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Some considerations on various curvature tensors

By Masaru SEINO
(Received November 2, 1979)

K. Yano has introduced the notion of complex conformal connections
in K\"ahlerian spaces and showed

THEOREM A ([12]). In a K\"ahlerian space of real dimension \geqq 4 , if
there exists a complex conformal connection with zero curvature, then the
Bochner curvature tensor of the space vanishes.

K. Yano has also introduced the notion of contact conformal connec-
tions in Sasakian spaces corresponding to complex conformal connections in
K\"ahlerian spaces and had

THEOREM B([13]) . In a Sasakian space of dimension \geqq 5 , if there
exists a contact conformal connection with zero curvature, then the contact
Bochner curvature tensor of the space vanishes.

In the present paper, we consider the converses of Theorem A and
Theorem B.

We give algebraic preliminaries and notations in \S \S 1 and 2. \S 3 is

devoted to the proof of Theorem 1, which asserts that if there exists a
non-constant solution of a certain partial differential equation, the converse
of Theorem A is true. In \S 4, from a viewpoint of the notions of K-
curvature and F-invariant curvature tensors, we define the Bochner curvature
tensor of a K-space. Theorem 2 gives a characterization of the vanishing

of the Bochner curvature tensor of a K-space. Lemma 10 shows that the
converse of Theorem B is true, if there exists a non-constant function satisfy-
ing a certain system of partial differential equations.

We remark that a Sasakian space satisfying the assumptions in Lemma
10 admits another Sasakian structure of constant \phi-holomorphic sectional
-3. The latter part of \S 5 is devoted to the study of a system of partial
differential equations in Lemma 10. Theorem 3 and Theorem 4 give a

characterization of the Sasakian structure of constant \phi-holomorphic sectional
curvature -3.

The present author wishes to express his sincere thanks to Professor
N. Tanaka for his suggestion of the existence of another Sasakian structure
in Theorem 3 and to Professor T. Nagai for his kind guidance and help.

Throughout this paper, our arguments are local and sometimes pointwise.
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\S 1. Algebraic considerations.

Let V be a d-dimensional real vector space with an inner product g.
A tensor L of type (1, 3) over V can be considered as a bilinear mapping

(x, y)\in V\cross V-L(x,y)\in Hom(V, V) .
Such a tensor L is called a curvature tensor on V([6]) if it has the follow-
ing properties ;

(a) L(x, y)=-L(y, x) ;

(b) g(L(x, y)z, w)+g(L(x, y)w, z)=0 ;

(c) L(x, y)z+L(y, z)x+L(z, x)y=0 {the first Bianchi identity).
We denote by \mathscr{L}_{0}(V) the vector space of all curvature tensors on V.

It is a subspace of the tensor space of type (1, 3) over V and has a natural
inner product induced from that in V.

For L\in \mathscr{L}_{0}(V) , the Ricci tensor S_{L} of type (1, 1) is a symmetric end0-
morphism of V given by

S_{L}(x)=trace of the bilinear map: (y, z)\in V\cross Varrow L(x, y)z\in V.
1. 1. K-curvature tensors.
Consider the case when d is even, say 2n, and V has a complex struc-

ture F and Hermitian inner product g. Then, a tensor L\in \mathscr{L}_{0}(V) is said
to be F-invariant ([11]) if it satisfies

(d) g(L(x, y)z, w)=g(L(Fx, Fy)Fz, Fw)’-

and L is called a K-curvature tensor ([5]) if it satisfies
(e) L(x, y)\circ F=F\circ L(x, y)

[

And we call an F-invariant curvature tensor L a K^{*} curvature one if it
satisfies

g (L(Fx, y)z, w)+g(L(x, Fy)z, w)+g(L(x, y)Fz, w)

+g (L(x, y)z, Fw)=01

If we denote by \mathscr{L}(V)^{*} , \mathscr{L}^{*}(V) and \mathscr{L}(V) the vector spaces of all
F-invariant curvature, of all K^{*} -curvature and of all K-curvature tensors,
respectively, then we have \mathscr{L}_{0}(V)\supset \mathscr{L}(V)^{*}\supset \mathscr{L}^{*}(V)\supset \mathscr{L}(V) . The projections
of \mathscr{L}_{0}(V) onto \mathscr{L}(V)^{*} , of \mathscr{L}(V)^{*} onto \mathscr{L}^{*}(V) and of \mathscr{L}^{*}(V) onto \mathscr{L}\langle V)

are respectively given by

L_{0}\in \mathscr{L}_{0}(V)-L^{*}\in \mathscr{L}(V)^{*} ,
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where 2g (L^{*}(x, y)z, w)=g(L_{0}(x, y)z, w)+g(L_{0}(Fx, Fy)Fz, Fw) ,

