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Some considerations on various curvature tensors

By Masaru SEINO
(Received November 2, 1979)

K. Yano has introduced the notion of complex conformal connections
in Kihlerian spaces and showed

TueoreM A ([12]). In a Kdéhlerian space of real dimension 24, if
there exists a complex conformal connection with zero curvature, then the
Bochner curvature tensor of the space vanishes.

K. Yano has also introduced the notion of contact conformal connec-
tions in Sasakian spaces corresponding to complex conformal connections in
Kihlerian spaces and had

TueoreM B ([13])). In a Sasakian space of dimension =5, if there
exists a contact conformal connection with zero curvature, then the contact
Bochner curvature tensor of the space vanishes.

In the present paper, we consider the converses of Theorem A and
Theorem B.

We give algebraic preliminaries and notations in §§1 and 2. §3 is
devoted to the proof of Theorem 1, which asserts that if there exists a
non-constant solution of a certain partial differential equation, the converse
of Theorem A is true. In §4, from a viewpoint of the notions of K-
curvature and F-invariant curvature tensors, we define the Bochner curvature
tensor of a K-space. Theorem 2 gives a characterization of the vanishing
of the Bochner curvature tensor of a K-space. shows that the
converse of Theorem B is true, if there exists a non-constant function satisfy-
ing a certain system of partial differential equations.

We remark that a Sasakian space satisfying the assumptions in Lemma
10 admits another Sasakian structure of constant ¢-holomorphic sectional
—3. The latter part of §5 is devoted to the study of a system of partial
differential equations in Lemma 10, Theorem 3 and Theorem 4 give a
characterization of the Sasakian structure of constant ¢-holomorphic sectional
curvature —3.

The present author wishes to express his sincere thanks to Professor
N. Tanaka for his suggestion of the existence of another Sasakian structure
in Theorem 3 and to Professor T. Nagai for his kind guidance and help.

Throughout this paper, our arguments are local and sometimes pointwise.
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§ 1. Algebraic considerations.

Let V be a d-dimensional real vector space with an inner product g¢.
A tensor L of type (1,3) over V can be considered as a bilinear mapping

(z,9) €V X V——L(zy)€Hom (V, V).

Such a tensor L is called a curvature tensor on V ([6]) if it has the follow-
ing properties ;

(a) L(x,y)=—L{y, z);

(b) ¢(L(z9) 2, w>+g<L(x,y) w,z) =0;

(¢) L(z,y) 2+ L(y, 2) z+ L(z, ) y =0 (the first Bianchi identity).

We denote by (V) the vector space of all curvature tensors on V.
It is a subspace of the tensor space of type (1,3) over V and has a natural
inner - product induced from that in V.

For Le«,(V), the Ricci tensor S, of type (1,1) is a symmetric endo-
morphism of V given by

Sp(x)=trace of the bilinear map: (y,2)EVx V—L(z,y) 2 V.

1.1. K-curvature tensors.

Consider the case when d is even, say 27, and V has a complex struc-
ture F and Hermitian inner product g. Then, a tensor L& (V) is said
to be F-invariant ([I1]) if it satisfies

(d) 9(L(z9) 2 w) = g(L(Fx, Fy) Fz, Fw),
and L is called a K-curvature tensor ([5]) if it satisfies
(e) L(x,y)oF =FoL(x,7y).

And we call an F-invariant curvature tensor L a K*-curvature one if it
satisfies

g<L(Fx, Y) 2, w)—l—g(L(x, Fy) =, w>+g<L(x, Y) Fz, w>
+9(L(z,9) 2 Fw) =0.

