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0. Introduction.

The theory of root systems attached to finite dimensional complex
semisimple Lie algebras has been developed much deeply (cf. [1], [3]). As
a natural generalization of these Lie algebras and the corresponding root
systems, the notion of Lie algebras defined by (generalized) Cartan matrices
has recently been introduced (cf. [4], [10]), and the structure of associated
root systems has been studied (cf. [5], [12], [13], [14]).

On the other hand, in [6] the root lattice, which is corresponding to
a finite, Euclidean or low rank hyperbolic Cartan matrix, and its orthogonal
group are discussed. For example, it has been confirmed that in the case

when a Cartan matrix is (\begin{array}{lll}2 -3 -1-1 2 -1-1 -3 2\end{array}) the orthogonal group of the associ-

ated root lattice is strictly greater than the subgroup generated by its Weyl
group, diagram automorphism group and -I (minus identity). Indeed the
group index is 2 (cf. [6]).

The starting point of this paper is the following observation:
(\#) If \Delta is a root system of type C_{4}, and if \Gamma and O(\Gamma) are the root

lattice and its orthogonal group respectively, then the set of all elements in
O(\Gamma) -Orbit of \Delta is just a root system of type F_{4} .

One can easily see this by looking at the list of root systems in [1] (cf.
Section 3). In this paper we shall show the following:

(\#\#) If \Delta is a root system associated with a finite, Euclidean or hyper-
bolic Cartan matrix, and if \Gamma and O(\Gamma) are the root lattice and its orthogo-
nal group respectively, then the set of all elements in O(\Gamma) -Orbit of \Delta forms
again a root system (cf. Section 2, Theorem A).

If an original Cartan Matrix is (\begin{array}{lll}2 -1 0-4 2 -20 -2 2\end{array}) , for example, then we get

as the Cartan matrix corresponding to the new root system
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(cf. Section 3).

1. Preliminary.

In this section, we will review the theory of Kac-Moody Lie algebras
(cf. [4], [7], [10]).

An \mathscr{l}\cross \mathscr{l} integral matrix A=(a_{ij}) is called a (generalized) Cartan matrix
if the following three conditions hold.

(C1) a_{ii}=2 for all i\in J,
(C2) a_{ij}\leq 0 for distinct i, j\in J,
(C3) a_{ij}=0 implies a_{ji}=0 for i, j\in J,

where J=\{1,2, \cdots, \mathscr{l}\} . If a_{ij}\cdot a_{ji}\leq 4 , we draw a diagram, called a Dynkin
diagram. The Dynkin diagram of A is a diagram having \mathscr{l} vertices, the
i-th joined to the j-th (i\neq j) by edges or arrows according to the following rule.
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