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Classification of cubic forms with three variables
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(Received November 22, 1978; Revised March 29, 1980)

Introduction

A degree 3 homogeneous polynomial, \gamma=\sum_{1\leqq i,j,k\leqq n}a_{ijk}x_{i}x_{j}x_{k} is called a cubic

form. Our objective is to classify the set of cubic forms by linear transla-
tions. Generally, let f be a singular germ with an isolated critical point
at origin and corank n . Form the Thom’s splitting lemma (D. Gromoll and
W. Meyer [3] ) , f is right equivalent to g+Q where g(X_{1}, X_{2}^{ },\cdots, X_{n})\in m^{3} and
Q(x_{n+1}, X_{n+2}^{ },\cdots, x_{n+k}) is a nondegenerate quadratic form. Therefore it is
fundamental to give the information of canonical form of 3-jet of g, when
we classify the finitely determined singular germ. Indeed, D. Siersma [6]

classifies the singularities with the right codimension \leqq 8 . In his paper, one
of the difficulties of the classification is the canonical form of 3-jet g, though
results of algebraic geometry and the work of Mather [4] (G. Wassermann
[7] ) are widely used.

In this paper, we will try to classify cubic forms with 3-variables. Our
conclusion coincides with the work of van der Waerden [7] concerning with
the surfaces represented by cubic forms that is the curves represented by
cubic forms in the projective plane. The main result is theorem 4. 1. We
shall prove the theorem 4. 1 in terms of the concepts of homology and
intersection theory in manifolds. We give a proof in \S 4, in which theorem
3. 2 is crucial. It is very likely that the theorem also holds for n>3 . At
the end, I would like to thank Professor H. Suzuki and Professor Fukuda
for their helpful advices.

\S 1. Preparation

Let S(n) be the set of all (n\cross n) -symmetric matrices and SL(n) the
special linear group. We define an SL(n) -action on S(n) by setting F_{P}A=

PAP’ fo1 A\in S(n) , P\in SL(n) , where P’ is the transposed matrix of P.
Denote by G_{k}(S(n)) the set of k-dimensional linear subspaces of S(n) when
we view S(n) as a vector space. We define the SL(n) -action on G_{k}(S(n))

by setting F_{P}\gamma=\{F_{P}A|A\in\gamma\} for P\in SL(n) , \gamma\in G_{k}(S(n)) . This is well de-
fined, for F_{P} is a linear automorphism of S(n) for each P\in SL(n) . Let \gamma
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be a n-subspace of S(n) . If there exist symmetric matrices A_{i} , i=1,2, \cdots , n

which span \gamma such that A_{i}e_{j}=A_{j}e_{i}(1\leqq i<j\leqq n) , then the set of A_{i}’s is
called a cubic basis of \gamma . Here e_{i} , i=1,2, \cdots , n is the standard basis of
the n-dimensional euclidian space R^{n} . Let CF_{n} be the subset of G_{n}(S(n))

each element of which has a cubic basis. From the observation in the
following proof, we see that the classification of CF_{n} is equivalent to the
classification non-degenerate cubic forms with n-variables.

LEMMA 1. 1. The subset CF_{n} in G_{n}(S(n)) is an invariant under the
SL(n) -action.

PROOF. It is the problem that n-subspace F_{P}\gamma has a cubic basis, where
\gamma\in CF_{n} . We will give one observation. For a cubic basis A_{i} of \gamma, we have
a cubic form \gamma(x) by taking \gamma(x)=x’(dA_{1}’x, xA_{2}X^{ },\cdots, X’ A xx, for x\in R^{n}

(column vector). Conversely, given a cubic form \gamma(x) , we have symmetric
matrices A_{i} , (i=1,2, \cdots, n) as follows :

\frac{1}{3}\frac{\partial}{\partial x_{j}}\gamma(x)-A_{i}

where A_{i} is naturally determined by quadratic form. Let \gamma be the subspace
spanned by A_{i}’s. be the subspace spanned by A_{i}’s. When the dimension
of \gamma is equal to n , we shall call the cubic form \gamma(x) a nondegenerate cubic
form. Then A_{i} is a cubic basis of n-subspace \gamma , because it is assured by
symmetric properties of 2nd order derivatives of \gamma(x) . Under the observa-
tion, we can see that the cubic form \gamma(P’x) determines a cubic basis of
F_{P}\gamma by straightformard calculations. q . e . d .

By the definition, F_{P} is a linear automorphism of S(n) for each P\in SL(n) .
The subset \{F_{P} : P\in SL(n)\} is a Lie-subgroup in Aut (S(n)) . Let S\{n) be
the set of matrices with zero trace in \mathfrak{g}\mathfrak{l}(n) . For each a\in 8\mathfrak{l}(n) , an end0-
morphism of S(n) is defined by f_{a}A=aA+Aa’ , A\in S(n) . The subset { f_{a} :
a\in 8\mathfrak{l}(n)\} of End (S(n)) is a Lie-algebra of the above Lie-group.