L^{*}\in \mathscr{L}(V)^{*-*}L\in \mathscr{L}^{*}(V) ,

where 4g (*L(x, y)z, w)=3g(L^{*}(x, y)z, w)+3g(L^{*}(x, y)Fz, Fw)

+g (L^{*}(x, Fy)z, Fw)+g(L^{*}(x, Fy)Fz, w) ,

and *L\in \mathscr{L}^{*}(V)-L\in \mathscr{L}(V) ,

where g\{L\{x,y)z, w)=g(*L(x, y)z, w)+2g(*L(x, y)Fz, Fw)

-g (*L(x, w)Fy, Fz)+g(*L(y, w)Fx, Fz)

For an L\in \mathscr{L}(V)^{*} , its Ricci tensor commutes with F.
Let \{x, y\} be an orthonormal basis for a 2-dimensional subspace P of

V. Then for L\in \mathscr{L}_{0}(V) we put

H(P)=H_{L}(P)=H_{L}(x, y)=g(L(x, y)y, x)

and call H_{L}(P) the sectional curvature of L for P. It is well-known that
H_{L}(P) is independent on the choice of x and y in P. In particular, if the
2-dimensional subspace P is holomorphic, i. e. , invariant by the complex
structure F and x is a unit vector in P, then \{x, Fx\} is an orthonormal
basis for P and for L we have

H_{L}(P)=g(L(x, Fx)Fx, x)

We call such H_{L}(P) the holomorphic sectional curvature of L for holomorphic
plane P.

For x, y\in V, we denote by x\wedge y the skew-symmetric endomorphism
of V define by

(x\wedge y)z=g(y, z)x-g(x, z)y .
Let A and B be two symmetric endomorphisms of V which commute with
F. We define L=L_{A,B} by

L(x, y)=Ax\wedge By+Bx\wedge Ay+FAx\wedge FBy+FBx\wedge FAy

+2g(Ax, Fy)FB-2g(Fx, By) FA .
Then the L is a Kincurvature tensor.

In particular, if we take A=cI/8 and B=I, where I is the identity
transformation of V and c is a constant, then the L becomes

L(x,y)=c/4\cdot(x\wedge y+Fx\wedge Fy+2g(x, Fy)F)
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In this case the holomorphic sectional curvature H_{L}(P) for every holomorphic
plane P in V is identically equal to c. It is well-known that if L\in \mathscr{L}(V)

has constant holomorphic sectional curvature, say c, then it is of the above
form. Hence, if L\in \mathscr{L}(V) has constant holomorphic sectional curvature 0,
then we have L=0.

Now, we define the Bochner tensor L_{B} associated to L\in \mathscr{L}(V)([5]) by

L_{B}=L- \frac{I}{2(n+2)}(L_{S_{L},I^{-}}\frac{trS_{L}}{4(n+1)}L_{I,I}) .

Lemma 1. Two K-curvature tensors L_{1} and L_{2} have the same Bochner
tensor if and only if there exists a symmetric endomorphism A which
commutes with F and satisfies

L_{1}-L_{2}=L_{A,I}\tau

We call an orthonormal basis \{e_{1^{ }},\cdots, e_{n}, Fe_{1}, \cdots, Fe_{n}\} for V an F-basis.
Lemma 2. If n\geqq 2 and L_{B}=0 for an L\in \mathscr{L}(V) , then we have

H_{L}(e_{i}, Fet)+HL\{eif Fet) =8HL (ei9e_{j}), (i\neq j)

for every F-basis for V, where i, j=1,2, \cdots , n .
For the proofs of Lemmas 1 and 2, see [5] and [4], respectively.
Lemma 3. Let L_{B}=0 for L\in \mathscr{L}(V) and n\geqq 2 . If there exists on V

a nonzero vector v such that L(v, x)=0 for all x\in V, then we have L=0.
PROOF. Let e_{1} be a unit vector in the direction of v. Then by means of

properties of L and our assumption we have

L(e_{1}, x)=L(x, e_{1})=L(Fe_{1}, x)=L(x, Fe_{1})=0

for all x\in V. For any unit vector x of V, take an F basis \{e_{i}, Fe_{i}\} in such
a way that

x=ae_{1}+bFe_{1}+ce_{2} ,

where a, b and c are constants. Then, by virtue of Lemma 2, we have
H_{L}(e_{1}, Fe_{1})+H_{L}(e_{i}, Fe_{i})=8H_{L}(e_{1}, e_{i}) . (i\neq 1)

and hence
H_{L}(e_{i}, Fe_{i})=0 , (i=2, \cdots, n)

