Classification of cubic forms with three variables

By Tadayuki Авіко
(Received November 22, 1978; Revised March 29, 1980)

Introduction

A degree 3 homogeneous polynomial, $\gamma=\sum_{1 \leq i, j, k \leqq n} a_{i j k} x_{i} x_{j} x_{k}$ is called a cubic form. Our objective is to classify the set of cubic forms by linear translations. Generally, let f be a singular germ with an isolated critical point at origin and corank n. Form the Thom's splitting lemma (D. Gromoll and W. Meyer [3]), f is right equivalent to $g+Q$ where $g\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in m^{3}$ and $Q\left(x_{n+1}, x_{n+2}, \cdots, x_{n+k}\right)$ is a nondegenerate quadratic form. Therefore it is fundamental to give the information of canonical form of 3 -jet of g, when we classify the finitely determined singular germ. Indeed, D. Siersma [6] classifies the singularities with the right codimension $\leqq 8$. In his paper, one of the difficulties of the classification is the canonical form of 3 -jet g, though results of algebraic geometry and the work of Mather [4] (G. Wassermann [7]) are widely used.

In this paper, we will try to classify cubic forms with 3 -variables. Our conclusion coincides with the work of van der Waerden [7] concerning with the surfaces represented by cubic forms that is the curves represented by cubic forms in the projective plane. The main result is theorem 4.1. We shall prove the theorem 4.1 in terms of the concepts of homology and intersection theory in manifolds. We give a proof in $\S 4$, in which theorem 3.2 is crucial. It is very likely that the theorem also holds for $n>3$. At the end, I would like to thank Professor H. Suzuki and Professor Fukuda for their helpful advices.

§ 1. Preparation

Let $S(n)$ be the set of all $(n \times n)$-symmetric matrices and $S L(n)$ the special linear group. We define an $S L(n)$-action on $S(n)$ by setting $F_{P} A=$ $P A P^{\prime}$ for $A \in S(n), P \in S L(n)$, where P^{\prime} is the transposed matrix of P. Denote by $G_{k}(S(n))$ the set of k-dimensional linear subspaces of $S(n)$ when we view $S(n)$ as a vector space. We define the $S L(n)$-action on $G_{k}(S(n))$ by setting $F_{P} \gamma=\left\{F_{P} A \mid A \in \gamma\right\}$ for $P \in S L(n), \gamma \in G_{k}(S(n))$. This is well defined, for F_{P} is a linear automorphism of $S(n)$ for each $P \in S L(n)$. Let γ
be a n-subspace of $S(n)$. If there exist symmetric matrices $A_{i}, i=1,2, \cdots, n$ which span γ such that $A_{i} e_{j}=A_{j} e_{i}(1 \leqq i<j \leqq n)$, then the set of A_{i} 's is called a cubic basis of γ. Here $e_{i}, i=1,2, \cdots, n$ is the standard basis of the n-dimensional euclidian space \boldsymbol{R}^{n}. Let $C F_{n}$ be the subset of $G_{n}(S(n))$ each element of which has a cubic basis. From the observation in the following proof, we see that the classification of $C F_{n}$ is equivalent to the classification non-degenerate cubic forms with n-variables.

Lemma 1.1. The subset $C F_{n}$ in $G_{n}(S(n))$ is an invariant under the $S L(n)$-action.

Proof. It is the problem that n-subspace $F_{P} \gamma$ has a cubic basis, where $\gamma \in C F_{n}$. We will give one observation. For a cubic basis A_{i} of γ, we have a cubic form $\gamma(x)$ by taking $\gamma(x)=x^{\prime}\left(x^{\prime} A_{1} x, x^{\prime} A_{2} x, \cdots, x^{\prime} A_{n} x\right)^{\prime}$ for $x \in \boldsymbol{R}^{n}$ (column vector). Conversely, given a cubic form $\gamma(x)$, we have symmetric matrices $A_{i},(i=1,2, \cdots, n)$ as follows:

$$
\frac{1}{3} \frac{\partial}{\partial x_{j}} r(x) \longrightarrow A_{i}
$$

where A_{i} is naturally determined by quadratic form. Let γ be the subspace spanned by A_{i} 's. be the subspace spanned by A_{i} 's. When the dimension of γ is equal to n, we shall call the cubic form $\gamma(x)$ a nondegenerate cubic form. Then A_{i} is a cubic basis of n-subspace γ, because it is assured by symmetric properties of 2 nd order derivatives of $\gamma(x)$. Under the observation, we can see that the cubic form $\gamma\left(P^{\prime} x\right)$ determines a cubic basis of $F_{P \gamma}$ by straightformard calculations.
q. e.d.

By the definition, F_{P} is a linear automorphism of $S(n)$ for each $P \in S L(n)$. The subset $\left\{F_{P}: P \in S L(n)\right\}$ is a Lie-subgroup in $\operatorname{Aut}(S(n))$. Let $\mathfrak{G l}(n)$ be the set of matrices with zero trace in $\mathfrak{g l}(n)$. For each $a \in \mathfrak{g l}(n)$, an endomorphism of $S(n)$ is defined by $f_{a} A=a A+A a^{\prime}, A \in S(n)$. The subset $\left\{f_{a}\right.$: $a \in \mathfrak{E l}(n)\}$ of End $(S(n))$ is a Lie-algebra of the above Lie-group.