Lemma 1. 2. The following properties hold for f_{a} and F_{P} . (1) exp f_{a}

=F_{\exp a}, (2) f_{PaP^{-1}}=F_{P}f_{a}F_{P^{-1}} .
The proof is assured directly.

From Lemma 1, 2, F_{\exp la} is a 1-parameter group for any real number
t and it acts naturally on the Grassmanian manifold G_{k}(S(n)) . Hence its
derivative f_{a} induces a vector field on G_{k}(S(n)) . We denote it by *f_{a} . Let
eq (^{*}f_{a}) be the set of G_{k}(S(n)) consisting of all equilibria of *f_{a} for each
a\in@\mathfrak{l}(n) . For \alpha\in G(S(n)) , define iso (\alpha)\subset \mathfrak{s}\mathfrak{l}(n) in such a way that each
element a\in iso(\alpha) satisfies that *f_{a} has \alpha as an equilibrium point. The iso (\alpha)

is a Lie-algebra of Lie-group I(\alpha)=\{P\in SL(n):F_{P}\alpha=\alpha\} . We call the dimen-
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sion of iso (\alpha) the codimenstion of \alpha . In \S 2, when n=3, k=2, we will
classify such \alpha with codimension no less than 1 and this will be used in
\S 4. The following propotion will be used in \S 2.

PROPOSITION 1. 3. Let C(a)=\{P\in SL(n) : PaP^{-1}=a\} . If \alpha\in eq(^{*}f_{a})

and P\in C(a) , then we have F_{P}\alpha\in eq(^{*}f_{a}) .
This proposition follows from lemma 1. 2, easily. Later, we must cal-

culate I(\alpha) for given \alpha, however the computation of iso (\alpha) is easier than
that of I(\alpha) .

In order to represent a subspace or a vector in S(n) , we shall define
a canonical basis of S(n) . Let u_{i}(i=1,2, \cdots, n) be a basis of R^{n} (as column
vector). Put P_{i}=u_{i}u_{i}’ , Q_{ij}=u_{i}u_{j}’+u_{j}u_{i}’(1\leqq i<j\leqq n) , then the set of these
symmetric matrices becomes a basis of S(n) . We call this basis the canonical
basis of S(n) Induced by the basis u_{i} of R^{n} .

\S 2. Classification of the orbit of G_{2}(S(3)) with codimension no
less than 1.

If the orbit of \alpha\in G_{2}(S(3)) has codimension no less than 1, then there
exists a non zero matrix a\in iso(\alpha) such that \alpha is equilibirum point of vector
field *f_{a} . It follows from lemma 1. 2 that we may consider *f_{a} where the
matrix a is a real Jordan normal form. The following matrices are all the
possible cases :

(1)(\begin{array}{lll}-2t 0 00 t 10 -1 t\end{array})(2)(\begin{array}{lll}-2t 0 00 10 0 t\end{array})(3)(\begin{array}{lll}t_{1} 0 00 t_{2} 00 0 t_{3}\end{array})(4)(\begin{array}{lll}0 1 00 0 1\backslash 0 0 0\end{array})

here t_{1}+t_{2}+t_{3}=0 , t_{1}<t_{2}\leqq t_{3} in (3).
We will represent the equilibrium point by using the canonical basis P_{i} ,
Q_{ij} , induced by the standard basis e_{i} of R^{n} .

Lemma 2. 1. For each above matrix a, the element of eq(^{*}f_{a}) is trans-

formed into one following by using the group C(a)=\{P\in SL(3)|PaP^{-1}=a\}

without alternating the index of canonical basis
(1) [P_{1}, P_{2}+P_{3}] , [P_{2}-P_{3}, Q_{23}] or [Q_{12}, Q_{13}]

(2) i) t_{1}\neq 0 , [P_{1}, P_{2}] , [P_{1}, Q_{12}] or [Q_{12}, Q_{13}]

ii) t_{1}=0 , the other of i) : [Q_{12}, Q_{13}+P_{2}] , [P_{2}, Q_{23}+P_{1}]

or [P_{1}-P_{2}, Q_{12}]

(3) i) t_{3}\neq t_{2}\neq 0 , [P_{1}, Q_{12}] , [P_{1}, P_{2}] , [P_{1}, Q_{23}] or [Q_{12}, Q_{13}]

ii) t_{3}=t_{2}\neq 0 , the other of i) : [Q_{12}, P_{2}+\epsilon P_{3}] , [P_{1}, P_{2}+\epsilon P_{3}]

or [P_{2}-P_{3}, Q_{23}]
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iii) t_{2}=0 the other of t_{2}\neq 0:[P_{2}+Q_{13}, P_{1}] or [P_{2}+Q_{13}, Q_{12}]

