (5 i fi—(b—t) dz=0.
Set f=3 (f,—f,)/0t—(b,—b,). Then Green formula for Laplacian gives

PAIRE | 1<) (8~ ~(00oF) (64— 09, > f1dS
(5. 10)
+ [ 1tr (Do) —(Dugr-+(Duy) (Do) —(Dw) (D2) f 1z

The integrand of the volume integral in (5.10) is a sum of the following
terms ;

Ifavj or f&"zﬁjl ><|a<1v—v2) or 8(731—732)|

where 0 denotes one of 9/dx; (k=1,2,3). The integral of thesz terms are
estimated by

el S [[i+e e ol [vollal o1 — val s

+05(C, Ry) Tdr (03, ), (ve, g2)  (£30).

For instance, we have

(5.11)

Sglfavla(ﬁl—‘zﬁz)ldx
= |1 0v4llol|0 (D1 — Do)l

= call flilvullal 191 — Dol s
Se|| fI[F+ech(|[vol [+ £CP 01— Do |7 -

From this (5.5) and (5. 6) we get (5.11). Similarly, we can also verify using
(PII) and the remark after [Proposition 3 1 that the boundary integral in
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(5.10) is estimated by (5.11). Using Poincaré lemma (for instance, see Cour-

ant and Hilbert [1]);
IS es(IP A1+ | fladal),

”
and taking ¢>0 small, we obtain from (5.10) and (5. 11)
17 £ llo = callvollol|v1 — Vel Iy

+P6<C’ RZ) TdT <<7)1, gl)’ (‘1)2, g2>> .

Therefore, by definitions of f, b, and estimates (5. 4), (5.5), (5.6) and (5. 12),
we see that (5.7) is valid.

(5.12)

Proor oF THEOREM. Let T and ||v (0)||gs— be small so that Propositions
4.1 and 5.1 are valid. Then we know that ® has a unique fixed point
in the closure of E(T,C) with respect to X -norm. This is a limit point
(v, g) of a sequence (v;, ;) €E(C, T') which is recursively defined by (v, ¢;)=
O (v, gj1), vi=w;+Vf; Since

(v g)—(v, ¢) in X' and |[v,llx+gjlle =C,
we can verify that
(5.13)  (v,9)€X " and [[p@)lx+]g@)llx=C
for any 0=¢<T.

We shall show that (v, g), v=w-+Ff, is a solution of the system (1. 13)-
(1.15). Clearly w and f satisfy the corresponding equations. To see the
equations for g we use a weak form of the initial boundary value problem
(3.1). Using the divergence theorem and the equations for g; we obtain

—S: dth(%‘iL —i—v,-_l-ng) < g(f +v;_ Vot div vj_1> dx
+ S: dt gg <alg;-)Vg,Ve>dx
— j: dzjg o (tr (Do, —div K) da+ S o(0) div vodz
+ SOT dt j (0T, 1— K, n> 0 dS,
for any =Cy([0, T)x2). Taking n—oco and again using the divergence

theorem, we can verify that g=X ' is a solution of the initial boundary
value problem. Furthermore, we also verify from (5.13) that

[0, T) 2t—(@*v/ot, dgjot) s H' ™" (k=0,1, -+, 5)
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is weakly continuous (hence strongly measurable). Then we have (v, g) Y.
We shall consider (v, g) as a solution of the linear system with coefficients
in Y'. From the proof of estimates in Section 3 we find that the estimates
replacing (9, §) by (v, g) hold. Assume g=X which will bs proved in Sec-
tion 6. Then FfeX, follows from (3.6). Since the problem (3. 7) is re-
versible with respect to time, we find from (3.9) with initial data at z=¢,
that the continuity of |[w(t)||x$ in . Thus FfeX’ follows from (3.11) and
we& X’ follows from (3. 7).

Next we consider the continuous dependence of solutions on data. Let
(v, 9), (v™, g™) be solutions in X  for data (v, go, K), (v, g, K™ e H x X’
and (v{”, g, K™) converge to (vy, go, K) in H X X' '-norm. Note that T
and ¢ in [Proposition 5. 1 depend only on R;, R, for a fixed 0<:<1. Then
T is determined uniformly for (v, g), (v, g™) if ||v(0)||x— =Ry, |G, <
R, and [|[K™||ys<R,. Furthermore, we have

ollxsy +HG x5y =C,

where C is in E(C, T).

