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Remarks on Xia’s inequality and Chevet’s inequality

concerned with cylindrical measures

By Yasuji TAKAHASHI
(Received June 13, 1983)

\S 1. Introduction

In [5] D. Xia has established a certain inequality concerned with quasi
invariant measures, and thereafter his result was extended to the cylindrical
measure case by W. Linde [2] and the author [4]. On the other hand, in [1]
S. Chevet has established a similar inequality concerned with kernels of
cylindrical measures.

The main purpose of the present paper is to give the generalizations
of their results. Explicitly stating, we shall prove the following theorems.

THEOREM 1. 1. Let E and F be linear topological spaces, T be a con-
tinuous linear mapping of F into E, and suppose that F is barrelled. Let f
be a function defifined on E^{*} {but not necessarily everywhere fifinite) which
satisfifies the following two conditions;

(1) 0\leqq f(tx^{*})\leqq tf(x^{*})\leqq\infty , for every t>0 and every x^{*}\in E^{*} ,
(2) for every y\in F, there is a \delta>0 such that the inequality f(x^{*})<\delta

implies |\langle x^{*}, T(y)\rangle|<1 , for every x^{*}\in E^{*} .
Then there exists a neighborhood V of zero in F such that for every

x^{*}\in E^{*} , the inequality

\sup_{y\in V}|\langle x^{*} , T(y)\rangle|\leqq f(x^{*})

holds.

THEOREM 1. 2. Let E and F be linear topological spaces, T be a con-
tinuous linear mapping of F into E, and suppose that F is of the second
category. Let \{f_{n}\} be a sequence consisting offunctions defifined on E^{*} {but
not necessarily everywhere fifinite) which satisfifies the following two condi-
tions;

(1) 0\leqq f_{n}(tx^{*})\leqq tf_{n}(x^{*})\leqq\infty , for every t>0 , every natural number n
and every x^{*}\in E^{*} ,
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(2) for every y\in F, there are a \delta>0 and a natural number n such
that the inequality f_{n}(x^{*})<\delta implies |\langle x^{*}, T(y)\rangle|<1 , for every x^{*}\in E^{*} .

Then there exist a natural number n and a neighborhood V of zero
in F such that for every x^{*}\in E^{*} , the inequality

\sup_{y\in V}|\langle x^{*} , T(y)\rangle|\leqq f_{n}(x^{*})

holds.
We now remark that Theorem 1. 1 holds for a locally convex space F

if and only if it is barrelled, and Theorem 1. 2 holds for a locally convex
space F if and only if it satisfies that for every sequence \{B_{n}\} consisting of
convex balanced closed subsets of F such that F=\cup B_{n} , some B_{n} contains
a neighborhood of zero in F.

In Section 4, our main theorems are applied for the study of quasi-
invariant measures and kernels of cylindrical measures and then, we obtain
the several inequalities (cf. Theorems 4. 1, 4. 3 and 4. 4) which generalize the
results of S. Chevet [1], W. Linde [2], D. Xia [5] and the author [4].

In Section 5, using these inequalities, we shall show that if a barrelled
locally convex Hausdorff space E admits a cylindrical measure \mu of weak
p-th order (for \circ<p<\infty) such that the kernel of \mu contains E, then E is
normable, and the strong dual (E^{*}, b) is isomorphic to a quotient space of
a subspace of L^{p}(\nu) , for some probability space (\Omega, \Sigma, \nu) . In particular, taking
p=2, we obtain that a quasi-complete barrelled locally convex Hausdorff space
E is isomorphic to a Hilbert space if and only if it admits a cylindrical
measure \mu of weak second order such that the kernel of \mu contains E.

Throughout this paper except for Section 3, we assume that all linear
spaces are with real coefficients.

\S 2. Definitions and notations

Let E be a linear topological space, E^{*} be its topological dual space and
\mu be a cylindrical measure on E.

DEFINITION 2. 1. For \circ<p<\infty , the cylindrical measure \mu is called of
weak p-th order if for every x^{*}\in E^{*} , the inequality

\int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x)<\infty

holds. In particular, if \mu is of weak 2-th order, then we shall call it of
weak second order.