(4) [P_{1}, Q_{13}-P_{2}]

Here \epsilon=\pm 1 .
PROOF. The proof is a direct calculation. We only show the case (3),

ii) . The other cases are shown similarly. We note that an element of C(a)

has the following form,

(\begin{array}{lll}x_{11} 0 00 x_{22} x_{23}0 x_{32} x_{33}\end{array})\in SL(3)

From the definition of f_{a}, we have f_{a}P_{1}=-4P_{1} , f_{a}A=-2A for A\in[Q_{12},
Q_{13}] , f_{a}A=A for A\in[P_{2}, Q_{23}, P_{3}] . eq(^{*}f_{a}) consists of :

a) G_{2}([P_{2}, Q_{23}, P_{3}]) ,
b) [Q_{12}, Q_{13}]j

c) [x_{1}Q_{12}+x_{2}Q_{13}, x_{3}P_{2}+x_{4}Q_{23}+x_{5}P_{3}]\prime r

d) [P_{1}, x_{3}P_{2}+x_{4}Q_{23}+x_{5}P_{3}] -

e) [P_{1}, x_{1}Q_{12}+x_{2}Q_{13}] ,

where (x_{1}, x_{2})\neq(0,0) , (x_{3}, x_{4}, x_{5})\neq(0,0,0) . We have only to show that c) is
transformed into [Q_{12}, P_{2}+\epsilon P_{3}] , [Q_{12}, P_{3}] -

[Q_{13}, P_{3}] or [Q_{12}, Q_{23}] and the rest
follows earily. (we remark that [Q_{12}, P_{3}] , [Q_{12}, Q_{23}] , [Q_{12}, P_{3}] are equivalent to
[P_{1}-P_{2}, P_{3}] , [Q_{12}, Q_{13}] , [P_{1}, Q_{12}] respectively.)

If the matrix x_{3}P_{2}+x_{4}Q_{23}+x_{5}P_{3} with rank 2 is semidefinite, there exists
a matrix T in C(a) such that we get F_{T}(x_{3}P_{2}+x_{4}Q_{23}+x_{5}P_{3})=P_{2}+P_{3} . x_{1}Q_{12}

+x_{2}Q_{13} is transformed into the matrix y_{1}Q_{12}+y_{2}Q_{13} for some y_{i} by F_{T}. We
choose a rotation matrix U with the vector e_{1} as axis such that F_{U}(y_{1}Q_{12}

+y_{2}Q_{13})=y_{3}Q_{12} . Then we have F_{UT}\alpha=[P_{2}+P_{3}, Q_{12}] . We notice that the
matrix UT\in C(a) .

Next if the matrix x_{3}P_{2}+x_{4}Q_{23}+{}_{5}P_{3} with rank 2 is semi-indefinite, there
exists a matrix T in C\langle a) such that F_{T}(x_{3}P_{2}+x_{4}Q_{23}+x_{5}P_{3})=Q_{23} . We can
put F_{T}(x_{1}Q_{12}+x_{2}Q_{13})=y_{1}Q_{12}+y_{2}Q_{13} where y_{1}\neq 0 . If y_{2}=0 , we have F_{T}\alpha=

[Q_{12}, Q_{13}] . If y_{2}\neq 0 , there exists a diagonal matrix D such that F_{D}(y_{1}Q_{12}+

y_{2}Q_{13})=Q_{12}+Q_{1\} . Let U be the \pi/4 -rotation matrix with the vector e_{1} as
axis, then we have F_{U}(Q_{12}+Q_{13})=\sqrt{2}Q_{12} and F_{U}Q_{23}=P_{2}-P_{3} . Therefore
F_{UDT}\alpha=[Q_{12}, P_{2}-P_{3}] , where UDT\in C(a) .

Finally if the matrix x_{3}P_{2}+x_{4}Q_{23}+x_{5}P_{3} has rank 1, there exists a matrix
T in C(a) such that F_{T}(x_{3}P_{2}+x_{4}Q_{23}+x_{b}P_{2})=P_{3} . We can put F_{T}(x_{1}Q_{12}+

x_{2}Q_{13})=y_{1}Q_{12}+y_{2}Q_{13} . If y_{1}=0 , we get F_{T}\alpha=[Q_{13}, P_{3}] . Hy_{1}\neq 0 , we choose

a matrix U such that Ue_{1}=e_{1} , Ue_{2}=e_{2}- \frac{y_{2}}{y_{1}}e_{3} , Ue_{3}=e_{3} . Then we get
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F_{U}(y_{1}Q_{12}+y_{2}Q_{13})=y_{1}Q_{12} . Therefore we obtain F_{UT}\alpha=[Q_{12}, P_{3}] where UT\in

C(a) . q . e . d .
In view of lemma 2. 1 and by direct computation of f_{a} for each \alpha, we

obtain:
THEOREM 2. 2. The following table is a classification of G_{2}(S(3))

with codimension no less than 1.