Set j=g—g™, Ff=Q (v—v™) and @=P(v—v®). Then we can verify
that ¢, f and @ satisfy the equations corresponding to (5. 1), (5.2) and (5. 3),
respectively. Applying estimates (3. 1),_;, (3. 4),_, and (3. 7),_; to §, f and @,
we can verify that

g —g®) @llx— + (v —2") @) -

is estimated by
r(C)(1100— 087l la-1+ 20— 05",

re
), (1K= K@= [[g =g |-+ [0 — 0@ 231 ,
Using Gronwall inequality we have

g —9) @)l|xs- + [[(v—0") (£)]| 25—

< €2 (|[go— g™ {ls—1+ 70— 08" |s—s
¢
+p7<C)SO IK—K®||po- dt) .

Thus we obtain the continuous dependence of solutions on data.

Finally we remove the restriction on the initial data. Following we
scale variables setting
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gz:g’ 7)1:/2‘0, a2:22a, K1:Z2K, txzt//l (/1>0).

Then we find that (v, (¢ @), ¢:(ts 2), a, K;) satisfy the equation (1.1) if and
only if (v, ¢, a, K) do. Since

otv, _ g kv
otk ot* ’

we see taking 1 as small that the restriction is removed.

6. Estimates for log p.

In this section we shall prove [Proposition 3 1.

First of all, to simplify the notations in (3. 1), we write a(¢, x)=al(g (¢, x))
and ¢(¢, /=4, ). Then we obtain the initial boundary value problem
for ¢ instead of (3.1);

() %zt%* —div(alg) =F in (0, T)xQ,
61 9 go=0n LO)=q one,

(r) Fg,ny=nh on (0, T)x a8 .
Here

F=tr <(Dv)2> —divK, ¢,=—(v,Fgo+div vy,
h=(K—(v-F)v,n)la.

In this section we assume that (v, a)& X*® are given so that {v,n>=0
on the boundary, a=2d, and a—<v, n)?=d in U. We remark that —a+
(v, n>? is the coefficient of second order normal derivative in (6.1 a).

Following the idea of [9] we reduce the problem (6.1) to the one with
homogeneous boundary conditions. Choose fi=e H Fi (0, T) x Q) such that

6. Ff,ny=h on (0, T)x 082,
' | fille+1,0,m9 % 0 = collhllk-v2,0,1) %22 (k=1).
We then consider the initial boundary problem for f;;
Lf;=F—L
/2 /i in (0, T)xQ,
S2(0) = go—£1(0)
(6. 3) ofs of, on 2,
= 0 =g,—3,(0)

Vi ny=0 on (0, T) X082,
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where

d? .
LZHF—dlv(aV-).

Since the data (g, gy, h, F) satisfy the compatibility conditions up to order
s for (6.1), the data in (6. 3) also satisfy the ones for (6. 3). Thus, if there
exists a solution ;&X' satisfying the estimates corresponding to (3. 2), and
(3.3) without boundary norms, then we can verify from (6.2) that 9=f+12
is a solution of (6.1) and satisfies the estimates (3.2), and (3. 3).

Hereafter we shall consider the problem (6. 1) for any data (90 91, F) E
H' xH 7'x X with h=0 satisfying compatibility conditions up to order s.

To derive a priori estimates for ¢, we introduce the energy integral

Blgs 0= (9 et cara, Fop o) de.

Then we have

LEmMma 6.1.

(@r9) (112 @1+ Fo(@IE) < Eqg: 1
ll

0
<1158 @1+ 17gt01E).

where
q(t) =sup (1+alt, )+, 1))

Proor. We consider E(g; t) as a symmetric bilinear form in og/ot,
d9/0x;. Let A(t, x) be the matrix associated to this bilinear form. Then
we can verify that the eigenvalues 1 of A satisfy

(A—af (P—(1+a+|v[%) 2+a)=0.

Thus the lemma is proved.

LEmMA 6.2. It holds for a solution g€X' of (6.1) with <Fg, n>=0
on the boundary that

6.4 Elgs)=E(g; 0-2( (9 Fla+r,

where

R =p[ El0; o],
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and p, is a polynomial of ||v|lg, |la|lx.

Remark. The assertion of Lemma 6.2 is also valid for g€Y  and
(v, €Y.

ProoF. Since {v, n)=0 on the boundary, it follows from the divergence
theorem that

(v lgho=—(Ff, 90— (f; g div o).

Using this formula and integration by parts, we get

efdg dg\ . _dg [ (/(dg dg ..
zso(dﬁ > dt >odt—” dt H‘Z’O_So<dt > dt dwv)odt'

Again using the divergence theorem, we obtain

(4 a9\ 45— ([ da
2 SO <d1v (arg), 7){) dt = — Sg<al7g, rad de +§0 dth {rg, S-7g) dx

- 5: dt g {alg, (div v) Vg—l—Z[V, %]g> dx .