DEFINITION 2. 2. An element x of E is called an admissible shift for
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the cylindrical measure \mu if for every \epsilon>0 , there is a \delta>0 such that the
inequality \mu(Z)<\delta implies \mu(Z-x)<\epsilon , for every cylindrical set Z of E. The
set of all admissible shifts of \mu will be denoted by M_{\mu} .

If G is an additive subgroup of E such that G\subset M_{\mu} , then the cylindrical
measure \mu will be called quasi-invariant under G.

DEFINITION 2. 3. An element x of E is called a partially admissible
shift for the cylindrical measure \mu if there are an \epsilon>0 and a \delta>0 such
that the inequality \mu(Z)<\delta implies \mu(Z-x)<1-\epsilon , for every cylindrical set
Z of E. The set of all partially admissible shifts of \mu will be denoted by \overline{M}_{\mu} .

We shall now define the kernel of the cylindrical measure \mu . The notion
of kernel has been introduced by S. Chevet [1]. Let L:E^{*}arrow L^{0}(\Omega, \Sigma. ’\nu) be
a random linear functional associated with \mu . (For random linear functional,
we refer to [3, p. 256].)

DEFINITION 2. 4. The inverse image of the topology of the convergence
in probability on L^{0}(\Omega, \Sigma, \nu) under L will be called the topology associated
with \mu and will be denoted by \tau_{\mu} ; \tau_{\mu} is a linear topology. The topological
dual of (E^{*}, \tau_{\mu}) will be called the kernel of \mu and will be denoted by K_{\mu} .

It is clear that \tau_{\mu} does not depend on the choice of L, and it is identical
with the weakest one of all linear topologies with which the characteristic
functional of \mu is continuous (cf. [5] or [6].) If, for each natural number n,

we put

U_{n}=\{x^{*}\in E^{*}; \mu\{x\in E;|\langle x^{*}, x\rangle|>\frac{1}{n}\}<\frac{1}{n}\} ,

then \{U_{n}\} forms a fundamental system of neighborhoods of zero with respect
to the topology \tau_{\mu} .

REMARK 2. 1. In general, the inclusions M_{\mu}\subset\overline{M}_{\mu}\subset K_{\mu} hold (cf. [4,
Proposition 3. 1].) It is obvious that K_{\mu} is contained in E if \tau_{\mu} is weaker
than the Mackey topology \tau_{k} on E^{*} , and K_{l}, contains E if and only if \tau_{\mu} is
stronger than the weak*-topology \sigma on E.

\S 3. Main theorems

In this section, we shall prove the following main theorems.
THEOREM 3. 1. Let E and F be linear topological spaces, T be a con-

tinuous linear mapping of F into E, and suppose that F is barrelled. Let

f be a function defifined on E^{*} {but not necessarily everywhere fifinite) which
sat.isfi^{\backslash }es the following two conditions;

(1) 0\leqq f(tx^{*})\leqq tf(x^{*})\leqq\infty , for every t>0 and every x^{*}\in E^{*} ,
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(2) for every y\in F, there is a \delta>0 such that the inequality f(x^{*})<\delta

implies |\langle x^{*}, T(y)\rangle|<1 , for every x^{*}\in E^{*} .
Then there exists a neighborhood V of zero in F such that for every

x^{*}\in E^{*} , the inequality

\sup_{y\epsilon V}|\langle x^{*} , T(y)\rangle|\leqq f(x^{*})

holds.
PROOF. We put U=\{x^{*}\in E^{*} ; f(x^{*})\leqq 1\} , and denote by U^{0} the polar

of U in E. Then the set U^{0} is convex balanced close in E, and so T^{-1}(U^{0})

is also convex balanced closed in F, since T is a continuous linear mapping
d_{L}E\dot{r}affi B. Here we shall show that T^{-1}(U^{0}) is a barrel in F. For this
it is sufficient to show that it is absorbing. Let y\in F be given. Then it
follows from (2) that there is a \delta>0 such that f(x^{*})<\delta (for x^{*}\in E^{*}) implies
|\langle x^{*}, T(y)\rangle|<1 , and so from (1) we have \delta y\in T^{-1}(U^{0}) . This means that
the set T^{-1}(U^{0}) is absorbing, so that it must be a barrel in F. Since F is
barrelled, there exists a neighborhood V of zero in F such that V\subset T^{-1}(U^{0}) ,
and this also means that for every x^{*}\in E^{*} with f(x^{*})\leqq 1 , the inequality

, \sup_{\tau\epsilon V}|\langle x^{*} , T(y)\rangle|\leqq 1

holds. From this and (1), we get the desired inequality. This completes
the proof.