If we denote by Z(V)*, =«*(V) and < (V) the vector spaces of all
F-invariant curvature, of all K*-curvature and of all K-curvature tensors,
respectively, then we have Z(V)o=2(Vio2*(V)D2£(V). The projections
of Z,(V) onto Z(V)*, of &£(V)* onto ~*(V) and of Z*(V) onto (V)
are respectively given by

LieZ|(V)——L*c=2(V)*,
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where 2g(L*(,) 2, w) = ¢(Lo(2,1) 2 w) +¢(Lo(Fx, Fy) Fz, Fw)
Lxez(VF——D*Lex*(V), |
where 4g(*L(z,9) 2 w) = 3¢(L*(2,3) 2, w) +3¢(L*(z,9) Fz, Fu)
+9(L*(z, Fy) 2, Fw) +¢(L*(z, Fy) Fz, ),
and *Les*(V)——Lex(V),
where 4g(L(x,%) 2 w) = g (*L(z,9) 2 w) + 20 (*L(z,9) Fz, Fw)
—g(*L(z, w) Fy, Fz)+9 (*L(y, w) Fz, Fz) .

For an L&~ (V)*, its Ricci tensor commutes with F.

Let {x,7} be an orthonormal basis for a 2-dimensional subspace P of
V. Then for Le2,(V) we put

H(P)= Hy(P)= Hy(z,9) = g(L(x,9)¥, 2)

and call H;(P) the sectional curvature of L for P. It is well-known that
H,(P) is independent on the choice of x and ¥ in P. In particular, if the
2-dimensional subspace P is holomorphic, i.e., invariant by the complex
structure F and x is a unit vector in P, then {x, Fx} is an orthonormal
basis for P and for L we have

H,(P)=g(L(x, Fz) Fz, z).

We call such H(P) the holomorphic sectional curvature of L for holomorphic
plane P.
For z, y&V, we denote by xz/Ay the skew-symmetric endomorphism

of V defined by
(xA\Y) 2=9(y, 2) x—9(x, 2) Y .

Let A and B be two symmetric endomorphisms of V which commute with

F. We define L=L,5 by

L(x,y) = AxABy+BxN\Ay+FAx \NFBy+FBx\FAy
+29(Ax, Fy) FB—2g(Fx, By) FA .

Then the L is a K-curvature tensor.
In particular, if we take A=cl/8 and B=I, where I is the identity
transformation of V and ¢ is a constant, then the L becomes

L(z,) =c/4+(zA\y+Fx AFy+2g(z, Fy) F).
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In this case the holomorphic sectional curvature H,(P) for every holomorphic
plane P in V is identically equal to ¢. It is well-known that if Le«(V)
has constant holomorphic sectional curvature, say ¢, then it is of the above
form. Hence, if Le £ (V) has constant holomorphic sectional curvature 0,
then we have L=0.

Now, we define the Bochner tensor Lj associated to Le= (V) ([5]) by

_ I Sy
L= L g0y 13 (wr— gy L)

LEmMMA 1. Two K-curvature tensors L, and L, have the same Bochner
tensor if and only if there exists a symmetric endomorphism A which
commutes with F and satisfies

Ll— L2 — LA,[ o
We call an orthonormal basis {e, -+, e,, Fey, -+, Fe,} for V an F-basis.
LEmMMA 2. If n=2 and Lz=0 for an Le<(V), then we have

HL(ei’ Fe;)+ HL(ej’ Fej) = 8Hy(e;, ej) s (l':#]')
for every F-basis for V, where i, j=1,2, .-, n.

For the proofs of Lemmas 1 and 2, see [5] and [4], respectively.

LemMA 3. Let Lp=0 for Le=£(V) and n=2. If there exists on V
a nonzero vector v such that L (v, x)=0 for all x&V, then we have L=0.

ProoF. Let ¢, be a unit vector in the direction of v. Then by means of
properties of L and our assumption we have

L(e;, x) = L(x, ¢;) = L(Fe,, x) = L(x, Fe,)) =0

for all x&V. For any unit vector x of V, take an F-basis {e;, Fe;} in such
a way that

x = ae;+ bFe,+ce,,
where a, b and ¢ are constants. Then, by virtue of Lemma 2, we have
Hi (e, Fe))+ Hy(e;, Fe;) = 8Hy(ey, e;) , (1#1)
and hence
Hi(e;, Fe;) =0, (i=2,---, m).
Therefore we have
Hi(x, Fx) = c*H(e,, Fe;) =0 .