J 2

Therefore we obtain Green formula (6.4). The estimate of R, follows
from Sobolev lemma (P]I).

Using Lemma 6.1, 6.2 and Gronwall inequality we obtain

ProposITION 6.1. It holds for a solution g= X? of (6. 1) with Vg, n)=
0 on the boundary that

6.5 gl = a@ligOlp | 1,
where q,(t) is a polynomial of |lv(®)|lx» |la(t)llx» and p’s are polynomials
Ofll‘UHXf*!, ”aHxﬁ.

A routine deriving higher order estimates from (6. 5) is usually as follows.
Using a partition of unity of £2;

2 pix) =1,

we first reduce the problem (6.1) to the one in the quadrant. Here the
support of ¢; is contained in U if it intersects to 02. Next, Applying /ot
and tangential differential operators to these equations, we use (6.5). The
terms involving normal derivatives are estimated finally by using the equa-
tions. Thus we can obtain the estimates (3. 2); for g= X, (3.3) for g X'
and
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6.6 e ligise = po(lg(Olfes +IIF O)fse-:+ | 171 ze-s )

where p’s are polynomials of ||v||xs, ||a||xs.
Now we show the existence of a solution g X* of (6.1) with A=0.
Let g be a solutionof the initial value problem for (g, g;, F ) EH"'x H*x X*;

ag(l)
Lg®=F, ¢g*0) =g, —5—(0)=g

where L=d%dr?—div(al-). Let g® be a solution of the problem ;

@
Lg® =0, Fg@, n>= —Fgo, 7>, g@ (0) = agt (0) =0.

Then we see that g=g® 4¢® is a solution of the problem (6.1). Using
the compatibility conditions for (go, 01, F), we can verify that —<Fg®, n)>
has an extension in the space Hi_y,,(RX0Q)={f; e "feH, ,,;(Rx30Q)
(r>0) setting zero in ¢<0. By the aid of the existence theorem in H,,
(Rx ) we find that (6.1) has a solution ¢ satisfying (3.2),_, such that
d*glotte L1 ([0, T], H'™") (k=0, ---,s). Let v and a belong to X'** and the data

(9o 9 F)EH x H' ™' x X

§—1

satisfy the compatibility condition up to order s. Then we can verify that
this data is approximated in the norm of the right hand side in (6.6) by
the data e H' "' x H' x X' satisfying the compatibility conditions up to order
s+1 (see lkawa [6]). Therefore we conclude that (6.1) has a unique solu-
tion g€ X' satisfying the estimates (3.3) and (6.6). From [Proposition 6. 1|
we see that solutions of (6.1) is unique in X'. Thus Proposition (3.1) is
proved.

By the above arguments we can verify that if gY’ is a solution of
(6.1) for (v,a)eY’ then g= X'
7. Estimates for v.

In this section we shall prove Propositions 3.2, and 3.4
We first consider the boundary value problem for f;
4f =G in 2, |
(7. 1) /3 n
KFfyn>=h on 0% .

If a solution of (7.1) exists, the data (G, h) satisfy the compatibility con-
dition ;
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(7.2) S Gdzx :Xagkds.

As is well known (for instance, see Lions and Magenes [7]), we obtain

ProPOSITION 7. 1. Suppose that the data (G, hye H'(Q)x H™""*(59) sat-
isfy the compatibility condition. Then the boundary value problem (7.1)
has a unique solution fE H Q) modulo constants such that

(7. 3) W7 flles1 < cl|Glls+ 112 ls+v2,00) »

where a constant ¢ depends on 2 and s.

[Proposition 3. 2| follows directly from this proposition since the data in
(3. 4) satisfy the compatibility condition.

We next consider the initial value problem for w;

) e oA :
0y F+P((v.7)w+(w-V)Vf> =PK in (0,T)xQ,
w(O):P‘vo on ‘Q’

where ve X' is given so that (v, n>=0 on the boundary and f is the solu-
tion of (3.4) such that F f=X;. Clearly a solution w of (7. 4) is solenoidal.

[Proposition 3.3 was stated in without proof in details. Our proof
is somewhat different from the method anounced in [4].

PROPOSITION 7.2. It holds for a solution weX' that
t
1.5 Nl < e )1+ | ene | PR e

where plzc(Hvng—i—HVfI[Xg) and ¢ is a constant depending on L.