REMARK 3. 1. As is shown in this proof, if F is barrelled, then Theorem
3. 1 certainly holds. Here we can show that the converse is true for every
locally convex space F, that is, if F is a locally convex space for which
Theorem 3. 1 holds, then it must be barrelled. In fact, let F be a locally
convex space for which Theorem 3. 1 holds. Let E=F, and let T be an
identity mapping of F onto E. Let A be any barrel in E, and denote by
A^{0} the polar of A in E^{*} . Define

f(x^{*})= \inf\{\alpha>0;\frac{1}{\alpha}x^{*}\in A^{0}\} , for every x^{*}\in E^{*}

Then the function f defined on E^{*} (but not necessarily everywhere finite)
certainly satisfies the conditions (1) and (2) of Theorem 3. 1, and it therefore
follows from the assumption of F that there exists a neighborhood V of
zero in F such that for every x^{*}\in E^{*} , the inequality

\sup_{y\epsilon r}|\langle x^{*} , T(y)\rangle|\leqq f(x^{*})

holds. This means A^{0}\subset(T(V))^{0}, and so we have T(V)\subset A , since A is a
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barrel. Consequently, E is barrelled, so that F is also barrelled.
THEOREM 3. 2. Let E and F be linear topological spaces, T be a con-

tinuous linear mapping of F into E, and suppose that F is of the second
category. Let \{f_{n}\} be a sequence consisting of functions defifined on E^{*} {but
not necessarily everywhere finite) which satisfifies the following two condi-
tions;

(1) 0\underline{\leq}f_{n}(tx^{*})\leqq tf_{n}(x^{*})\leqq\infty , for every t>0 , every natural number n
and every x^{*}\in E^{*} ,

(2) for every y\in F, there are a \delta>0 and a natural number n such
that the inequality f_{n}(x^{*})<\delta implies |\langle x^{*}, T(y)\rangle|<1 , for every x^{*}\in E^{*} .

Then there exist a natural number n and a neighborhood VJo .z..e.ro in.
F such that for every x^{*}\in E^{*} , the inequality

\sup_{y\epsilon r}|\langle x^{*} , T(y)\rangle|\leqq f_{n}(x^{*})

holds.

PROOF. For each natural numbers m and n, we put

A_{m,n}=\{x^{*}\in E^{*}; f_{n}(x^{*}) \leqq\frac{1}{m}\} ,

and denote by A_{m,n}^{o} the polars of A_{m,n} in E. Then we have T(F)\subset\cup A_{m,n}^{o} .
m,n

For let y\in F be given. It follows from (2) that there are a \delta>0 and a
natural number n such that for every x^{*}\in E^{*} , |\langle x^{*}, T(y)\rangle|<1 if f_{n}(x^{*})<\delta ,

so that, taking m> \frac{1}{\delta} , we have T(F)\in A_{m,n}^{o} .
Since F= \bigcup_{m,n}T^{-1}(A_{m,n}^{o}) and each T^{-1}(A_{m,n}^{o}) is convex balanced closed in

F, and also since F is of the second category, there exist natural numbers
m and n, and a neighborhood W of zero in F such that W\subset T^{-1}(A_{m,n}^{o}) , so
that, if we put V= \frac{1}{m}W, then it follows from (1) that for every x^{*}\in E^{*}

with f_{n}(x^{*})\leqq 1 , the inequality

\sup_{\tau’\in V}|\langle x^{*} , T(y)\rangle|\leqq 1

holds. From this and (1), we get the desired inequality. This completes the
proof.