Therefore we have

H_{L}(x, Fx)=c^{4}H_{L}(e_{2}, Fe_{2})=0 .
Since x is arbitrarily taken, L has constant holomorphic sectional curvature
0 and we have L=0.
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Lemma 4. The Bochner tensor associated to a K-curvature tensor L
vanishes if and only if there exists a symmetric endomorphism A of V
which commutes with F and satisfies

H_{L}(x, Fx)=-8g(Ax, x) :

for any unit vector x\in V.

For the proof, see [2].

For L\in \mathscr{L}(V)^{*} , the Bochner tensor associated to L means (\pi L)_{B} , where
\pi is the projection map of \mathscr{L} (V)^{*} onto \mathscr{L}(V) .

Lemma 5. The Bochner tensor associated to an F-invariant curvature
tensor L vanishes if and only if there exists a symmetric endomorphism
A which commutes with F and satisfies

H_{L}(x, Fx)=-8g(Ax, x) ,

for any unit vector x\in V.
PROOF. Taking account of Lemma 4, we can get Lemma 5 by

H_{L}(x, Fx)=H_{\pi L}(x, Fx)\backslash

1. 2. S-curvature-like tensors.
Consider the case when d is odd and V has a (\phi, \xi, \eta, g) -structure. An

L_{0}\in \mathscr{L}_{0}(V) is called an S-curvature tensor over V([15]) if it has the pr0-

perties ;

L_{0}(x, y)\phi z=\phi L_{0}(x, y)z+g(\phi x, z)y-g(\phi y, z)x-g(y, z)\phi x

+g(x, z)\phi y ;

L_{0}(\xi, x)y=g(x, y)\xi-\eta(y)x .
A curvature tensor L is called an S-curvature-h.ke tensor over V([15]) if
it satisfies

L(x, y)\circ\phi=\phi\circ L(x, y) ;

L(\xi, x)=0\iota

To each S-curvature tensor L_{0} , we assign an S-curvature-h.ke tensor L by
the relation

L(x, y)z=L_{0}(x, y)z+\eta(x)(\eta(z)y-g(y, z)\xi)

(\alpha) -\eta(y)(\eta(z)x-g(x, z)\xi-g(\phi x, z)\phi y

+g(\phi y, z)\phi x-2g(\phi x,y)\phi z .
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We define an even dimensional subspace D of V by

\eta=0 ,

and put g_{0}(x, y)=g(x, y)-\eta(x)\eta(y) . Then (\phi, g_{0}) can be considered as the
Hermitian structure on D. When we restrict ourselves to D, every S-
curvature-h.ke tensor over V can be regarded as a K-curvature tensor on
D with respect to the Hermitian structure (\phi, g_{0}) . Hence, we can introduce
some quantities corresponding to those in 1. 1. In particular, we can define
the contact Bochner tensor L_{B} associated to each S-curvature-like tensor L.
L_{B} may be regarded as the contact Bochner tensor associated to an S-cur-
vature tensor L_{0} if L and L_{0} are related by the relation (\alpha) . We have a
\phi-holomorphic sectional curvature corresponding to the holomorphic sectional
curvature.

Then we easily see
Lemma 6 (cf. [7]). Let L and L_{0} be an S-curvature-like tensor and

an S-curvature tensor, respectively, which are related by (\alpha) . Then L=0
if and only if L_{0} is of constant \phi-holomorphic sectional curvature -3.

\S 2. Notations.

Let M be a d-dimensional Riemannian manifold with a positive definite
Riemannian metric g. Since the tangent vector space T_{m}(M) of M at each
point m of M has an inner product g(m) , we may consider curvature tensors
over T_{m}(M) . A (differentiate) tensor field L of type (1, 3) on M is called
a generalized curvature tensor ([6]) if for each m the tensor L(m) is a cur-
vature tensor over T_{m}(M) . Similarly, we define a generalized K-curvature
tensor, etc., in an almost Hermitian space, and a generalized S-curvature-
like tensor, etc., in an almost contact metric space. For details, see [6], [5]

and [15].
Let \{U;(x^{i})\} be a system of coordinate neighborhoods in M, where

and in the sequel the Latin indices run over the range \{1, 2, \cdots, d\} . We

denote by \{\begin{array}{ll} hj i\end{array}\} , \nabla_{j}, K_{kji^{h}}, K_{ji} and K the Riemann-Christoffel symbols, the

covariant differentiation, the Riemannian curvature tensor, the Ricci tensor
and the scalar curvature with respect to the metric g=(g_{ji}) , respectively.
Then K_{kji^{h}} is a generalized curvature tensor.