Lemma 1. 2. The following properties hold for f_{a} and F_{P}. (1) $\exp f_{a}$ $=F_{\exp a}$, (2) $f_{P a P^{-1}}=F_{P} f_{a} F_{P^{-1}}$.
The proof is assured directly.
From Lemma 1, 2, $F_{\exp t a}$ is a 1-parameter group for any real number t and it acts naturally on the Grassmanian manifold $G_{k}(S(n))$. Hence its derivative f_{a} induces a vector field on $G_{k}(S(n))$. We denote it by $* f_{a}$. Let eq $\left(* f_{a}\right)$ be the set of $G_{k}(S(n))$ consisting of all equilibria of $* f_{a}$ for each $a \in \mathfrak{Z l}(n)$. For $\alpha \in G(S(n))$, define iso $(\alpha) \subset \mathfrak{a l}(n)$ in such a way that each element $a \in$ iso (α) satisfies that $* f_{a}$ has α as an equilibrium point. The iso (α) is a Lie-algebra of Lie-group $I(\alpha)=\left\{P \in S L(n): F_{P} \alpha=\alpha\right\}$. We call the dimen-
sion of iso (α) the codimenstion of α. In $\S 2$, when $n=3, k=2$, we will classify such α with codimension no less than 1 and this will be used in $\S 4$. The following propotion will be used in $\S 2$.

Proposition 1.3. Let $C(a)=\left\{P \in S L(n): \quad P a P^{-1}=a\right\}$. If $\alpha \in e q\left(* f_{a}\right)$ and $P \in C(a)$, then we have $F_{P} \alpha \in e q\left(* f_{a}\right)$.

This proposition follows from lemma 1.2, easily. Later, we must calculate $I(\alpha)$ for given α, however the computation of iso (α) is easier than that of $I(\alpha)$.

In order to represent a subspace or a vector in $S(n)$, we shall define a canonical basis of $S(n)$. Let $u_{i}(i=1,2, \cdots, n)$ be a basis of \boldsymbol{R}^{n} (as column vector). Put $P_{i}=u_{i} u_{i}^{\prime}, Q_{i j}=u_{i} u_{j}^{\prime}+u_{j} u_{i}^{\prime}(1 \leqq i<j \leqq n)$, then the set of these symmetric matrices becomes a basis of $S(n)$. We call this basis the canonical basis of $S(n)$ lnduced by the basis u_{i} of \boldsymbol{R}^{n}.

§ 2. Classification of the orbit of $G_{2}(S(3))$ with codimension no less than 1.

If the orbit of $\alpha \in G_{2}(S(3))$ has codimension no less than 1 , then there exists a non zero matrix $a \in$ iso (α) such that α is equilibirum point of vector field $* f_{a}$. It follows from lemma 1.2 that we may consider $* f_{a}$ where the matrix a is a real Jordan normal form. The following matrices are all the possible cases:

$$
\text { (1) }\left(\begin{array}{rrr}
-2 t & 0 & 0 \\
0 & t & 1 \\
0 & -1 & t
\end{array}\right) \quad(2)\left(\begin{array}{rrr}
-2 t & 0 & 0 \\
0 & t & 1 \\
0 & 0 & t
\end{array}\right) \quad(3)\left(\begin{array}{ccc}
t_{1} & 0 & 0 \\
0 & t_{2} & 0 \\
0 & 0 & t_{3}
\end{array}\right) \quad(4)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

here $t_{1}+t_{2}+t_{3}=0, t_{1}<t_{2} \leqq t_{3}$ in (3).
We will represent the equilibrium point by using the canonical basis P_{i}, $Q_{i j}$, induced by the standard basis e_{i} of \boldsymbol{R}^{n}.

Lemma 2.1. For each above matrix a, the element of eq $\left({ }^{*} f_{a}\right)$ is transformed into one of following by using the group $C(a)=\left\{P \in S L(3) \mid P a P^{-1}=a\right\}$ without alternating the index of canonical basis

$$
\begin{equation*}
\left[P_{1}, P_{2}+P_{3}\right],\left[P_{2}-P_{3}, Q_{23}\right] \text { or }\left[Q_{12}, Q_{13}\right] \tag{1}
\end{equation*}
$$

i) $t_{1} \neq 0,\left[P_{1}, P_{2}\right],\left[P_{1}, Q_{12}\right]$ or $\left[Q_{12}, Q_{13}\right]$
ii) $t_{1}=0$, the other of i): [$\left.Q_{12}, Q_{13}+P_{2}\right],\left[P_{2}, Q_{23}+P_{1}\right]$ or $\left[P_{1}-P_{2}, Q_{12}\right]$
i) $t_{3} \neq t_{2} \neq 0,\left[P_{1}, Q_{12}\right],\left[P_{1}, P_{2}\right],\left[P_{1}, Q_{23}\right]$ or $\left[Q_{12}, Q_{13}\right]$
ii) $t_{3}=t_{2} \neq 0$, the other of i): $\left[Q_{12}, P_{2}+\varepsilon P_{3}\right],\left[P_{1}, P_{2}+\varepsilon P_{3}\right]$ or $\left[P_{2}-P_{3}, Q_{23}\right]$
iii) $t_{2}=0$ the other of $t_{2} \neq 0:\left[P_{2}+Q_{13}, P_{1}\right]$ or $\left[P_{2}+Q_{13}, Q_{12}\right]$
(4) $\left[P_{1}, Q_{13}-P_{2}\right]$.