Table 1.

codimension | subspace

1
|

[Q_{12}, P_{2}+\epsilon P_{3}]

| iso

| ( -2a_{22}00 00a_{22} a_{22}0)0

2

3

4

5

[P_{1}, P_{2}+\epsilon P_{3}]

[Q_{12}, Q_{13}+P_{2}]

[P_{1}, Q_{13}+P_{2}]

[Q_{12}, Q_{13}]

\overline{[P_{2}+}\epsilon P_{3} , Q_{23}]

[P_{1}, Q_{12}]

| (\begin{array}{lll}-2a_{22} 0 00 a_{22} a_{23}0 -\epsilon a_{23} a_{22}\end{array})

| (00a_{11} 000

-

a_{23})0a_{11}

| (\begin{array}{lll}a_{11} a_{12} a_{13}^{\backslash }0 0 -a_{12}0 0 -a_{11}\end{array})

| (\begin{array}{llll}-a_{22} -a_{33}, 0 0 0 a_{22} a_{23} 0 a_{ 2} a_{33}\end{array})

| (\begin{array}{lll}-2a_{22} 0 0a_{21} a_{22} a_{23}a_{31} \epsilon a_{23} a_{22}\end{array})

| (
-a_{22}

0-a_{33}
,

a_{12}a_{22}

a_{28})a_{13}

0 0 a_{33}
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\S 3. Homological properties of the stratified set.

In this section, we consider homology groups of certain stratified set.
Homology coefficients are assumed to be Z_{2}(=Z/2Z) . Let M=\{[Q_{12}, P_{2}+

Q_{13}]\} We denote the closure of M in G_{2}(S(3)) by cl M.
THEOREM 3. 1. H_{6}(clM;Z_{2})\cong Z_{2} .
Let [cl M] be the generator of H_{6}(c1M) . It’s image is a generator in

H_{6}(G_{2}(S(3)))(\equiv Z_{2}+Z_{2}) by the inclusion i : cl M\subset G_{2}(S(3)) . A linear inclusion
map R^{3}arrow S(3) induces a map G_{2}(R^{3})arrow G_{2}(S(3)) . Its image of the fundamental
class [G_{2}(R^{3})] is viewed as a generator of H_{2}(G_{2}(S(3))) . We denote also by
[cl M], [G_{2}(R^{3})] their images of the inclusions in G_{2}(S(3)) . Then, the inter-
section pairing. : H_{6}(G_{2}(S(3)))\cross H_{2}(G_{2}(S(3)))arrow Z_{2} is defined.

THEOREM 3. 2. We have the intersection number [clM] \cdot[G_{2}(R^{3})]\equiv 1

(mod 2).
Theorem 3. 2 is proved in the last section.

A PROOF of THEOREM 3. 1. We investigate the structure of cl M.
The subset \{[x_{1}P_{1}+Q_{12}, x_{2}P_{1}+x_{3}P_{2}+Q_{13}] : x_{3}\neq 0\} of G_{2}(S(3)) is contained in
M. This is shown as follows: we take the basis u_{i} of R^{3} such that u_{1}=e_{1} ,
u_{2}=y(e_{2}+x_{1}/2e_{1}) , u_{3}=1/y(e_{3}+(x_{1}/2+x_{1}^{2}x_{3}/8)e_{1}) , where y=x_{1}^{1/3} , then we have
F_{T}[x_{1}P_{1}+Q_{12}, x_{2}P_{1}+x_{3}P_{2}+Q_{13}]=[Q_{12}, P_{2}+Q_{13}] where T\in GL(3) and Tu_{i}=e_{i} ,
i=1,2,3 . When we give the basis P_{i} , Q_{ij} an order like P_{1} , Q_{12}P_{2}, Q_{13} , \cdots ,
the subset K=\{[x_{1}P_{1}+Q_{12}, x_{2}P_{1}+x_{3}P_{2}+Q_{13}]\} is regarded as a Schubert variety.
It is easily checked that cl K-K contains every 2-subspace with codimension
no less than 3.

Let T(3) be the upper triangular matrix with positive diagonal element.
We have diffeomorphism \varphi : SO (3)\cross T(3)- GL(3) such that \varphi(P, T)=PT

for P\in SO(3) , T\in T(3) , T(3) -0rbit of cl K is cl K itself and therefore, we
have cl M=\{F_{P}\alpha:\alpha\in c1K, P\in SO(3)\} . From this structure of cl M, it is
sufficient to prove the theorem 3. 1 that we consider only the manifold
structure of cl M at [P_{1}, Q_{13}+P_{2}] .