\S 3. Complex conformal connections.

In \S \S 3 and 4, we consider the case when d is even, say 2n, and M
has an almost Hermitian structure (F_{i}^{h}, g_{ji}) .
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Let M be a K\"ahlerian space of real dimension \geqq 4 . In a K\"ahlerian
space M, the Riemannian curvature tensor K_{kji^{h}} is a generalized X-curvature
tensor and we call the Bochner tensor associated to K_{kji^{h}} the Bochner cur-
vature tensor of M.

An affine connection \overline{\nabla} is called a complex conformal connection ([13])
if its components \Gamma_{ji^{h}} is given by

\Gamma_{ji^{h}}=\{\begin{array}{ll}h j i\end{array}\} +\delta_{j}^{h}p_{i}+\delta_{i}^{h}p_{j}-g_{ji}p^{h}+F_{j^{h}}q_{i}+F_{i}^{h}q_{j}-F_{ji}q^{h} ,

where (p_{i})=dp for a certain function p on M, and q_{i}=-F_{i}^{j}p_{j} . The cur-
vature tensor of the complex conformal connection is given by

R_{kji^{h}}=K_{kji^{h}}-\delta_{k}^{h}P_{ji}+\delta_{j}^{h}P_{ki}-P_{k}^{h}g_{ji}+P_{j}^{h}g_{ki}-F_{k}^{h}Q_{ji}

+F_{j}^{h}Q_{ki}-Q_{k}^{h}F_{ji}+Q_{j}^{h}F_{ji}+Q_{j}^{h}F_{ki}+(\nabla_{k}g_{j}-\nabla_{j}q_{k})F_{i}^{h}

-2F_{kj}(p_{i}q^{h}-q_{i}p^{h}) ,

where

P_{ji}=\nabla_{j}p_{i}-p_{j}p_{i}+q_{j}q_{i}+1/2\cdot\lambda g_{ji} ,

Q_{ji}=-P_{jt}F_{i}^{t} ,

and \lambda=g^{ji}p_{j}p_{i} .
Since we have

R_{kji^{h}}+R_{jik^{h}}+R_{ikj^{h}}=2F_{ij}(\nabla_{k}q^{h}-2q_{k}p^{h}+\lambda F_{k}^{h})

+2F_{ki}(\nabla_{j}q^{h}-2q_{j}p^{h}+\lambda F_{j^{h}})+2F_{fk}(\nabla_{i}q^{h}-2q_{i}p^{h}+\lambda F_{i}^{h})’.
in order that

R_{kji^{h}}+R_{fik^{h}}+R_{ikj^{h}}=0\tau

it is necessary and sufficient that
\nabla_{j}q_{i}-2q_{j}p_{i}+\lambda F_{ji}=0 ,

or

(^{*}) \nabla_{j}p_{i}+2q_{j}q_{i}+\lambda g_{ji}=0t

In particular, if we get R_{kji^{h}}=0 , then we have (^{*}) and by Theorem A the
Bochner curvature tensor of M vanishes.

We consider the converse.
We suppose the existence of a nonconstant function p satisfying (^{*}) .

Then a complex conformal connection \overline{\nabla} is defined corresponding to the
function p and its curvature tensor R_{kji^{h}} is a generalized K-curvature tensor.
Since it is easily verified that the two generalized K curvature tensors R_{kji^{h}}
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and R_{kji^{h}} are related by the relation stated in Lemma 1, we have
Lemma 7. If there exists a nonconstant function p satisfying (^{*}) , then

two generalized K-curvature tensors K_{kji^{h}} and R_{kji^{h}} have the same Bochner
tensor. In particular, the Bochner tensor associated to K_{kji^{h}} vanishes if and
only if that to R_{kji}^{h} vanishes.

Let \overline{\nabla}_{j} denote the covariant differentiation for the complex conformal
connection \overline{\nabla} . Then from (^{*}) , we have

\overline{\nabla}_{j}p_{i}=-p_{j}p_{i} .