Here $\varepsilon= \pm 1$.
Proof. The proof is a direct calculation. We only show the case (3), ii). The other cases are shown similarly. We note that an element of $C(a)$ has the following form,

$$
\left(\begin{array}{ccc}
x_{11} & 0 & 0 \\
0 & x_{22} & x_{23} \\
0 & x_{32} & x_{33}
\end{array}\right) \in S L(3) .
$$

From the definition of f_{a}, we have $f_{a} P_{1}=-4 P_{1}, f_{a} A=-2 A$ for $A \in\left[Q_{12}\right.$, $\left.Q_{13}\right], f_{a} A=A$ for $A \in\left[P_{2}, Q_{23}, P_{3}\right]$. eq $\left(* f_{a}\right)$ consists of :
a) $G_{2}\left(\left[P_{2}, Q_{23}, P_{3}\right]\right)$,
b) $\left[Q_{12}, Q_{13}\right]$,
c) $\left[x_{1} Q_{12}+x_{2} Q_{13}, x_{3} P_{2}+x_{4} Q_{23}+x_{5} P_{3}\right]$,
d) $\left[P_{1}, x_{3} P_{2}+x_{4} Q_{23}+x_{5} P_{3}\right]$,
e) $\left[P_{1}, x_{1} Q_{12}+x_{2} Q_{13}\right]$,
where $\left(x_{1}, x_{2}\right) \neq(0,0),\left(x_{3}, x_{4}, x_{5}\right) \neq(0,0,0)$. We have only to show that c$)$ is transformed into $\left[Q_{12}, P_{2}+\varepsilon P_{3}\right],\left[Q_{12}, P_{3}\right],\left[Q_{13}, P_{3}\right]$ or $\left[Q_{12}, Q_{23}\right]$ and the rest follows earily. (we remark that [$\left.Q_{12}, P_{3}\right],\left[Q_{12}, Q_{23}\right],\left[Q_{12}, P_{3}\right]$ are equivalent to $\left[P_{1}-P_{2}, P_{3}\right],\left[Q_{12}, Q_{13}\right],\left[P_{1}, Q_{12}\right]$ respectively.)

If the matrix $x_{3} P_{2}+x_{4} Q_{23}+x_{5} P_{3}$ with rank 2 is semidefinite, there exists a matrix T in $C(a)$ such that we get $F_{T}\left(x_{3} P_{2}+x_{4} Q_{23}+x_{5} P_{3}\right)=P_{2}+P_{3} . \quad x_{1} Q_{12}$ $+x_{2} Q_{13}$ is transformed into the matrix $y_{1} Q_{12}+y_{2} Q_{13}$ for some y_{i} by F_{T}. We choose a rotation matrix U with the vector e_{1} as axis such that $F_{U}\left(y_{1} Q_{12}\right.$ $\left.+y_{2} Q_{13}\right)=y_{3} Q_{12}$. Then we have $F_{\text {UT }} \alpha=\left[P_{2}+P_{3}, Q_{12}\right]$. We notice that the matrix $U T \in C(a)$.

Next if the matrix $x_{3} P_{2}+x_{4} Q_{23}+x_{5} P_{3}$ with rank 2 is semi-indefinite, there exists a matrix T in $C(a)$ such that $F_{T}\left(x_{3} P_{2}+x_{4} Q_{23}+x_{5} P_{3}\right)=Q_{23}$. We can put $F_{T}\left(x_{1} Q_{12}+x_{2} Q_{13}\right)=y_{1} Q_{12}+y_{2} Q_{13}$ where $y_{1} \neq 0$. If $y_{2}=0$, we have $F_{T} \alpha=$ $\left[Q_{12}, Q_{13}\right]$. If $y_{2} \neq 0$, there exists a diagonal matrix D such that $F_{D}\left(y_{1} Q_{12}+\right.$ $y_{2} Q_{13}=Q_{12}+Q_{18}$. Let U be the $\pi / 4$-rotation matrix with the vector e_{1} as axis, then we have $F_{U}\left(Q_{12}+Q_{13}\right)=\sqrt{2} Q_{12}$ and $F_{V} Q_{23}=P_{2}-P_{3}$. Therefore $F_{U D T} \alpha=\left[Q_{12}, P_{2}-P_{3}\right]$, where $U D T \in C(a)$.

Finally if the matrix $x_{3} P_{2}+x_{4} Q_{23}+x_{5} P_{3}$ has rank 1 , there exists a matrix T in $C(a)$ such that $F_{T}\left(x_{3} P_{2}+x_{4} Q_{23}+x_{5} P_{2}\right)=P_{3}$. We can put $F_{T}\left(x_{1} Q_{12}+\right.$ $\left.x_{2} Q_{13}\right)=y_{1} Q_{12}+y_{2} Q_{13}$. If $y_{1}=0$, we get $F_{T} \alpha=\left[Q_{13}, P_{3}\right]$. If $y_{1} \neq 0$, we choose a matrix U such that $U e_{1}=e_{1}, U e_{2}=e_{2}-\frac{y_{2}}{y_{1}} e_{3}, U e_{3}=e_{3}$. Then we get
$F_{U}\left(y_{1} Q_{12}+y_{2} Q_{13}\right)=y_{1} Q_{12}$. Therefore we obtain $F_{U T} \alpha=\left[Q_{12}, P_{3}\right]$ where $U T \in$ $C(a)$.
q.e.d.

In view of lemma 2.1 and by direct computation of f_{a} for each α, we obtain:

Theorem 2.2. The following table is a classification of $G_{2}(S(3))$ with codimension no less than 1.

Table 1.

codimension	subspace	iso
1	$\left[Q_{12}, P_{2}+\varepsilon P_{3}\right]$	$\left(\begin{array}{ccc}-2 a_{22} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{22}\end{array}\right)$
2	$\left[{ }_{1}, P_{2}+\varepsilon P_{3}\right]$	$\left(\begin{array}{ccc}-2 a_{22} & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & -\varepsilon a_{23} & a_{22}\end{array}\right)$
	$\left[Q_{12}, Q_{13}+P_{2}\right]$	$\left(\begin{array}{ccc}a_{11} & 0 & 0 \\ 0 & 0 & a_{23} \\ 0 & 0 & -a_{11}\end{array}\right)$
3	$\left[P_{1}, Q_{13}+P_{2}\right]$	$\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ 0 & 0 & -a_{12} \\ 0 & 0 & -a_{11}\end{array}\right)$
4	$\left[Q_{12}, Q_{13}\right]$	$\left(\begin{array}{cccc}-a_{22} & -a_{33}, & 0 & 0 \\ & 0 & a_{22} & a_{23} \\ & 0 & a_{32} & a_{33}\end{array}\right)$
	$\left[P_{2}+\varepsilon P_{3}, Q_{23}\right]$	$\left(\begin{array}{ccc}-2 a_{22} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & \varepsilon a_{23} & a_{22}\end{array}\right)$
5	$\left[P_{1}, Q_{12}\right]$	$\left(\begin{array}{cccc}-a_{22} & -a_{33}, & a_{12} & a_{13} \\ & 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right)$

§ 3. Homological properties of the stratified set.