Let D^{3} be the 3-disc \{[P_{1}+x_{1}Q_{13}+x_{2}Q_{23}+x_{3}P_{3}, P_{2}+Q_{13}] : x_{i}\in R\} with
the center \alpha_{0}=[P_{1}, P_{2}+Q_{13}] in G_{2}(S(3)) . D^{3} intersects transversally with
\{[P_{1}, P_{2}+Q_{13}]\} at [P_{1}, P_{2}+Q_{13}] . This is shown by the following considerations
and some computations. We can identify the tangent space T_{a_{0}}G_{2}(S(3))

with hom (\alpha_{0}, \alpha_{0}^{\perp}) . Then we define the local homeomorphism \varphi of hom
(\alpha_{0}, \alpha_{0}^{\perp}) to G_{2}(S(3)) by \varphi(V)=\{A+VA:A\in\alpha_{0}\} .

We obtain D^{3} \cap c1M=\{[P_{1}+\frac{3}{2}t^{2}Q_{13}+t^{3}Q_{23}-\frac{3}{4}P_{3}, P_{2}+Q_{13}]:t\in R\} by

the computation of iso (\beta) , \beta\in D^{3} . This intersection is homeomorphic (not
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diffeomorphic) to a 1-disc and is denoted by D^{1} .
Let \alpha_{t} a point of D^{1} for t\in R . T_{\alpha_{t}}M is identified with iso (\alpha_{t}^{\perp}) by the

following correspondence; iso (\alpha_{t})^{\perp}\cong@\mathfrak{l}(3)/iso(\alpha_{t})arrow h End (S(3))/\{A: A\alpha_{t}\subset a_{t}\}\cong

hom (\alpha_{t}, \alpha_{t}^{\perp}) , where h([a])=[f_{a}] , a\in 6\mathfrak{l}(3) . Under this identifica tion, we
obtain \lim_{tarrow 0}(T_{\alpha_{t}}D^{1})^{\perp}\cap iso(\alpha_{t})^{\perp}=iso(\alpha_{0})^{\perp} , in G_{5}(@\mathfrak{l}(3)) . Therefore the orthogonal

projection of 6\mathfrak{l}(3) to iso (\alpha_{0})^{\perp} induces the linear isomorphism \varphi_{t} : (T_{\alpha_{t}}D^{1})^{\perp}\cap

iso (\alpha_{t})^{\perp}arrow iso(\alpha_{0})^{\perp} , for |t|<\epsilon and sufficiently small \epsilon>0 . We define a map g :
D^{1}\cross iso(\alpha_{0})^{\perp}arrow c1M by g(\alpha_{t}, a)=F_{\exp\varphi_{t^{(a)}}}\alpha_{t} . From the definition, \lim_{tarrow 0}T_{\alpha t}D^{1}+

\lim_{tarrow 0} Im dg|_{\alpha\cross iso(a_{0})} \perp=\lim_{tarrow 0}T_{\alpha_{\mathcal{L}}}M\iota. We notice that \lim_{tarrow 0} Im dg|_{a_{t}\cross 1so(_{\alpha_{0}})^{\llcorner}} is T_{\alpha_{0}}\{[P_{1} ,

P_{2}+Q_{13}]\} . This propertry implies that T_{\alpha_{t}}D^{1}+{\rm Im} dg|_{\alpha}\perp=T_{\alpha_{t}}M\iota^{x1so(_{\alpha_{0}})}’ for
|t|<\epsilon , and sufficiently small \epsilon>0 , then a local homeomorphism of g at \alpha_{0}

is assured, q. e . d .

\S 4. The classification of CF_{3}

THEOREM 4. 1. The classification of CF_{3} by SL(3) action is as follows.

Table 2.

codimension | subspace | iso

0
|\begin{array}{l}[\epsilon P_{1}+P_{3},Q_{23},P_{2}+Q_{13}+tP_{3}](\epsilon t^{2}+1\neq 0)[Q_{23},Q_{18}+P_{2},Q_{12}+P_{3}]\end{array}|

0 matrix

1
|

[\epsilon_{1}P_{1}+\epsilon_{2}P_{2}+P_{3}, \epsilon_{2}Q_{12}, Q_{13}]

| \{\begin{array}{lll}0 0 00 0 a_{23}0 \epsilon_{2}a_{23} 0\end{array}\}

2
|\begin{array}{ll}[P_{2}-\epsilon P_{3},Q_{12}, -\epsilon Q_{13}][P_{1},Q_{23},P_{2}+\epsilon P_{3}] \end{array}| \{\begin{array}{lll}-2a_{22} 0 00 a_{22} a_{2\}0 \epsilon a_{23} a_{22}\end{array}\}