REMARK. [Proposition 7.2 is also valid for weY’, veY’' and FfeY,.
The estimate (7.5) is nothing but (3. 8);.

Proor ofF ProprosITION 7.1. We first show

7.6 Bl S sl + IPK Ol

From (7.4) we have

0 A
= 1l = —2(w, P<(v-V)z®+(z®-V)Vf—K))l.
To estimate (w0, P((v+V)w)), we decompose (v+F)w into

(v-F) w=P((v-") +7f; .
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Here
4f, =div ((v-") ) =tr ((Dv) (D@))  in 2,

s n>=<(vol7)z€), n> on 0%,

where we use div@w=0. Since the operator v.F is tangential on 9%, it
follows from [Proposition 7. 1] that

WAl = allvlll[2ll:

where a constant ¢; depends on 2. Using the divergence theorem we can
verify

(16, (7)), | < el ol a5

Therefore we obtain

|, P((2-7))),| < cllll 2011

Since

|(» P((w-7)7 £ ),| < clIPAllllol
we thus obtain (7. 6).
We next show

A A PK
a0 15Ol =a (152 01+ 1son)+ 125 @l

Differentiating (7.1) with respect to ¢, we have

0, 0u 0w 9 .
gll%(t)ll‘z’: ~2<T°‘f, 5;((v-7)@+(w-17)7f—1<)>0,

where we use that 9w/ot is solenoidal. Using the divergence theorem we
can obtain (7.7). Since the estimate (7.5) follows from (7.6) and (7.7),
the porposition is proved.

By a similar way as the proof of [Proposition 7.2 we can verify the
estimates (3. 8); (k=2,---,s—1). To obtain the estimate (3.9) for W& X, ;
the proof of the following lemma is not routine, since (w+F)V (o*f/ot*) & H ~

(2).

LemMa 7.1. It holds for any vector fields v, weX, that
(7. 8) [|[P(veF) Quw||xi = c5l| Qul|x5]|vl|x} -
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Proor. As is well known (for instance, see Friedrichs [3]), we have
72llo = a(Idiv wllo+leurl o+ llo)
{u, ny =0 on 0% .
Letting =P (3*7'((v-V)Qw)/0t*™") and using the identity curl-F=0, we get

(7.9

s—1

17P( s (071w o= el urt (- (0-7) Qx0) .

Again using the above identity we can verify that [|6*'P ((v+F)Quw)/ot Y|,
is estimated by the right hand side in (7. 8). Similarly we obtain the estimate
(7. 8).

Now we prove the existence of a solution we X' of the initial value
problem (7.4). To this end we consider the equations for 4 ;

<§t~ +v-V)zZ=P<(v-V)QzZ>+H in (0, T)x %,
4(0)
Applying P to (7.10) and setting w=Pi, we see that @ is a solution of
the problem

(7.10)

I

o on 2.

aa“jf’ +P<(v-l7)u‘)) = PH in (0, T)x 2,
w(0) = Pu, on Q.

This procedure is owed by T. Shirota.

Extending v, u, to 9, @, in R® so that their norms estimated by ones
of v, uy in 2, we consider the initial value problem in stead of (7. 10),

a 25 .
(7.11) (_67“"7)“:‘; in (0, T)x R?,

u(0) =, on R3.
Since (7.11) is symmetric system of the first order, the initial value
problem (7.11) has a unique solution #= X, such that

t
(7.1 |jul®)lt < elludl,+ || e[| Gle) 12y e

For the stable Cy-semi group method see [5].

Consider the operator

T N—

u——P((0-7)Qul.)) ~P((ul )7 F)



where ~ and |, denote the extension to R?® and the restriction on 2. Then
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we known from Lemma 7.1 that this operator is bounded from X (R?
into X;(R?. Using the estimate (7. 12) and the method of iterations, we also
known the existence of a solution we X, of (7.4). Using the equation (7. 4)
we see that ®w= X and satisfies the estimate (3.10).

Finally we prove [Proposition 3.4 The method is the same as in Lemma
In a similar way as deriving the boundary value problem (5. 8), (5. 9),

o. 1.

we can obtain

where

A(%_J: _ b) = —tr ((Dv)*—(Dv) (DY))

- l—flzT [, (v u—tr ((Dvp— (Do) (D)

<V<%J; —b), n) ={(v+F) (6—v),n),

u=K—alQ)Vg—(v-l)d, Vb=Qu.

Applying 9*"1/0t*"! to the above equations and using Green formula for
Laplacian, we can verify that 7 fe X' and satisfies the estimate (3.11).
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