Since x is arbitrarily taken, L has constant holomorphic sectional curvature
0 and we have L=0.
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LEmMA 4. The Bochner tensor associated to a K-curvature temsor L
vanishes if and only if there exists a symmetric endomorphism A of V
which commutes with F and satisfies

H(x, Fx) = —8¢(Ax, x),
for any unit vector x€V.

For the proof, see [2].

For Le«(V)*, the Bochner tensor associated to L means (rL)s, where
z is the projection map of Z(V)* onto = (V).

LemMmA 5. The Bochner tensor associated to an F-invariant curvature
tensor L wvanishes if and only if there exists a symmetric endomorphism
A which commutes with F and satisfies

HL(x’ Fx) = _8g<Ax: x> ’

for any wunit vector x&V.

Proor. Taking account of we can get by
H,(x, Fx)= H,;(x, Fx).

1.2. S-curvature-like tensors.

Consider the case when d is odd and V has a (¢, &, », g)-structure. An
Lye£y(V) is called an S-curvature tensor over V ([15]) if it has the pro-
perties ;

Lo(x, ?J) ¢z — ¢L0(SC, Z/) z+g(¢x’ .Z) y_g(¢y’ 2) x_g(y’ 2) ¢x
+9(x, 24y ;

L&, )y =9(x,vy) §—n¥) x.

A curvature tensor L is called an S-curvature-like tensor over V ([15]) if
it satisfies

To each S-curvature tensor L, we assign an S-curvature-like tensor L by
the relation

L(z,9) 2= Lo(x,9) 2+1(2) (1(2) y—9(0, 2)¢)

(o) —7) (7(2) 2—g(x, 2) §—g (9, 2) gy
+9(dY, 2) px—29(9x,Y) ¢ .
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We define an even dimensional subspace D of V by
‘ =0,

and put go(x,¥)=9(x,y)—n(x) p(¥). Then (4, g)) can be considered as the
Hermitian structure on D. When we restrict ourselves to D, every .S-
curvature-like tensor over V can be regarded as a K-curvature tensor on
D with respect to the Hermitian structure (¢, g;). Hence, we can introduce
some quantities corresponding to those in 1.1. In particular, we can define
the contact Bochner tensor Ljp associated to each S-curvature-like tensor L.
Ly may be regarded as the contact Bochner tensor associated to an S-cur-
vature tensor L, if L and L, are related by the relation (@). We have a
¢-holomorphic sectional curvature corresponding to the holomorphic sectional
curvature.
Then we easily see

LemMA 6 (cf. [7]). Let L and L, be an S-curvature-like tensor and
an S-curvature tensor, respectively, which are related by (@) Then L=0
if and only if Ly is of constant ¢-holomorphic sectional curvature —3.

§ 2. Notations.

Let M be a d-dimensional Riemannian manifold with a positive definite
Riemannian metric ¢. Since the tangent vector space T, (M) of M at each
point 7 of M has an inner product ¢(m), we may consider curvature tensors
over T,(M). A (differentiable) tensor field L of type (1,3) on M is called
a generalized curvature tensor ([6]) if for each 7 the tensor L(m) is a cur-
vature tensor over T,(M). Similarly, we define a generalized K-curvature
tensor, etc., in an almost Hermitian space, and a generalized S-curvature-
like tensor, etc., in an almost contact metric space. For details, see [6],
and [15].

Let {U; (2%} be a system of coordinate neighborhoods in M, where
and in the sequel the Latin indices run over the range {1,2,:-,d}. We

denote by {jhi}’ Vi K, K;j and K the Riemann-Christoffel symbols, the

covariant differentiation, the Riemannian curvature tensor, the Ricci tensor
and the scalar curvature with respect to the metric g=(g,), respectively.
Then K, is a generalized curvature tensor. ’

§ 3. Complex conformal connections.

In §§3 and 4, we consider the case when d is even, say 2n, and M
has an almost Hermitian structure (F/, ¢;).
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Let M be a Ké&hlerian space of real dimension =>4. In a Kihlerian
space M, the Riemannian curvature tensor Kj, is a generalized K-curvature
tensor and we call the Bochner tensor associated to Kj;* the Bochner cur-
vature tensor of M.