In this section, we consider homology groups of certain stratified set. Homology coefficients are assumed to be $\boldsymbol{Z}_{2}(=\boldsymbol{Z} / 2 \boldsymbol{Z})$. Let $M=\left\{\left[Q_{12}, P_{2}+\right.\right.$ $\left.\left.Q_{13}\right]\right\}$. We denote the closure of M in $G_{2}(S(3))$ by $\mathrm{cl} M$.

Theorem 3.1. $H_{6}\left(c l M ; \boldsymbol{Z}_{2}\right) \cong \boldsymbol{Z}_{2}$.
Let [cl M] be the generator of $H_{6}(\mathrm{cl} M)$. It's image is a generator in $H_{6}\left(G_{2}(S(3))\right)\left(\cong \boldsymbol{Z}_{2}+\boldsymbol{Z}_{2}\right)$ by the inclusion $i:$ cl $M \subset G_{2}(S(3))$. A linear inclusion $\operatorname{map} \boldsymbol{R}^{3} \rightarrow S(3)$ induces a $\operatorname{map} G_{2}\left(\boldsymbol{R}^{3}\right) \rightarrow G_{2}(S(3))$. Its image of the fundamental class $\left[G_{2}\left(\boldsymbol{R}^{3}\right)\right.$] is viewed as a generator of $H_{2}\left(G_{2}(S(3))\right)$. We denote also by [cl $M]$, $\left[G_{2}\left(\boldsymbol{R}^{3}\right)\right]$ their images of the inclusions in $G_{2}(S(3))$. Then, the intersection pairing. : $\quad H_{6}\left(G_{2}(S(3))\right) \times H_{2}\left(G_{2}(S(3))\right) \rightarrow \boldsymbol{Z}_{2}$ is defined.

Theorem 3.2. We have the intersection number $[\mathrm{cl} \mathrm{M}] \cdot\left[G_{2}\left(\boldsymbol{R}^{3}\right)\right] \equiv 1$ (mod 2).
Theorem 3. 2 is proved in the last section.
A Proof of Theorem 3.1. We investigate the structure of $\mathrm{cl} M$. The subset $\left\{\left[x_{1} P_{1}+Q_{12}, x_{2} P_{1}+x_{3} P_{2}+Q_{13}\right]: x_{3} \neq 0\right\}$ of $G_{2}(S(3))$ is contained in M. This is shown as follows : we take the basis u_{i} of \boldsymbol{R}^{3} such that $u_{1}=e_{1}$, $u_{2}=y\left(e_{2}+x_{1} / 2 e_{1}\right), u_{3}=1 / y\left(e_{3}+\left(x_{1} / 2+x_{1}^{2} x_{3} / 8\right) e_{1}\right)$, where $y=x_{1}^{1 / 3}$, then we have $F_{T}\left[x_{1} P_{1}+Q_{12}, x_{2} P_{1}+x_{3} P_{2}+Q_{13}\right]=\left[Q_{12}, P_{2}+Q_{13}\right]$ where $T \in G L(3)$ and $T u_{i}=e_{i}$, $i=1,2,3$. When we give the basis $P_{i}, Q_{i j}$ an order like $P_{1}, Q_{12} P_{2}, Q_{13}, \cdots$, the subset $K=\left\{\left[x_{1} P_{1}+Q_{12}, x_{2} P_{1}+x_{3} P_{2}+Q_{13}\right]\right\}$ is regarded as a Schubert variety. It is easily checked that cl $K-K$ contains every 2 -subspace with codimension no less than 3.

Let $T(3)$ be the upper triangular matrix with positive diagonal element. We have diffeomorphism $\varphi: S O(3) \times T(3) \rightarrow G L(3)$ such that $\varphi(P, T)=P T$ for $P \in S O(3), T \in T(3), T(3)$-orbit of $\mathrm{cl} K$ is $\mathrm{cl} K$ itself and therefore, we have $\operatorname{cl} M=\left\{F_{P} \alpha: \alpha \in \operatorname{cl} K, P \in S O(3)\right\}$. From this structure of $\mathrm{cl} M$, it is sufficient to prove the theorem 3.1 that we consider only the manifold structure of $\mathrm{cl} M$ at $\left[P_{1}, Q_{13}+P_{2}\right.$].

Let D^{3} be the 3 -disc $\left\{\left[P_{1}+x_{1} Q_{13}+x_{2} Q_{23}+x_{3} P_{3}, P_{2}+Q_{13}\right]: x_{i} \in \boldsymbol{R}\right\}$ with the center $\alpha_{0}=\left[P_{1}, P_{2}+Q_{13}\right]$ in $G_{2}(S(3))$. D^{3} intersects transversally with $\left\{\left[P_{1}, P_{2}+Q_{13}\right]\right\}$ at $\left[P_{1}, P_{2}+Q_{13}\right]$. This is shown by the following considerations and some computations. We can identify the tangent space $T_{\alpha_{0}} G_{2}(S(3))$ with hom $\left(\alpha_{0}, \alpha_{0}^{\perp}\right)$. Then we define the local homeomorphism φ of hom $\left(\alpha_{0}, \alpha_{0}^{\perp}\right)$ to $G_{2}(S(3))$ by $\varphi(V)=\left\{A+V A: A \in \alpha_{0}\right\}$.