The Ricci identity for \overline{\nabla} gives
\overline{\nabla}_{k}\overline{\nabla}_{j}p_{i}-\overline{\nabla}_{j}\overline{\nabla}_{k}p_{i}=-R_{kfi^{h}}p_{h}-T_{kj^{h}}\overline{\nabla}_{h}p_{i:}

where T_{kj^{h}} is the torsion tensor of \overline{\nabla} , from which we obtain

R_{kji^{h}}p_{h}=0 .
Taking account of Lemmas 3 and 7, we have

THEOREM 1. In a K\"ahlerian space of real dimension \geqq 4 , with the
vanishing Bochner curvature tensor, if there exists a nonconstant function
p satisfying (^{*}) , then we have a complex conformal connection with zero
curvature.

The Bochner curvature tensor B_{kji^{h}} of M is rewritten as follows ([9]);

B_{kji}^{h}=K_{kji^{h}}+\delta_{k}^{h}L_{ji}-\delta_{j}^{h}L_{ki}+L_{k}^{h}g_{ji}-L_{j}^{h}g_{ki}

(\beta) +F_{k}^{h}M_{ji}-F_{j}^{h}M_{ki}+M_{k}^{h}F_{ji}-M_{j}^{h}F_{ki}

-2(M_{k}^{j}F_{i}^{h}+F_{kj}M_{i}^{h})

where L_{ji}=- \frac{1}{2(n+2)}(K_{ji}-\frac{1}{4(n+1)}Kg_{ji}) ,

M_{ji}=-L_{jt}F_{i}^{t}

\S 4. Bochner curvature tensor in a K-space.

M is a K-space if the associated almost Hermitian structure (F_{i}^{h}, g_{ji})

satisfies
\nabla_{j}F_{i}^{h}+\nabla_{i}F_{j}^{h}=0 .

PROPOSITION 1. In a K-space, if the tensor B_{kji^{h}} given by (\beta) vanishes,

the space is Kdhlerian.
PROOF. In general, we have

B_{tfi^{t}}= \frac{3}{n+4}(K_{fi}-K_{ts}F_{j^{P}}F_{i^{S}}) ,
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and
\nabla_{k}\nabla_{j}F_{i}^{h}-\nabla_{j}\nabla_{k}F_{i}^{h}=K_{kjt^{h}}F_{i}^{t}-K_{kji^{t}}F_{t}^{h}

=B_{kjt^{h}}F_{i}^{t}-B_{kji^{t}}F_{\iota^{h}}

- \frac{2}{n+4}F_{kj}(K_{ia}-K_{ts}F_{i}^{t}F_{a}^{s})g^{ah} .
Hence, if B_{kfi^{h}}=0 , we get

(r) \nabla_{k}\nabla_{j}F_{i}^{h}-\nabla_{j}\nabla_{k}F_{i}^{h}=0\iota

It is well-known that if a K-space has the property (\gamma) , then the space is
K\"ahlerian.

Proposition 1 tells us that it is meanless to consider a K-space with
B_{kji^{h}}=0 . Therefore we should go to the meanful direction.

Lemma 8 ([3]). In a K-space, we have
K_{kjih}=K_{dcba}F_{k}^{d}F_{j^{C}}F_{i}^{b} F_{h}^{a} ,

that is, K_{k_{J}i^{h}} is F-invariant.
By the argument in 1. 1 and Lemma 8, we have the Bochner curbature

tensor B_{kji^{h}}^{*} of a K-space, that is, the Bochner tensor associated to K_{kji^{h}} .
However, since by Lemma 9 below we see that K_{kji^{h}} in a K-space is a
generalized K^{*} -curvature tensor we here give the Bochner one in this sence;

B_{kji^{h}}^{*}=1/4\cdot(K_{kji^{h}}-2K_{kjt}^{s}F_{i}^{t}F_{s}^{h}-K_{kts}^{h}F_{j}^{t}F_{i}^{s}+K_{jts}^{h}F_{k}^{t}F_{i}^{s})

+\delta_{k}^{h}L_{ji}^{*}-\delta_{j}^{h}L_{ki}^{*}+L_{k}^{*h}g_{fi}-L_{j}^{*h}g_{ki}+F_{k^{h}}M_{ji}^{*}-F_{j^{h}}M_{ki}^{*}

+M_{k}^{*h}F_{ji}-M_{j}^{*h}F_{ki}-2(M_{kj}^{*}F_{i}^{h}+F_{kj}M_{i}^{*h}) ,

where L_{ji}^{*}=- \frac{1}{8(n+2)}(K_{ji}+3K_{ji}^{*}-\frac{1}{4(n+1)}(K+3K^{*})g_{ji}) ,

M_{ji}^{*}=-L_{jt}^{*}F_{i}^{t} ,

and K_{ji}^{*}=-1/2\cdot K_{jcba}F_{i}^{c}F^{ba}, K^{*}=g^{ji}K_{ji}^{*} . B_{kji^{h}}^{*} is the Bochner tensor as-
sociated to a generalized K^{*} -curvature tensor K_{kji^{h}}, and in a K-space we
can rewrite B_{kji^{h}}^{*} more precisely. To do this we need

Lemma 9 ([3]). In a K-space we have

Kkjih \cdot K_{kjts}F_{i}^{t} F_{h^{S}}=-\nabla_{k}F_{jt}\nabla_{i}F_{h}^{t}
l

(Therefore, K_{kji^{h}} in a K-space is a generalized K^{*} -curvature tensor.)