3
|

[P_{3}, P_{2}, Q_{13}]

| \{\begin{array}{llll}-a_{22} -a_{38} 0 00 a_{22} 0a_{31} 0 a_{33}\end{array}\}

4
|

[P_{3}, Q_{23}, Q_{13}+P_{2}]

| \{\begin{array}{lll}a_{11} 0 0a_{21} 0 0a_{31} a_{32} -a_{11}\end{array}\}

\overline{(\epsilon_{i}=}\pm 1)
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PROOF. For any \gamma\in CF_{3} , we denote by G_{2}(\gamma^{\perp}) the Grassmanian mani-
fold which consists of all the 2-subspaces in \gamma^{\perp} . From theorem 3. 2, we
have [G_{2}(\gamma^{\perp})] . [cl M] \equiv 1 (mod 2). Then there exists \alpha\in c1M\cap G_{2}(\gamma^{\perp}) . We
may assume that \alpha is one of the elements in Table 1 of theorem 2. 2. Then
we show that for each \alpha , \gamma can be transformed into one of the above table.
To do so, we start with the following assertion.

Assertion. If \alpha\subset\gamma^{\perp} and A\in I(\alpha) , then we have \alpha\subset(F_{A’}\gamma)^{\perp} . The proof
is easy, so we will omit it.

If \alpha=[Q_{12}, P_{2}+Q_{13}] , then the cubic basis representation (we write c . b . r .
for convenience.) of \gamma is [x_{1}P_{1}+x_{2}P_{3}, -2x_{2}Q_{23}+x_{3}P_{3} , x_{2}(Q_{13}-2P_{2})+x_{3}Q_{23}+

x_{4}P_{3}] . If x_{2}\neq 0 , we can choose a matrix A’\in I(\alpha) such that Ae_{1}=e_{1} , Ae_{2}=

e_{2}+x_{3}/4x_{2}e_{3} , Ae_{3}=e_{3} . In this case, we may assume x_{2}=1 . Now, since we
get F_{A}(-2Q_{23}+x_{3}P_{2})=-1/2Q_{23} , F_{A}(Q_{13}-2P_{2}+x_{3}Q_{23}+x_{4}P_{3})=Q_{13}-2P_{2}+x_{3}/

2Q_{23}+(3x_{3}^{2}/8+x_{4})P_{3} , then the c . b . r . of F_{A}\gamma is [y_{1}P_{1}+P_{3}, -2Q_{23} , Q_{13}-2P_{2}+

y_{2}P_{3}] for some y_{i} . Using a diagonal matrix B in SL(3) , we can find the
more simplified form [\epsilon P_{1}+P_{3}, Q_{23}, Q_{13}+P_{2}+tP_{3}] as the c . b . r . of F_{BA}\gamma ,
other than [\epsilon P_{1}+P_{3}, -2Q_{23}, Q_{13}-2P_{2}+tP_{3}] . If x_{2}=0 , \gamma includes a 2-subspace
with codimension larger than 2. So, we deal with this case later.

If \alpha=[P_{1}, P_{2}+O_{13}]r\vee
’ the c . b . r . of \gamma is [x_{1}Q_{23}+x_{2}P_{3}, x_{1}(Q_{13}-2P_{2})-2x_{2}Q_{23}

+x_{3}P_{3} , x_{1}Q_{12}+x_{2}(Q_{13}-2P_{2})+x_{3}Q_{23}+x_{4}P_{3}] . If x_{1}\neq 0 , we choose A’\in I(\alpha) such
that Ae_{1}=e_{1}+x_{2}/2x_{1}e_{2} , Ae_{2}=e_{2}-x_{2}/2x_{1}e_{3} , Ae_{3}=e_{3} . Similarly as above, we
assume x_{1}=1 . Since we have that F_{A}(Q_{23}+x_{2}P_{3})=Q_{23} , F_{A}(Q_{13}-2P_{2}-2x_{2}Q_{23}

+x_{3}P_{3})=Q_{13}-2P_{2}-x_{2}/2Q_{23}+(3x_{2}^{2}/2+x_{3})P_{3} , F_{A}(Q_{12}+x_{2}(Q_{13}-2P_{2})+x_{3}Q_{23}+x_{4}P_{3}

=Q_{12}+x_{2}/2(Q_{13}-2P_{2})+(5x_{2}2/4+x_{3})Q_{23}+(-x_{2}^{2}/2-x_{2}x_{3}+x_{4})P_{3} , then the c . b . r .
of F_{A}\gamma is [Q_{23}, Q_{13}-2P_{2}+y_{1}P_{3}, Q_{12}+y_{2}Q_{23}+y_{3}P_{3}] for some y_{i} . If we choose
B’\in I(\alpha) such that Be_{1}=e_{1}-y_{1}/2e_{3} , Be_{2}=e_{2}, Be_{3}=e_{3} , then we have that
F_{B}(Q_{13}-2P_{2}+y_{1}P_{3})=Q_{13}-2P_{2} , F_{B}(Q_{12}+y_{2}Q_{23}+y_{3}P_{3})=Q_{12}+(-y_{1}/2+y_{2})Q_{23}+

y_{3}P_{3} . the c . b . r . of F_{BA}\gamma is [Q_{23}, Q_{13}-2P_{2}, Q_{12}+y_{3}P_{3}] . Finally we use a
diagonal matrix C in SL(3) to yield that F_{CBA}\gamma=[Q_{23}, Q_{13}+P_{2}, Q_{12}+P_{3}] .