We obtain $D^{3} \cap \mathrm{cl} M=\left\{\left[P_{1}+\frac{3}{2} t^{2} Q_{13}+t^{3} Q_{23}-\frac{3}{4} P_{3}, P_{2}+Q_{13}\right]: t \in \boldsymbol{R}\right\}$ by the computation of iso $(\beta), \beta \in D^{3}$. This intersection is homeomorphic (not
diffeomorphic) to a 1 -disc and is denoted by D^{1}.
Let α_{t} a point of D^{1} for $t \in \boldsymbol{R} . \quad T_{\alpha_{t}} M$ is identified with iso $\left(\alpha_{t}^{\perp}\right)$ by the following correspondence ; iso $\left(\alpha_{t}\right)^{\perp} \cong \mathfrak{B l}(3) /$ iso $\left(\alpha_{t}\right) \xrightarrow{h} \operatorname{End}(S(3)) /\left\{A: A \alpha_{t} \subset a_{t}\right\} \cong$ hom $\left(\alpha_{t}, \alpha_{t}^{\perp}\right)$, where $h([a])=\left[f_{a}\right], a \in \mathfrak{G l}(3)$. Under this identificantion, we obtain $\lim _{t \rightarrow 0}\left(T_{\alpha_{t}} D^{1}\right)^{\perp} \cap$ iso $\left(\alpha_{t}\right)^{\perp}=$ iso $\left(\alpha_{0}\right)^{\perp}$, in $G_{5}(\mathfrak{\mathfrak { l } l}(3))$. Therefore the orthogonal projection of $\mathfrak{g l}(3)$ to iso $\left(\alpha_{0}\right)^{\perp}$ induces the linear isomorphism $\varphi_{t}:\left(T_{\alpha_{t}} D^{1}\right)^{\perp} \cap$ iso $\left(\alpha_{t}\right)^{\perp}$ iso $\left(\alpha_{0}\right)^{\perp}$, for $|t|<\varepsilon$ and sufficiently small $\varepsilon>0$. We define a $\operatorname{map} g$: $D^{1} \times$ iso $\left(\alpha_{0}\right)^{\perp} \rightarrow \mathrm{cl} M$ by $g\left(\alpha_{t}, a\right)=F_{\text {expp }_{t}(\mathrm{a})} \alpha_{t}$. From the definition, $\lim _{t \rightarrow 0} T_{\alpha_{t}} D^{1}+$ $\left.\lim _{t \rightarrow 0} \operatorname{Im} d g\right|_{\alpha_{t} \times \text { iso }\left(a_{0}\right) \downarrow}=\lim _{t \rightarrow 0} T_{\alpha_{t}} M$. We notice that $\left.\lim _{t \rightarrow 0} \operatorname{Im} d g\right|_{\alpha_{t} \times 1 \operatorname{so}\left(\alpha_{0}\right) \downarrow}$ is $T_{\alpha_{0}}\left\{\left[P_{1}\right.\right.$, $\left.\left.P_{2}+Q_{13}\right]\right\}$. This propertry implies that $T_{\alpha_{t}} D^{1}+\left.\operatorname{Im} d g\right|_{\alpha_{t} \times \operatorname{iso}\left(\alpha_{0}\right)}=T_{\alpha_{t}} M$, for $|t|<\varepsilon$, and sufficiently small $\varepsilon>0$, then a local homeomorphism of g at α_{0} is assured. q.e.d.

\S 4. The classification of $\mathbf{C F}_{3}$

ThEOREM 4.1. The classification of $C F_{3}$ by $S L$ (3) action is as follows.
Table 2.

codimension	subspace	iso
0	$\begin{gathered} {\left[\varepsilon P_{1}+P_{3}, Q_{23}, P_{2}+Q_{13}+t P_{3}\right]} \\ \left(\varepsilon t^{2}+1 \neq 0\right) \\ {\left[Q_{23}, Q_{13}+P_{2}, Q_{12}+P_{3}\right]} \end{gathered}$	0 matrix
1	$\left[\varepsilon_{1} P_{1}+\varepsilon_{2} P_{2}+P_{3}, \varepsilon_{2} Q_{12}, Q_{13}\right]$	$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & a_{23} \\ 0 & \varepsilon_{2} a_{23} & 0\end{array}\right]$
2	$\begin{aligned} & {\left[P_{2}-\varepsilon P_{3}, Q_{12},-\varepsilon Q_{13}\right]} \\ & {\left[P_{1}, Q_{23}, P_{2}+\varepsilon P_{3}\right]} \end{aligned}$	$\left[\begin{array}{ccc}-2 a_{22} & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & \varepsilon a_{23} & a_{22}\end{array}\right]$
3	$\left[P_{3}, P_{2}, Q_{13}\right]$	$\left[\begin{array}{ccll}-a_{22} & -a_{33} & 0 & 0 \\ 0 & a_{22} & 0 \\ a_{31} & 0 & a_{33}\end{array}\right]$
4	$\left[P_{3}, Q_{23}, Q_{13}+P_{2}\right]$	$\left[\begin{array}{ccc}a_{11} & 0 & 0 \\ a_{21} & 0 & 0 \\ a_{31} & a_{32} & -a_{11}\end{array}\right]$

Proof. For any $\gamma \in C F_{3}$, we denote by $G_{2}\left(\gamma^{\perp}\right)$ the Grassmanian manifold which consists of all the 2 -subspaces in γ^{\perp}. From theorem 3.2, we have $\left[G_{2}\left(\gamma^{\perp}\right)\right] \cdot[\mathrm{cl} M] \equiv 1(\bmod 2)$. Then there exists $\alpha \in \mathrm{cl} M \cap G_{2}\left(\gamma^{\perp}\right)$. We may assume that α is one of the elements in Table 1 of theorem 2.2. Then we show that for each α, γ can be transformed into one of the above table. To do so, we start with the following assertion.