By Lemma 9 we get

1/4 \cdot(K_{kjih}+2K_{kjts}F_{i}^{t}F_{h}^{s}-K_{khts}F_{f}^{t}F_{i}^{s}+K_{jhts}F_{k}^{t}F_{i}^{s})

=Kkjih\cdot 1/4\cdot(3K_{kjih}-2K_{kjts}F_{i}^{t} F_{h}^{s}+K_{khts}F_{j}^{t} F_{i^{S}}-K_{jhts}F_{k}^{t}F_{i}^{s})
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=K_{kjih}-1/4\cdot(2(K_{kjih}-K_{kfts}F_{i}^{t}F_{h}^{s})-(K_{khji}-K_{khts}F_{J^{t}}F_{i}^{s})

+(K_{jhki}-K_{jhts}F_{k}^{t}F_{i}^{s}))

=K_{kjih}-1/4\cdot (\nabla_{k}F_{ht}\nabla_{j}F_{i}^{t}-\nabla_{k}F_{it}\nabla_{j}F_{h}^{t}-2\nabla_{k}F_{jt}\nabla_{i}F_{h}^{t})j

by virtue of the first Bianchi identity for K_{kji^{h}}, and

B_{kji}^{*h}=\delta_{k}^{h}L_{ji}^{*}-\delta_{j}^{h}L_{ki}^{*}+L_{k}^{*h}g_{ji}-L_{j}^{*h}g_{ki}+F_{k}^{h}M_{ji}^{*}-F_{j}^{h}M_{ki}^{*}

+M_{k}^{*h}F_{ji}-M_{j}^{*h}F_{ki}-2(M_{kj}^{*}F_{i}^{h}+F_{kj}M_{i}^{*h})+K_{kji^{h}}

+1/4\cdot(\nabla_{k}F_{t}^{h}\nabla_{j}F_{i}^{t}-\nabla_{k}F_{i}^{t}\nabla_{j}F_{t}^{h}-2\nabla_{k}F_{j}^{t}\nabla_{i}F_{t}^{h}) .

Thus we obtain
THEOREM 2 (cf. [2], [8]). Let M be a K-space. M has the vanishing

Bochner curvature tensor if and only if there exists a symmetric and hybrid
(0, 2) tensor A_{ji} satisfying

H(x^{h})=-8A_{ji}x^{j} x^{i} ,

for any unit vector x^{h}, where H denotes the holomorphic sectional curvature
for K_{kji^{h}} . In this case we have

A_{ji}=L_{ji}^{*} .

PROOF. By Lemma 5 the proof is easy.

\S 5. Contact conformal connections.

In this section, we consider the case when d is odd, and M has a
Sasakian structure.

5. 1. Sasakian structure.
Let (\phi, \xi, \eta, g) be an almost contact metric structure on M. Then the

following four tensors are well-known ;

N^{(1)}(x, y)=\phi^{2}[x, y]+[\phi x, \phi y]-\phi[\phi x, y]+\phi[\phi x, \phi y]+d\eta(x, y)\xi ,

N^{(2)}(x,y)=(\mathscr{L}_{\varphi x}\phi)y-(\mathscr{L}_{\varphi y}\phi)x .
N^{(3)}(x)=(\mathscr{L}_{\xi}\phi)x ,

N^{(4\rangle}(x)=(\mathscr{L}_{\xi}\eta)(x) ,

for any vectors x and y on M, where \mathscr{L} denotes the Lie differentiation.
We define a distribution D on M by the equation \eta=0 .

(\phi, \xi, \eta, g) is normal if N^{(1)}=0 (then we also have N^{(2)}=N^{(3\rangle}=N^{(4)}=0),
and contact if g(\phi x,y)=1/2\cdot d\eta(x,y) for all x and y. A normal and contact
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structure is called a Sasakian structure. For a Sasakian structure (\phi, \xi, \eta, g)

we have
(\nabla_{x}\phi)y=\eta(y)x-g(x, y)\xi ,

(1)
\nabla_{x}\xi=\phi_{x} .