An affine connection F is called a complex conformal connection ([I3])
if its components I';# is given by

Pjih’ :{ .h .
J 1
where (p;)=dp for a certain function p on M, and ¢i=—F7p;. The cur-
vature tensor of the complex conformal connection is given by
Ry = Kkjih—5thji+5thki—thgji+Pjhgki—Fkthi
+F"Qu— Q" Fj+QF s+ Qf Foi+(Vig,—V ;qi) Fi
—2Fi(piq" —q:")

}‘|‘5th~£+5¢th—gjiPh"FthQi‘i'Fz‘h%“Fﬁqha

where
P =Vpi—pipita;qi+1/2+295,
. Qu=—PuF},
and A=¢7'p,p;.
Since- we have
Rijl"+ Rji"+ R = 2F (V1. " — 2qu. p + AF3?)
+2Fu(V ;9" —2q,;p"+ AF )+ 2F 31, (V ;¢ — 2q; p" + AF /) ,
in order that
Ry 4+ R+ Ry =0,
it is necessary and sufficient that
Vidi—2q;p:+2F; =0,
or
(*) Vipit+2q;q:+49;,=0.

In particular, if we get Ry;*=0, then we have (*) and by Theorem A the
Bochner curvature tensor of M vanishes.

We consider the converse.

We suppose the existence of a nonconstant function p satisfying (*).
Then a complex conformal connection F is defined corresponding to the
function p and its curvature tensor Ry;" is a generalized K-curvature tensor.
Since it is easily verified that the two generalized K-curvature tensors Ry
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and R,;* are related by the relation stated in [Lemma 1, we have
J

LEMMA 7. If there exists a nonconstant function p satisfying (*), then
two generalized K-curvature tensors Ky;* and Ry have the same Bochner
tensor. In particular, the Bochner tensor associated to Ky;" vanishes if and
only if that to Ry;" vanishes.

Let ; denote the covariant differentiation for the complex conformal
eonnection /. Then from (*), we have

Vipi= —Pib:-
The Ricci identity for F gives
Vil =0 iVxpi= — Rusi bn—Tu* Vaps
where T} is the torsion tensor of 7, from which we obtain
Ryl pn=0.

Taking account of Lemmas 3 and 7, we have

TueoreM 1. In a Kdhlerian space of real dimension =4, with the
vanishing Bochner curvature tensor, if there exists a nonconstant function
p satisfying (¥), then we have a complex conformal connection with zero
curvature.

The Bochner curvature tensor By;* of M is rewritten as follows ([9]);

Byl = Kt 04" L i—0" Lyi+ Li* g — L9

B +F My — F* Mg+ M F j;— M Fy
—2(MI F+Fy; M)
where Lj;=— 5(71%27(1@@-— 4—(711_"_ng;~¢>,
M= —LuF.

§ 4. Bochner curvature temsor in a K-space.

M is a K-space if the associated almost Hermitian structure (K, ¢;s)
satisfies
V,Fr+V,F=0.
ProprosiTiON 1. In a K-space, if the tensor By;* given by (B) vanishes,
the space is Kdhlerian.
Proor. In general, we have

3

B, = | (Kji— K FAFS)
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and
ViV ;F—V iV B = Kyt B — Ky jit Fit
= By;"F— Byt F*
A P (K KuFAF) .
Hence, if B,;*=0, we get
(1) ViV ;F—V;V F?=0.

It is well-known that if a K-space has the property (y), then the space is
Kihlerian.

Proposition 1 tells us that it is meanless to consider a K-space with
By;*=0. Therefore we should go to the meanful direction.

LemMmA 8 ([3]). In a K-space, we have
Kijin = Kaepa F? F £ F2 Fy®
that is, Ky, is F-invariant.