Assertion. If $\alpha \subset \gamma^{\perp}$ and $A \in I(\alpha)$, then we have $\alpha \subset\left(F_{A^{\prime}} \gamma\right)^{\perp}$. The proof is easy, so we will omit it.

If $\alpha=\left[Q_{12}, P_{2}+Q_{13}\right]$, then the cubic basis representation (we write c. b. r. for convenience.) of γ is $\left[x_{1} P_{1}+x_{2} P_{3},-2 x_{2} Q_{23}+x_{3} P_{3}, x_{2}\left(Q_{13}-2 P_{2}\right)+x_{3} Q_{23}+\right.$ $x_{4} P_{3}$]. If $x_{2} \neq 0$, we can choose a matrix $A^{\prime} \in I(\alpha)$ such that $A e_{1}=e_{1}, A e_{2}=$ $e_{2}+x_{3} / 4 x_{2} e_{3}, A e_{3}=e_{3}$. In this case, we may assume $x_{2}=1$. Now, since we get $\quad F_{A}\left(-2 Q_{23}+x_{3} P_{2}\right)=-1 / 2 Q_{23}, \quad F_{A}\left(Q_{13}-2 P_{2}+x_{3} Q_{23}+x_{4} P_{3}\right)=Q_{13}-2 P_{2}+x_{3} /$ $2 Q_{23}+\left(3 x_{3}^{2} / 8+x_{4}\right) P_{3}$, then the c. b. r. of $F_{A} \gamma$ is $\left[y_{1} P_{1}+P_{3},-2 Q_{23}, Q_{13}-2 P_{2}+\right.$ $y_{2} P_{3}$] for some y_{i}. Using a diagonal matrix B in $S L(3)$, we can find the more simplified form $\left[\varepsilon P_{1}+P_{3}, Q_{23}, Q_{13}+P_{2}+t P_{3}\right]$ as the c.b. r. of $F_{B A} \gamma$, other than $\left[\varepsilon P_{1}+P_{3},-2 Q_{23}, Q_{13}-2 P_{2}+t P_{3}\right]$. If $x_{2}=0, \gamma$ includes a 2 -subspace with codimension larger than 2 . So, we deal with this case later.

If $\alpha=\left[P_{1}, P_{2}+Q_{13}\right]$, the c. b. r. of γ is $\left[x_{1} Q_{23}+x_{2} P_{3}, x_{1}\left(Q_{13}-2 P_{2}\right)-2 x_{2} Q_{23}\right.$ $\left.+x_{3} P_{3}, x_{1} Q_{12}+x_{2}\left(Q_{13}-2 P_{2}\right)+x_{3} Q_{23}+x_{4} P_{3}\right]$. If $x_{1} \neq 0$, we choose $A^{\prime} \in I(\alpha)$ such that $A e_{1}=e_{1}+x_{2} / 2 x_{1} e_{2}, A e_{2}=e_{2}-x_{2} / 2 x_{1} e_{3}, A e_{3}=e_{3}$. Similarly as above, we assume $x_{1}=1$. Since we have that $F_{A}\left(Q_{23}+x_{2} P_{3}\right)=Q_{23}, F_{A}\left(Q_{13}-2 P_{2}-2 x_{2} Q_{23}\right.$ $\left.+x_{3} P_{3}\right)=Q_{13}-2 P_{2}-x_{2} / 2 Q_{23}+\left(3 x_{2}^{2} / 2+x_{3}\right) P_{3}, F_{A}\left(Q_{12}+x_{2}\left(Q_{13}-2 P_{2}\right)+x_{3} Q_{23}+x_{4} P_{3}\right.$ $=Q_{12}+x_{2} / 2\left(Q_{13}-2 P_{2}\right)+\left(5 x_{2}^{2} / 4+x_{3}\right) Q_{23}+\left(-x_{2}^{2} / 2-x_{2} x_{3}+x_{4}\right) P_{3}$, then the c.b.r. of $F_{A} \gamma$ is $\left[Q_{23}, Q_{13}-2 \mathrm{P}_{2}+y_{1} P_{3}, Q_{12}+y_{2} Q_{23}+y_{3} P_{3}\right.$] for some y_{i}. If we choose $B^{\prime} \in I(\alpha)$ such that $B e_{1}=e_{1}-y_{1} / 2 e_{3}, B e_{2}=e_{2}, B e_{3}=e_{3}$, then we have that $F_{B}\left(Q_{13}-2 P_{2}+y_{1} P_{3}\right)=Q_{13}-2 P_{2}, \quad F_{B}\left(Q_{12}+y_{2} Q_{23}+y_{3} P_{3}\right)=Q_{12}+\left(-y_{1} / 2+y_{2}\right) Q_{23}+$ $y_{3} P_{3}$. The c. b. r. of $F_{B A} \gamma$ is [$Q_{23}, Q_{13}-2 P_{2}, Q_{12}+y_{3} P_{3}$]. Finally we use a diagonal matrix C in $S L(3)$ to yield that $F_{C B A} \gamma=\left[Q_{23}, Q_{13}+P_{2}, Q_{12}+P_{3}\right]$.