In a Sasakian space, the Riemannian curvature tensor is a generalized
S-curvature tensor, The contact Bochner tensor associated to the Rieman-
nian curvature tensor is called a contact Bochner curvature tensor of the
space.

PROPOSITION 2([10]). In a Sasakian space, there exists a unique affine
connection \nabla^{3} satisfying the following conditions :

(i) [mathring]_{\nabla}\phi=[mathring]_{\nabla}\xi=\nabla^{o}\eta=[mathring]_{\nabla}g=0 ;

(ii) [mathring]_{T}(x, y)=d\eta(x, y)\xi ,

[mathring]_{T}(\phi x, \xi)=-\phi[mathring]_{T}(x, \xi) , for all x, y\in D ,

where [mathring]_{T} is the torsion tensor of [mathring]_{\nabla} . (The connection [mathring]_{\nabla} is called the canonical
affine connection of (\phi, \xi, \eta, g).)

If we denote by [mathring]_{ji^{h}}_{\Gamma} the components of [mathring]_{\nabla} , then we have

[mathring]_{ji^{h}}_{\Gamma}=\{\begin{array}{ll}h j i\end{array}\} -\phi_{j}^{h}\eta_{i}-\phi_{i}^{h}\eta_{j}+\phi_{ji}\xi^{h} .

In this case, the curvature tensor for [mathring]_{\nabla} is a generalized S-curvature-like
tensor and corresponds to the generalized S curvature tensor K_{kji^{h}} under
the relation (\alpha) .

5. 2. Contact conformal connections.
In the sequel, we consider a Sasakian space M(\phi_{i}^{h}, \xi^{h}, \eta_{i}, g_{ji}) .
An affine connection \overline{\nabla} is called a contact conformal connection ([14])

if its components \Gamma_{ji^{h}} is given by

\Gamma_{ji}^{h}=\{\begin{array}{ll}h j i\end{array}\} +(\delta_{j}^{h}-\eta_{j}\xi^{h})p_{i}+(\delta_{i}^{h}-\eta_{i}\xi^{h})p_{j}-(g_{ji}-\eta_{j}\eta_{i})p_{h}

+\phi_{j^{h}}(q_{i}-\eta_{i})+\phi_{i}^{h}(q_{j}-\eta_{j})-\phi_{ji}(q^{h}-\xi^{h}) ,

where (p_{i})=dp for a certain function p on M satisfying \mathscr{L}_{\xi}p=0 , and q_{i}=\phi_{i}^{j}p_{j} .
We consider the following :
(^{**}) \nabla_{j}p_{i}+2q_{j}q_{i}-q_{j}\eta_{i}-\eta_{j}q_{i}+\lambda(g_{ji}-\eta j\eta_{i})=0 ,

where \lambda=g^{ji}p_{j}p_{i} . Then corresponding to theorem 1, we have
Lemma 10. In a Sasakian space of dimension \geqq 5 , with the vanishing

contact Bochner curvature tensor, if there exists a nonconstant function p
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satisfying (^{**}) and \mathscr{L}_{\xi p=0} , then we have a contact conformal connection
with zero curvature.

We assume the existence of a function p satisfying (^{**}) and \mathscr{L}_{\xi}p=0 .
Then, if we set

*_{\eta_{i}=e^{2p}\eta_{i}} , *_{\xi^{h}=e^{-2p}(\xi^{h}-q^{h})} , *_{\phi_{i}^{h}=\phi_{i}^{h}-\eta_{i}p^{h}},
(\delta)

*g_{ji}=e^{2p}(g_{ji}+(e^{2p}-1+\lambda)\eta_{j}\eta_{i}+q_{j}\eta_{i}+\eta_{j}q_{i}) ,

then the structure (^{*}\phi^{ *},\xi^{ **},\eta,g) is another almost contact metric structure
on M. Furthermore we can be easily verify that

d^{*}\eta(x, y)=d^{*}\eta(\phi x, \phi y) ,
(e)

[^{*}\phi x, *_{\phi y]-[x,y]-*_{\phi[^{*}\phi x,y]-*_{\phi[x,\phi y]=0}}}* ,

for all x, y\in^{*}D=D . The second equation of (e) is equivalent to

*N^{(1)}(_{X},y)+*_{\eta(x)^{*}\phi^{*}N^{(3)}(y)-*_{\eta(y)^{*}\phi^{*}N^{(3)}(x)=0}} ,

for all vectors x and y on M, under the first equation of (e).
On the other hand, substituting ( \delta\rangle into