If \alpha=[P_{1}, Q_{12}] , the c . b . r . of \gamma is [P_{3}, x_{1}P_{2}+x_{2}Q_{23}+x_{3}P_{3} , Q_{13}+x_{2}P_{2}+x_{3}Q_{23}

+x_{4}P_{3}] . If x_{1}\neq 0 , we can choose A’\in I(\alpha) such theat Ae_{1}=e_{1} , Ae_{2}=e_{2}-

x_{2}/x_{1}e_{3} , Ae_{3}=e_{3} . Since we have: F_{A}(x_{1}P_{2}+x_{2}Q_{23}+x_{3}P_{3})=x_{1}P_{2}+(-x_{2}^{2}/x_{1}+x_{3})

P_{3} , F_{A}(Q_{13}+x_{2}P_{2}+x_{3}Q_{23}+x_{4}P_{3})=Q_{13}+x_{2}P_{2}+(-x_{2}^{2}/x_{1}+x_{3})Q_{23}+(-x_{2}^{3}/x_{1}^{2}-2x_{2}x_{3}/

x_{1}+x_{4})P_{3} , it follows that the c . b . r . of F_{A}\gamma is [P_{3}, P_{2}+y_{2}P_{3}, Q_{13}+y_{1}Q_{23}+y_{2}P_{3}]

for some y_{i} . We choose B’\in I(\alpha) such that Be_{1}=e_{1}-y_{1}e_{2}-y_{2}/2e_{3} , Be_{2}=e_{2} ,
Be_{3}=e_{3} , and then we have F_{B}^{\cdot}(Q_{13}+y_{1}Q_{23}+y_{2}P_{3})=Q_{13} . Hence the c . b . r . of
F_{BA}\gamma is [P_{3}, P_{2}, Q_{13}] . If x_{1}=0 , (we may assume x_{2}\neq 0 , for a cubic basis
must exist on \gamma) we can choose A’\in I(\alpha) such that Ae_{1}=e_{1} , Ae_{2}=e_{2}-x_{3}/2x_{2}e_{3} ,
Ae_{3}=e_{3} . Then we have F_{A}(x_{2}Q_{23}+x_{3}P_{3})=x_{2}Q_{23} , F_{A}(Q_{13}+x_{2}P_{2}+x_{3}Q_{23}+x_{4}P_{3})=
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Q_{13}+x_{2}P_{2}+x_{3}/2Q_{23}+(-x_{3}^{2}/4x_{2}+x_{4})P_{3} . The c.b.r . of F_{A}\gamma is [P_{3}, Q_{23} , Q_{13}+y_{1}P_{2}

+y_{2}P_{3}] for some y_{i} . Nextly, we choose B’\in I(\alpha) such that Be_{1}=e_{1}-y_{2}/2e_{3} ,
Be_{2}=e_{2} , Be_{3}=e_{3} , and then we have F_{B}\gamma(Q_{13}+y_{1}P_{2}+y_{2}P_{3})=Q_{13}+y_{1}P_{2} . The
c . b . r . of F_{BA}\gamma is [P_{3}, Q_{23}, Q_{13}+y_{1}P_{2}] . Finally, using a diagonal matrix C\in

SL(3) , we see that the c . b . r . of F_{CBA}\gamma is [P_{3}, Q_{23}, Q_{13}+P_{2}] .
Let \alpha is [P_{2}+\epsilon P_{3}, Q_{23}] . The c . b . r . of \gamma=[x_{1}P_{1}+x_{2}Q_{12}+x_{3}Q_{13}+P_{2}-\epsilon P_{3} ,

x_{2}P_{1}+Q_{12}, x_{3}P_{1}-\epsilon Q_{13}] . We choose A’\in I(\alpha) as follow: Ae_{1}=e_{1} , Ae_{2}=e_{2}-x_{2}/

2e_{1} , Ae_{3}=e_{3}-\epsilon x_{3}/2e_{1} , then we have F_{A}(x_{1}P_{1}+x_{2}Q_{12}+x_{3}Q_{13}+P_{2}-\epsilon P_{3})=(x_{1}-

(3x_{2}^{2}-5\epsilon x_{3}^{2})/4)P_{1}+x_{2}/2Q_{12}+3x_{3}/2Q_{13}+P_{2}-\epsilon P_{3} , F_{A}(x_{2}P_{1}+Q_{12})=Q_{12}, F_{A}(x_{3}P_{1}-

\epsilon Q_{13})=-\epsilon Q_{13} . Hence the c . b . r . of F_{A}\gamma is [y_{1}P_{1}+P_{2}-\epsilon P_{3}, Q_{12}, -\epsilon Q_{13}] . By
using the diagonal B\in SL(3) , we see that c . b . r . of F_{BA}\gamma is [\epsilon_{1}P_{1}+\epsilon_{2}P_{2}+P_{3} ,
\epsilon_{2}Q_{12} , Q_{13}] or [\epsilon P_{2}+P_{3}, \epsilon Q_{12}, Q_{13}] where \epsilon_{i}=1 .