REMARK 3. 2. As is shown in this proof if F is of the second category,
then Theorem 3. 2 certainly holds. Here we shall consider the converse.
It is shown that if F is a locally convex space for which Theorem 3. 2 holds,
then it must satisfy the following; for every sequence \{B_{n}\} consisting of
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convex balanced closed subsets of F such that F= \bigcup_{n}B_{n} , there exists some
B_{n} which contains a neighborhood of zero in F. For this we use the same
method as in the one of Remark 3. 1. We note that if F is a strict (LB)-

space, that is, it can be represented as the strict topological inductive limit
of a properly increasing sequence of Banach spaces, then it is clearly a
complete barrelled space, however, Theorem 3. 2 does not hold.

\S 4. Xia’s inequality and Chevet’s inequality

In this section, we shall apply our main theorems established in Section
3 for the study of quasi-invariant measures and kernels of cylindrical measures
and then, we obtain the following inequalities which generalize the results of
D. Xia [5], W. Linde [2], S. Chevet [1] and the author [4].

THEOREM 4. 1. Let E and F be linear topological spaces, T be a con-
tinuous linear mapping of F into E, and 0<p<\infty . Suppose that F is
barrelled, and also suppose that there exists a cylindrical measure \mu on E
such that K_{\mu}\supset T(F) . Then there exists a neighborhood V of zero in F
such that for every x^{*}\in E^{*} , the inequality

\sup_{\epsilon yr}|_{\backslash }’x^{*} , T(y) \rangle|\leqq(\int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{\frac{1}{p}}

holds.

PROOF. If we put

f(x^{*})=( \int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{\frac{1}{p}} , for every x^{*}\in E^{*} ,

then, the function f defined on E^{*} (but not necessarily everywhere finite)
satisfies the conditions (1) and (2) of Theorem 3. 1. For this, since f clearly
satisfies (1), it is sufficient to show that it satisfies (2). As mentioned in
Section 2, the topology \tau_{\mu} is identical with the topology of the convergence
in probability, it therefore follows from a general theorem on measure theory
that for each sequence \{x_{n}^{*}

.
\}\subset E^{*} , if the sequence \{f(x_{n}^{*})\} converges to zero,

then \{x_{n}^{*}\} converges to zero with respect to \tau_{\mu} , and since K_{\mu}\supset T(F) , the
sequence \{\langle x_{n}^{*}, T(y)\rangle\} must converges to zero, for every y\in F. This means
that f satisfies (2), so that, from Theorem 3. 1 we get the desired inequality.
This completes the proof.

Lemma 4. 2. Let E be a linear topological space, F be a linear subspace
of E, and \mu be a Borel probability measure on E which is quasi-invariant
under F. Then, for every measurable linear subspace G of E with \mu(G)>0 ,
the inclusion F\subset G holds.
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The proof is easy, so we omit it.

THEOREM 4. 3. Let E and F be linear topological spaces, T be a con-
tinuous linear mapping of F into E, and 0<p<\infty . Suppose that F is
barrelled, and also suppose that there exists a Borel probability measure \mu

on E which is quasi-invariant under T(F) . Then, for every measurable
subset A of E with \mu(A)>0 , there exists a neighborhood V of zero in F
such that for every x^{*}\in E^{*} , the inequality

\sup_{y\in V}|\langle x^{*} , T(y) \rangle|\leqq(\int_{A}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{\frac{1}{p}}

holds.

PROOF. If we put

f(x^{*})=( \int_{A}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{\frac{1}{p}}, for every x^{*}\in E^{*} ,

then, the function f defined on E^{*} (but not necessarily everywhere finite)
satisfies the conditions (1) and (2) of Theorem 3. 1. For this, since f clearly
satisfies (1), it is sufficient to show that it satisfies (2). Suppose that f does
not satisfy (2). Then there exist an element y of F and a sequence \{x_{n}^{*}\}

consisting of elements of E^{*} such that |\langle x_{n}^{*}, T(y)\rangle|\geqq 1 , for all natural num-
bers n , and the sequence \{f(x_{n}^{*})\} converges to zero. It follows from a general
theorem on measure theory that there exists a subsequence \{x_{n_{j}}^{*}\} of \{x_{n}^{*}\}

such that it converges to zero almost surely on A. Here we put

G= \{x\in E;\lim_{j}\langle x_{n_{j}}^{*}, x\rangle=0\}(

Then, G is a measurable linear subspace of E, and \mu(G)>0 . It follows
from Lemma 4. 3 that T(F)\subset G, since \mu is quasi-invariant under T(F) .
However, this is a contradiction. Thus f satisfies (2), so that, from Theorem
3. 1 we get the desired inequality. This completes the proof.