(^{*}N^{(3)})_{i}^{h}=\mathscr{L}^{*}*_{\xi}\phi_{i}^{h*}=\xi^{t}\nabla_{t}^{*}\phi_{i}^{h}+*\phi_{t}^{h}\nabla_{i}^{*}\xi^{t}-*_{\phi_{i}^{t}\nabla_{t}^{*}\xi^{h}} ,

and using (1), we have *N^{(a)}=0 . Consequently, the structure (^{*}\phi^{ *},\xi^{ **},\eta,g)

is normal. Since it is very easy to verify that the structure (^{*}\phi^{ *},\xi^{ **},\eta,g)

is contact, we have another Sasakian structure (^{*}\phi^{ *},\xi^{ **},\eta,g) . By the direct
calculation, we also see that the curvature tensor for the canonical affine
connection *[mathring]_{\nabla} of the structure (^{*}\phi^{ *},\xi^{ **},\eta,g) coincides with that for \overline{\nabla} .
Hence, by Lemmas 6 and 10, we have

THEOREM 3. In a Sasakian space of dimension \geqq 5 , with the vanishing
contact Bochner curvature tensor, if there exists a nonconstant function p
satisfying (^{**}) and \mathscr{L}_{\xi p=0} , then we have another Sasakian structure of
constant \phi-holomorphic sectionat curvature -3.

Lastly, we consider a Sasakian structure (^{*}\phi^{ *},\xi^{ *},\eta^{ *},g) of constant \phi-

holomorphic sectional curvature -3. Then the Riemannian curvature tensor
*K_{kji}^{h} has the form ([7])

*K_{kji^{h}}=\delta^{h*}k\eta_{j}\eta_{i}-*\delta_{j}^{h*}*\eta_{k}\eta_{i}+*\eta_{k}^{*}\xi^{h*}g_{ji}

(2)
-*_{\eta_{j^{*}}\xi^{h*g_{ki}-*}\phi_{k}^{h*}\phi_{ji}+\phi_{j}^{h*}\phi_{ki}+2^{*}\phi_{kj^{*}}\phi_{i\iota}^{h}}*

We consider a system of partial differential equations:

(^{***}) *\nabla_{j}p_{i}=-2p_{j}p_{i}+*q_{j}\eta_{i}+**q_{i}\eta_{j}* ,

where *q_{i}=-*\phi_{i}^{j}p_{j} and *\nabla_{j} is the covariant differentiation for *g. The
integrability condition of (^{***}) ,
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*\nabla_{k}^{*_{\nabla_{j}p_{i}p_{i}=-*}}-*_{\nabla_{j^{*}}\nabla_{k}K_{kji^{h}}p_{h}} ,

is satisfied by any p_{i} satisfying (^{***}) by virtue of the form of *K_{kji^{h}} . Then,

transvecting (^{***}) with *\xi^{i} and taking account of *\nabla_{j^{*}}\xi^{i}=*\phi_{j}^{i} , we have
*\nabla_{j}(^{*}\xi^{i}p_{i})=-2^{*}\xi^{i}p_{i}p_{j} ,

and
*\nabla_{j}(^{*}\xi^{i}p_{i}e^{2p})=0 ,

that is, *\xi^{i}p_{i}e^{2p} is a constant, say c, where p is a (local) function satisfying
*\nabla_{j}p=p_{j} . If we giye an initial condition for p_{i} such that *\xi^{i}p_{i}=0 at a
point m of M, then we get *\xi^{i}p_{i}=ce^{-2p}=0 at m and c=0, that is,

\mathscr{L}_{\xi}.p=*\xi^{i}p_{i}=0

By the similar argument about *g^{ji}p_{f}p_{i} we see that there exists a (local)
non-constant function p satisfying \mathscr{L}_{s_{\xi}}p=0 and (^{***}) , (p_{i})=dp .

Then we can easily verify that there exists a (local) Sasakian structure
(\phi, \xi, \eta, g) with the vanishing contact Bochner curvature tensor, which is
related to the structure (^{*}\phi^{ *},\xi^{ **},\eta,g) by (\delta) . The function p satisfies (^{**})

and \mathscr{L}_{\xi p=0} . Hence we have proved

THEOREM 4. Given a Sasakian structure of constant \phi-holomorphic
sectional curvature -3, then there exists a (local) Sasakian structure with
the vanishing contact Bochner curvature tensor and a (local) non-constant

function p satisfying (^{**}) and \mathscr{L}_{\xi}p=0 .
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