If $\alpha=\left[P_{1}, Q_{12}\right]$, the c. b. r. of γ is $\left[P_{3}, x_{1} P_{2}+x_{2} Q_{23}+x_{3} P_{3}, Q_{13}+x_{2} P_{2}+x_{3} Q_{23}\right.$ $\left.+x_{4} P_{3}\right]$. If $x_{1} \neq 0$, we can choose $A^{\prime} \in I(\alpha)$ such theat $A e_{1}=e_{1}, A e_{2}=e_{2}-$ $x_{2} / x_{1} e_{3}, A e_{3}=e_{3}$. Since we have: $F_{A}\left(x_{1} P_{2}+x_{2} Q_{23}+x_{3} P_{3}\right)=x_{1} P_{2}+\left(-x_{2}^{2} / x_{1}+x_{3}\right)$ $P_{3}, F_{A}\left(Q_{13}+x_{2} P_{2}+x_{3} Q_{23}+x_{4} P_{3}\right)=Q_{13}+x_{2} P_{2}+\left(-x_{2}^{2} / x_{1}+x_{3}\right) Q_{23}+\left(-x_{2}^{3} / x_{1}^{2}-2 x_{2} x_{3} /\right.$ $\left.x_{1}+x_{4}\right) P_{3}$, it follows that the c.b.r. of $F_{A} \gamma$ is $\left[P_{3}, P_{2}+y_{2} P_{3}, Q_{13}+y_{1} Q_{23}+y_{2} P_{3}\right]$ for some y_{i}. We choose $B^{\prime} \in I(\alpha)$ such that $B e_{1}=e_{1}-y_{1} e_{2}-y_{2} / 2 e_{3}, B e_{2}=e_{2}$, $B e_{3}=e_{3}$, and then we have $F_{B}\left(Q_{13}+y_{1} Q_{23}+y_{2} P_{3}\right)=Q_{13}$. Hence the c.b.r. of $F_{B A} \gamma$ is $\left[P_{3}, P_{2}, Q_{13}\right]$. If $x_{1}=0$, (we may assume $x_{2} \neq 0$, for a cubic basis must exist on γ) we can choose $A^{\prime} \in I(\alpha)$ such that $A e_{1}=e_{1}, A e_{2}=e_{2}-x_{3} / 2 x_{2} e_{3}$, $A e_{3}=e_{3}$. Then we have $F_{A}\left(x_{2} Q_{23}+x_{3} P_{3}\right)=x_{2} Q_{23}, F_{A}\left(Q_{13}+x_{2} P_{2}+x_{3} Q_{23}+x_{4} P_{3}\right)=$
$Q_{13}+x_{2} P_{2}+x_{3} / 2 Q_{23}+\left(-x_{3}^{2} / 4 x_{2}+x_{4}\right) P_{3}$. The c. b.r. of $F_{A} \gamma$ is $\left[P_{3}, Q_{23}, Q_{13}+y_{1} P_{2}\right.$ $+y_{2} P_{3}$] for some y_{i}. Nextly, we choose $B^{\prime} \in I(\alpha)$ such that $B e_{1}=e_{1}-y_{2} / 2 e_{3}$, $B e_{2}=e_{2}, B e_{3}=e_{3}$, and then we have $F_{B} \gamma\left(Q_{13}+y_{1} P_{2}+y_{2} P_{3}\right)=Q_{13}+y_{1} P_{2}$. The c. b. r. of $F_{B A} \gamma$ is [$P_{3}, Q_{23}, Q_{13}+y_{1} P_{2}$]. Finally, using a diagonal matrix $C \in$ $S L(3)$, we see that the c.b.r. of $F_{C B A} \gamma$ is $\left[P_{3}, Q_{23}, Q_{13}+P_{2}\right]$.

Let α is $\left[P_{2}+\varepsilon P_{3}, Q_{23}\right]$. The c. b. r. of $\gamma=\left[x_{1} P_{1}+x_{2} Q_{12}+x_{3} Q_{13}+P_{2}-\varepsilon P_{3}\right.$, $\left.x_{2} P_{1}+Q_{12}, x_{3} P_{1}-\varepsilon Q_{13}\right]$. We choose $A^{\prime} \in I(\alpha)$ as follow : $A e_{1}=e_{1}, A e_{2}=e_{2}-x_{2} /$ $2 e_{1}, A e_{3}=e_{3}-\varepsilon x_{3} / 2 e_{1}$, then we have $F_{A}\left(x_{1} P_{1}+x_{2} Q_{12}+x_{3} Q_{13}+P_{2}-\varepsilon P_{3}\right)=\left(x_{1}-\right.$ $\left.\left(3 x_{2}^{2}-5 \varepsilon x_{3}^{2}\right) / 4\right) P_{1}+x_{2} / 2 Q_{12}+3 x_{3} / 2 Q_{13}+P_{2}-\varepsilon P_{3}, F_{A}\left(x_{2} P_{1}+Q_{12}\right)=Q_{12}, F_{A}\left(x_{3} P_{1}-\right.$ $\left.\varepsilon Q_{13}\right)=-\varepsilon Q_{13}$. Hence the c.b.r. of $F_{A} \gamma$ is $\left[y_{1} P_{1}+P_{2}-\varepsilon P_{3}, Q_{12},-\varepsilon Q_{13}\right]$. By using the diagonal $B \in S L(3)$, we see that c. b. r. of $F_{B A} \gamma$ is $\left[\varepsilon_{1} P_{1}+\varepsilon_{2} P_{2}+P_{3}\right.$, $\left.\varepsilon_{2} Q_{12}, Q_{13}\right]$ or $\left[\varepsilon P_{2}+P_{3}, \varepsilon Q_{12}, Q_{13}\right]$ where $\varepsilon_{i}=1$.