REMARK 4. 1. Theorem 4. 3 must be compared with Theorem 4. 1. As
mentioned in Section 2, if \mu is quasi-invariant under T(F) , then the kernel
of \mu contains T(F) . But in general, the converse is not true. It can be
easily verified that if the Borel probability measure \mu on E is not quasi-
invariant under T(F) , then in general, Theorem 4. 3 does not hold even in
the case of K_{\mu}\supset T(F) .

THEOREM 4. 4. Let E and F be linear topological spaces, T be a con -

tinuous linear mapping of F into E, and suppose that F is of the second
category. Also suppose that there exists a cylindrical measure \mu on E such
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that K_{\mu}\supset T(F) . Then there exists a neighborhood V of zero in F such that

for every x^{*}\in E^{*} , the inequality

\sup_{y6V}|\langle x^{*} , T(y)\rangle|\leqq J_{e}(\mu)(x^{*})

holds, where J_{e}(\mu) is defifined as follows;

J_{\epsilon}( \mu)(x^{*})=\inf\{\alpha>0;\mu\{x\in E;|\langle x^{*}, x\rangle|>\alpha\}<\epsilon\}

PROOF. For each natural number n, we put

A_{n}=\{x^{*}\in E^{*}; \mu\{x\in E;|\langle x^{*}, x\rangle|>1\}<\frac{1}{n}\}’.

and define

f_{n}(x^{*})= \inf\{\alpha>0 ; \frac{1}{\alpha}x^{*}\in A_{n}\}, for every x^{*}\in E^{*}

Then, as mentioned in Section 2, if we put U_{n}=\{x^{*}\in E^{*}; f_{n}(x^{*})< \frac{1}{n}\},

then \{U_{n}\} forms a fundamental system of neighborhoods of zero with respect
to the topology \tau_{\mu} on E^{*} . Since K_{\mu}\supset T(F) , the sequence 1f_{n}} certainly
satisfies the conditions (1) and (2) of Theorem 3. 2, so that there exist a
natural number n and a neighborhood V of zero in F such that for every
x^{*}\in E^{*} , the inequality

\sup_{y\in V}|\langle x^{*} , T(y)\rangle|\leqq f_{n}(x^{*})

holds. Here, if we put \epsilon=\frac{1}{n} , then f_{n}(x^{*})=J_{\epsilon}(\mu)(x^{*}) , for every x^{*}\in E^{*} .
This completes the proof.

COROLLARY 4. 5. Let E be a locally convex Hausdorff space of the
second category. Suppose that there exists a cylindrical measure \mu on E
such that K_{\mu}\supset E. Then E is normable.

This proof follows from Theorem 4. 4 and the fact that for every
natural number n and every x^{*}\in E^{*} , f_{n}(x^{*})<\infty .

REMARK 4. 2. If F is barrelled, then Theorem 4. 1 certainly holds, but
in general, Theorem 4. 4 does not hold. Here we shall give a counter-
example for which Corollary 4. 5 does not hold. Let E be the strict induc-
tive limit of a properly increasing sequence \{E_{n}\} of finite dimensional spaces.
Then E is a complete barrelled locally convex Hausdorff space, but it is not

of the second category. Let \{e_{n}\} be a canonical basis of E, and let G be
the additive subgroup of E generated by \{e_{n}\} . Since G is a countable set,
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we put G=\{x_{n}\} . Let \{c_{n}\} be a sequence consisting , of positive numbers
such that \sum c_{n}=1 . Define \mu\{x_{n}\}=c_{n} , for all n . Then \mu is a Borel pr0-
bability measure on E such that K_{\mu}=E. However, since E is not normable,
Corollary 4. 5 does not hold.

\S 5. Applications

In this section, using Theorem 4. 1, we shall prove the following the0-
rems.