By the argument in 1.1 and Lemma 8, we have the Bochner curbature
tensor B of a K-space, that is, the Bochner tensor associated to Ky
However, since by below we see that Kj;* in a K-space is a
generalized K*-curvature tensor we here give the Bochner one in this sence;

Bl =1/4+(Ky;" — 2Kyt FE F — Ko Ff Fif + K Fi F)
+0* L} —d/ L+ Li* 95— L7* Qs+ Fi* Mj; — F* M
+Mk*hsz_M;kth’L_z(M;]th-}—ijML*h) ’

1 1
Where L.” 8(n+2) <KJ'L+3K_” 4(71""1) <K+3K )gh))
Mj,=—L5F!,
and Kj;= —1/2:K;p, F£F*, K¥=¢*K}. Bj;® is the Bochner tensor as-
sociated to a generalized K*-curvature tensor Kg;" and in a K-space we
can rewrite Bj; more precisely. To do this we need

LemMa 9 ([3]). In a K-space we have
Kijin— Kijes Fi Frd = — Ve F Vi Fy
(Therefore, Ki;* in a K-space is a generalized K*-curvature tensor.)
By we get
1/4«(Kyjin+ 2K jos Fit Fr — Kines F i Fi? + K juas Fi Fi)
= Kijin—1/4+(3Kyjin— 2Ky jus Fit Fi* + Kines F i Fi¥ — Kjnes Fi' F)
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= Kyjin—1/4+ <2 (K jin— Kiges Fit Fr®) — (Kinji — Kines F £ F&Y)

K jnrs — Kjnss Fi* F. zs>>
= Kyjin— 14V FyiV i F =V FyuV ; Fit =2V F 5V F)
by virtue of the first Bianchi identity for Kj;® and
Bt =0 L}, — 0" Li;+ LE" 9 50— L™ Qo+ Fi* M — F i My
+ MFPF j— M Fry—2( MG F A+ Fry M) 4 K
+1/4 Vi FMV i FE =V FEV i Fr—2V, F iV FP) .

Thus we obtain

TueOREM 2 (cf. [2], [8]). Let M be a K-space. M has the vanishing
Bochner curvature tensor if and only if there exists a symmeiric and hybrid
(0, 2)-tensor Ay satisfying

H(z") = —8A;,x7 ¢,

for any unit vector x*, where H denotes the holomorphic sectional curvature
Jor Ky In this case we have

Proor. By the proof is easy.

§ 5. Contact conformal connections.

In this section, we consider the case when d is odd, and M has a
Sasakian structure.
5.1. Sasakian structure.

Let (4, &,7m,9) be an almost contact metric structure on M. Then the
following four tensors are well-known ;

N®(z,y) = ¢’ [z, yl +[px, gyl — dldx, Y1+ dldx, gyl +dn(x, y)§,
N®(z,Y) = (L) Y— (L) x

N®(z) =(Z:¢) x

N® (x) = (ZLen) ( )

for any vectors x and ¥ on M, where £ denotes the Lie differentiation.
We define a distribution D on M by the equation 5=0.

(¢, & 1, 9) is normal if NP=0 (then we also have N®=N®=N®=(),
and contact if g(¢x,y)=1/2-dy(x,y) for all x and ¥y. A normal and contact
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structure is called a Sasakian structure. For a Sasakian structure (g, £, 5, )
we have

(1) Vad)y =) z—9(z,9) &,

In a Sasakian space, the Riemannian curvature tensor is a generalized
S-curvature tensor, The contact Bochner tensor associated to the Rieman-
nian curvature tensor is called a contact Bochner curvature tensor of the
space.

PROPOS)ITION 2 (110)). In a Sasakian space, there exists a unique affine
connection V satisfying the following conditions :
(i) F=Pe=Pyp=rg=0;
() 7(zy)=dylxy)¢,
T(¢x, & = —¢T(x,8), for all x, yeD,

where T is the torsion tensor of V. (The connection V is called the canonical

affine connection of (¢, &, 7, 9).)
If we denote by I',” the components of F, then we have

; h
rﬁh:{]‘ i}“¢jh7]i—¢z‘h771+¢ﬁ§h-

In this case, the curvature tensor for F is a generalized S-curvature-like
tensor and corresponds to the generalized S-curvature tensor K;,” under
the relation (a).