Let $\alpha=\left[Q_{12}, Q_{13}\right]$. The c. b. r. of γ is $\left[P_{1}, x_{1} P_{2}+x_{2} Q_{23}+x_{3} P_{3}, x_{2} P_{2}+x_{3} Q_{23}\right.$ $+x_{4} P_{3}$]. This case is equivalent to the classification of two variables cubic from (the reference of [1]). Therefore we only show the result, $F_{A} \gamma=\left[P_{1}\right.$, $Q_{23}, P_{2}+\varepsilon P_{3}$] or [P_{1}, Q_{23}, P_{2}] where $A^{\prime} \in I(\alpha)$.
q. e.d.

Proof of theorem 3.2.
Let $\gamma=\left[P_{1}+P_{3}, Q_{23}, P_{2}+Q_{13}+P_{3}\right]$. We will show that $G_{2}\left(\gamma^{\perp}\right)$ has a transversal intersection in M, and then count of its number. If $G_{2}\left(\gamma^{\perp}\right) \cap$ (cl $M-M) \neq \phi$, then by the argument of theorem 4.1, we see that iso $(\gamma)=\{0\}$. This is impossible by choosing γ. Then $G_{2}(\gamma) \cap \mathrm{cl} M=G_{2}\left(\gamma^{\perp}\right) \cap M$. Let $\alpha \in G_{2}(\gamma) \cap M$. The transeversality at α can be shown by the direct computation of the tangent space like the result of [2]. Since this is not difficult, we omit it. We need the following assertion to count the interection numbers.

Assertion. Let $\gamma \in C F_{3}$ and $A_{i}(i=1,2,3)$ be a cubic basis of γ and let $P_{i}, Q_{i j}(1 \leqq i<j \leqq 3)$ be a canonical basis induced by u_{i}. If $\left[Q_{12}, P_{2}+Q_{13}\right]$ $\subset \gamma^{\perp}$, then u_{i} satisfy the following equations:
i) $u_{2}^{\prime}\left(u_{2}^{\prime} A_{1} u_{2}, u_{2}^{\prime} A_{2} u_{2}, u_{2}^{\prime} A_{2} u_{2}\right)=0$
ii) $\operatorname{det}\left(\sum_{i=1}^{3} u_{2 i} A_{i}\right)=0$ where $u_{2}=\left(u_{21}, u_{22}, u_{23}\right)^{\prime}$.

$$
\begin{align*}
& \left(\sum_{i=1}^{3} u_{2 i} A_{i}\right) u_{i}=0 \tag{2}\\
& \left(\sum_{i=1}^{3} u_{1 i} A_{i}\right) u_{3}=-\left(u_{2}^{\prime} A_{1} u_{2}, u_{2}^{\prime} A_{2} u_{2}, u_{2}^{\prime} A_{3} u_{2}\right)^{\prime} \tag{3}
\end{align*}
$$

Proof of assertion. If $Q_{12}, P_{2}+Q_{13} \in \gamma^{\perp}$ then we have $\operatorname{tr} Q_{12} A_{i}=0$ and $\operatorname{tr}\left(P_{2}+Q_{13}\right) A_{i}=0(i=1,2,3)$. Using the relations: $\operatorname{tr} u_{i} u_{j}^{\prime} A_{k}=u_{i}^{\prime} A_{k} u_{j}$ or $u_{j}^{\prime} A_{k} u_{i}$ and $A_{i} e_{j}=A_{j} e_{i}$, the former equation is reduced to $\left(\sum_{i=1}^{3} u_{1 i} A_{i}\right) u_{2}=0$,
while the latter is $\left(\sum_{i=1}^{3} u_{1 i} A_{i}\right) u_{3}=-\left(u_{2}^{\prime} A_{1} u_{2}, u_{2}^{\prime} A_{2} u_{2}, u_{2}^{\prime} A_{3} u_{2}\right) . \quad \sum_{i=1}^{3} u_{1 i} A_{i}$ is the symmetric linear map, then the kernel is orthgonal to the image. Therefore we obtain $u_{2}^{\prime}\left(u_{2}^{\prime} A_{1} u_{2}, u_{2}^{\prime} A_{2} u_{2}, u_{2}^{\prime} A_{3} u_{2}\right)^{\prime}=0$. Using $A_{i} e_{j}=A_{j} e_{i}$, the above former equation can be reduced to $\left(\sum_{i=1}^{3} u_{2 i} A_{i}\right) u_{1}=0$. Then we see that $\operatorname{det}\left(\sum_{i=1}^{3} u_{2 i} A_{i}\right)$ $=0$. We finish the proof of assertion.

We are now in the position to prove the theorem 3.2. The number of intersections is equal to the number of solution of equations (1) by the assertion. For given γ, (1) is as follow :
$x^{3}+3 x z^{2}+3 y^{2} z+z^{3}=0, x^{2} z+x z^{2}-x y^{2}-z^{3}=0$. where we put $u_{2}=(x, y, z)^{\prime}$. Except the trivial solution $(0, y, 0)$, we have two solution by a simple calculation. Therefore this show theorem 3.2.

References

[1] T. Abiko: On the normal form of 3-form with two variables, Kushiro tech. coll. memo. 11 (1976), 113-129.
[2] T. Abiko: Some properties of $S L(n)$ action on some Grassmanian manifold, Kushiro tech. coll. memo. 12 (1977), 201-206.
[3] D. Gromoll and W. Meyer: On differentiable fuuctions with isolated critical points, Topology 8 (1968), 361-369.
[4] J. MATHER: Stability of C^{∞}-mappings III, finitely determined map-germs, Publ. Math. IHES 35 (1968), 127-156.
[5] J. MATHER: Unpublished noted on right equivalence.
[6] D. Siersma: The singulalities of C^{∞}-functions of right codimension smaller or equal eight, Indag. math. 35 (1973), 31-37.
[7] B. L.v.d. WaERDEN: Einführung in die Algebraishe Geometrie Springer Berlin (1939).
[8] G. Wassermann: Stability of unfoldings, Lecture notes in Math. No. 393, Springer (1974).