THEOREM 5. 1. Let E be a barrelled locally convex Hausdorff space,
and let 0<p<\infty . Supppose that there exists a cylindrical measure \mu on
E of weak p-th order such that K_{\mu}\supset E. Then E is- normable, and the
strong dual (E^{*}, b) is isomorphic to a quotient space of a closed linear
subspace of L^{p}(\nu) , for some probability space (\Omega, \Sigma, \nu) .

PROOF. First, we shall prove that E is normable. It follows from
Theorem 4. 1 that there exists a neighborhood V of zero in E such that
for every x^{*}\in E^{*} , the inequality

(*) \sup_{x\in V}|\langle x^{*}, x\rangle|\leqq(\int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{\frac{1}{p}}<\infty

holds. This implies E^{*}=\cup nV^{0}, where V^{0} is the polar of V, so that E
n

must be normable, since it is a locally convex Hausdorff space. Next, we
shall prove the second assertion. If we put

||x^{*}||_{p}=( \int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{\frac{1}{p}}, for every x^{*}\in E^{*} ,

then it follows from (^{*}) that ||\cdot||_{p} is a quasi-norm on E^{*} , and the topology
on E^{*} defined by ||\cdot||_{p} is stronger than the strong topology b on E^{*} . It
is well known (cf. [3]) that each cylindrical measure determines a random
linear functional, that is, there exists a probability space (\Omega, \Sigma, \nu) and a linear
mapping L of E^{*} into L^{0}(\nu) such that

\mu(Z)=\nu\{\omega\in\Omega;(L(x_{1}^{*})(\omega), \cdots,L(x_{n}^{*})(\omega))\in B\}

for every x_{1}^{*} , \cdots , x_{n}^{*}\in E, and for every cylindrical set Z=\{x\in E;(\langle x_{1}^{*}, x\rangle, \cdots ,
\langle x_{n}^{*}, x\rangle)\in B\} , where B is a Borel subset of R^{n} . Consequently, for every
x^{*}\in E^{*} , we have

||x^{*}||_{p}=( \int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{\frac{1}{p}}=(\int_{\Omega}|L(x^{*})(\omega)|^{p}d\nu(\omega))^{\frac{1}{p}}\downarrow

This shows that the quasi-normed space (E^{*}, ||\cdot||_{p}) is linearly isometric to
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a subspace of L^{p}(\nu) , so that, if we denote by G the completion of (E^{*}, ||\cdot||_{p}) ,

then G is also linearly isometric to a closed subsp\dot{a}ce of L^{p}(\nu) . Since the
identity mapping of (E^{*}, ||\cdot||_{p}) onto (E^{*}, b) is continuous, it can be extended
to a continuous linear mapping of G onto (E^{*}, b) . Since (E^{*}, b) is a Banach
space, it follows from the closed graph theorem that it is isomorphic to a
quotient space of G. This completes the proof.

Taking p=2, we get the following theorem.

THEOREM 5. 2. A quasi-complete barrelled locally convex Hausdorff
space E is isomorphic to a Hilbert space if and only if it admits a cylindri-
cal measure \mu of weak second order such that K_{\mu}\supset E.

PROOF. If E is isomorphic to a Hilbert space, then the canonical Gaus-
sian cylindrical measure \gamma on E certainly satisfies the desired conditions (cf.

[2] ) . On the other hand, the converse assertion follows from Theorem 5. 1.
This completes the proof.

REMARK 5. 1. Theorem 5. 1 can be slightly generalized as follows: Let
E be a locally convex Hausdorff space, F be a linear subspace of E, and \mu

be a cylindrical measure on E of weak p-th order (0<p<\infty) . If K_{\mu}\supset F, and
F is barrelled with respect to the induced topology, then F is normable,

and the strong dual (F^{*}, b) is isomorphic to a quotient space of a closed
linear subspace of L^{p}(\nu) , for some probability space (\Omega, \Sigma, \nu) . In this case,

if p=2, then F is isomorphic to a pre-Hilbert space. This proof can be
done by the same way as in the proof of Theorem 5. 1.

COROLLARY 5. 3. Let E be a Fr\’echet space and F be a closed linear
subspace of E. Then the space F equipped with the induced topology is
isomorphic to a Hilbert space if and only if there exists a cylindrical
measure \mu on E of weak second order such that K_{\mu}\supset F.
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