Let \alpha=[Q_{12}, Q_{13}] . The c . b . r . of \gamma is [P_{1}, x_{1}P_{2}+x_{2}Q_{23}+x_{3}P_{3} , x_{2}P_{2}+x_{3}Q_{23}

+x_{4}P_{3}] . This case is equivalent to the classification of two variables cubic
from (the reference of [1]). Therefore we only show the result, F_{A}\gamma=[P_{1} ,
Q_{23} , P_{2}+\epsilon P_{3}] or [P_{1}, Q_{23}, P_{2}] where A’\in I(\alpha^{1},. q. e . d .

PROOF of theorem 3. 2.
Let \gamma=[P_{1}+P_{3}, Q_{23}, P_{2}+Q_{13}+P_{3}] . We will show that G_{2}(\gamma^{\perp}) has a

transversal intersection in M, and then count of its number. If G_{2}(\gamma^{\perp})\cap

(cl M-M) \neq\phi , then by the argument of theorem 4. 1, we see that iso (\gamma)=\{0\} .
This is impossible by choosing \gamma . Then G_{2}(\gamma)\cap c1M=G_{2}(\gamma^{\perp})\cap M. Let
\alpha\in G_{2}(\gamma)\cap M. The transeversality at \alpha can be shown by the direct com-
putation of the tangent space like the result of [2]. Since this is not difficult,
we omit it. We need the following assertion to count the interection num-
bers.

ASSERTION. Let \gamma\in CF_{3} and A_{i} (i=1,2, 3) be a cubic basis of \gamma and
let P_{i} , Q_{ij}(1\leqq i<j\leqq 3) be a canonical basis induced by u_{i} . If [Q_{12}, P_{2}+Q_{13}]

\subset\gamma^{\perp} , then u_{i} satisfy the followirig equations :
(1) i) u_{2}’(u_{2}’A_{1}u_{2}, u_{2}’A_{2}u_{2}, u_{2}’A_{2}u_{2})=0

ii) det ( \sum_{i=1}^{3}u_{2i}A_{i})=0 where u_{2}=(u_{21}, u_{22}, u_{23})’ .

(2) ( \sum_{i=1}^{3}u_{2i}A_{i})u_{i}=0

(3) ( \sum_{i=1}^{3}u_{1i}A_{i})u_{3}=-(u_{2}’A_{1}u_{2}, u_{2}’A_{2}^{\prime }u_{2}, u_{2}A3u_{2})’ .

PROOF of assertion. If Q_{12}, P_{2}+Q_{13}\in\gamma^{\perp} then we have tr Q_{12}A_{i}=0

and tr (P_{2}+Q_{13})A_{i}=0(i=1,2,3) . Using the relations: tr u_{i}u_{j}’A_{k}=u_{i}’A_{k}u_{j} or

u_{j}’A_{k}u_{i} and Ai\^e Aj\^e the former equation is reduced to ( \sum_{i=1}^{3}u_{1i}A_{i})u_{2}=0 ,
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while the latter is (. \sum_{i=1}^{3}u_{1i}A_{i})u_{3}=-(u_{2}’A_{1}u_{2}, u_{2}’A_{2}u_{2}, u_{2}’A_{3}u_{2}) . \sum_{i=1}^{3}u_{1i}A_{i} is the

symmetric linear map, then the kernel is orthgonal to the image. Therefore
we obtain u_{2}’(u_{2}’A_{1}u_{2}, u_{2}’A_{2}u_{2}, u_{2}’A_{3}u_{2})’=0 . Using A_{i}e_{j}=A_{j}e_{i} , the above former

equation can be reduced to ( \sum_{i=1}^{3}u_{2i}A_{i})u_{1}=0 . Then we see that det ( \sum_{i=1}^{3}u_{2i}A_{i})

=0. We finish the proof of assertion.
We are now in the position to prove the theorem 3. 2. The number

of intersections is equal to the number of solution of equations (1) by the
assertion. For given \gamma , (1) is as follow:

x^{3}+3xz^{2}+3y^{2}z+z^{3}=0 , x^{2}z+xz^{2}-xy^{2}-z^{3}=0 . where we put u_{2}=(x,y, z)’ .
Except the trivial solution (0, y, 0) , we have two solution by a simple calcula-
tion. Therefore this show theorem 3. 2.
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