5.2. Contact conformal connections.

In the sequel, we consider a Sasakian space M(¢2, €, 7;, ¢,.).
An affine connection 7 is called a contact conformal connection ([14])
if its components I";* is given by

h
I't= {] i}—l—(ﬁj"—y],-é'h) Pi+ (0" —1:") p5— (95— 1574 Pn
+6(qi—71) + 60— 1) — $5:(a*—§"),
where (p;)=dp for a certain function p on M satisfying <£,p=0, and ¢;=¢,/p;.
We consider the following :
(%) Vipit+2959:—qmi— 29+ A(G5—71;7) =0,
where 1=¢’'p;p,. Then corresponding to theorem 1, we have

LemMA 10. In a Sasakian space of dimension =5, with the vanishing
contact Bochner curvature tensor, if there exists a nonconstant function p
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satisfying (¥*) and £.p=0, then we have a contact conformal connection
with zero curvature.

We assume the existence of a function p satisfying (**) and <,p=0.
Then, if we set

= ey, ¥ = e (E—g"), *¢8 = ¢l —nip"
*9 5 = €2(G 5+ (e =14+ 9+ q;7 1500 »

then the structure (*¢, *&, *7, *g) is another almost contact metric structure
on M. Furthermore we can be easily verify that

d*y(xz, y) = d*y(dz, ¢y) »
[*¢x, *¢y] — [z, Y] —*@[*bx, y] —*¢[x, *¢y] =0,
for all z, ye*D=D. The second equation of (¢) is equivalent to
*NO(z, y)+*p(2)*¢ *N® (y) —*5(y)*¢*N® (x) =0,

for all vectors x and ¥ on M, under the first equation of (g).
On the other hand, substituting () into

(*NO)I = LuF P =¥V P +H PV *E — >tV *E"

(9)

(e)

and using (1), we have *N®=0. Consequently, the structure (*¢, *§, *z, *g)
is normal. Since it is very easy to verify that the structure (*¢, *¢, *, *g)
is contact, we have another Sasakian structure (¥¢, *&, *5, *g). By the direct
calculation, we also see that the curvature tensor for the canonical affine
connection */ of the structure (¥, *&, *», *g) coincides with that for V.
Hence, by Lemmas 6 and 10, we have

THEOREM 3. In a Sasakian space of dimension =5, with the vanishing
contact Bochner curvature tensor, if there exists a nonconstant function p
satisfying (**) and <£.p=0, then we have another Sasakian structure of
constant ¢-holomorphic sectional curvature —3.

Lastly, we consider a Sasakian structure (¥*¢, *&, *5, *g) of constant ¢-
holomorphic sectional curvature —3. Then the Riemannian curvature tensor

*K;* has the form ([7])
Ky = 0 % ¥, — 8 e R FEVRG
— 0¥ * G — X * P+ X P K 2% P F B
We consider a system of partial differential equations :
(F¥*) KV po = —2p;pit*qr nit*q ¥y,

where *q,;= —*¢Jp, and *; is the covariant differentiation for *g. The
integrability condition of (***),

(2)
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XV i pi—*V ¥V pi = —*Kisi" P

is satisfied by any p; satisfying (***) by virtue of the form of *Ky;* Then.
transvecting (***) with *&* and taking account of *F;*¢'=%*¢;, we have

(%6t p) = —2%E pipy s
and

T (48 pue) =0,
that is, *¢'p;e® is a constant, say ¢, where p is a (local) function satisfying
*/,p=p; If we give an initial condition for p; such that *¢ip,=0 at a
point m of M, then we get *¢ip,=ce =0 at m and ¢=0, that is,

g‘fp = *Eip-b — 0 .

By the similar argument about *g#ip;p; we see that there exists a (local)
non-constant function p satisfying Z..p=0 and (**¥*), (p;)=dp.

Then we can easily verify that there exists a (local) Sasakian structure
(¢, &, 5, 9) with the vanishing contact Bochner curvature tensor, which is
related to the structure (*¢, *&, *», *g) by (6). The function p satisfies (**)
and <Z.p=0. Hence we have proved

THEOREM 4. Given a Sasakian structure of constant ¢-holomorphic
sectional curvature —3, then there exists a (local) Sasakian structure with
the vanishing contact Bochner curvature tensor and a (local) non-constant
Sfunction p satisfying (**) and <,.p=0.
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