Root systems and orthogonal groups

of root lattices

By Jun Morita

(Received January 24, 1983)

0. Introduction.

The theory of root systems attached to finite dimensional complex semisimple Lie algebras has been developed much deeply (cf. [1], [3]). As a natural generalization of these Lie algebras and the corresponding root systems, the notion of Lie algebras defined by (generalized) Cartan matrices has recently been introduced (cf. [4], [10]), and the structure of associated root systems has been studied (cf. [5], [12], [13], [14]).

On the other hand, in [6] the root lattice, which is corresponding to a finite, Euclidean or low rank hyperbolic Cartan matrix, and its orthogonal group are discussed. For example, it has been confirmed that in the case when a Cartan matrix is $\left(\begin{array}{rrr}2 & -3 & -1 \\ -1 & 2 & -1 \\ -1 & -3 & 2\end{array}\right)$ the orthogonal group of the associated root lattice is strictly greater than the subgroup generated by its Weyl group, diagram automorphism group and $-I$ (minus identity). Indeed the group index is 2 (cf. [6]).

The starting point of this paper is the following observation:
(\#) If Δ is a root system of type C_{4}, and if Γ and $O(\Gamma)$ are the root lattice and its orthogonal group respectively, then the set of all elements in $O(\Gamma)$-orbit of Δ is just a root system of type F_{4}.

One can easily see this by looking at the list of root systems in [1] (cf. Section 3). In this paper we shall show the following:
(\#\#) If Δ is a root system associated with a finite, Euclidean or hyperbolic Cartan matrix, and if Γ and $O(\Gamma)$ are the root lattice and its orthogonal group respectively, then the set of all elements in $O(\Gamma)$-orbit of Δ forms again a root system (cf. Section 2, Theorem A).

If an original Cartan Matrix is $\left(\begin{array}{rrr}2 & -1 & 0 \\ -4 & 2 & -2 \\ 0 & -2 & 2\end{array}\right)$, for example, then we get $\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -4 & 2\end{array}\right)$ as the Cartan matrix corresponding to the new root system
(cf. Section 3).

1. Preliminary.

In this section, we will review the theory of Kac-Moody Lie algebras (cf. [4], [7], [10]).

An $\ell \times \ell$ integral matrix $A=\left(a_{i j}\right)$ is called a (generalized) Cartan matrix if the following three conditions hold.
(C1) $\quad a_{i i}=2$ for all $i \in J$,
(C2) $\quad a_{i j} \leq 0$ for distinct $i, j \in J$,
(C3) $a_{i j}=0$ implies $a_{j i}=0$ for $i, j \in J$,
where $J=\{1,2, \cdots, \ell\}$. If $a_{i j} \cdot a_{j i} \leq 4$, we draw a diagram, called a Dynkin diagram. The Dynkin diagram of A is a diagram having ℓ vertices, the i-th joined to the j-th $(i \neq j)$ by edges or arrows according to the following rule.

$a_{i j}$,	$a_{j i}$	i	j	$a_{i j}$,	$a_{j i}$	i	j
0	0	0	0	-1	-3	$\square 0$	
-1	-1	0	0	-1	-4	$\square 0$	
-1	-2	0	0	-2	-2	$\square 0$	

For any Cartan matrix A and for any field F of characteristic zero, we let by $\mathfrak{F}=\mathfrak{F}_{F}(A)$ denote the Lie algebra over F generated by 3ℓ generators $e_{i}, h_{i}, f_{i}(i \in J)$ with the defining relations $\left[h_{i}, h_{j}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i},\left[h_{i}, e_{j}\right]=$ $a_{i j} e_{j},\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}$ for all $i, j \in J$, and $\left(\operatorname{ad} e_{i}\right)^{-a_{i j}+1} e_{j}=0,\left(\operatorname{ad} f_{i}\right)^{-a_{i j}+1} f_{j}=0$ for distinct $i, j \in J$. We call this algebra \mathfrak{F} the (standard) Kac-Moody Lie algebra over F associated with A. Let Γ be a free Z-module of rank ℓ, and choose a free basis $I I=\left\{\alpha_{1}, \cdots, \alpha_{\ell}\right\}$ of Γ. By defining $\operatorname{deg}\left(e_{i}\right)=\alpha_{i}, \operatorname{deg}\left(h_{i}\right)$ $=0$, $\operatorname{deg}\left(f_{i}\right)=-\alpha_{i}$ for all $i \in J$, we can view \mathfrak{F} as a Γ-graded Lie algebra $\mathfrak{F}=\underset{\alpha \in T}{ } \mathfrak{F}^{\alpha}$, where \mathfrak{F}^{α} is the subspace of \mathfrak{F} corresponding to α. Put $\Delta=\left\{\alpha \in \Gamma \mid \mathfrak{F}^{\alpha} \neq 0\right\}$, called the root system of \mathfrak{F}. We may say that $\Delta=(\Delta, \Pi)$ is a root system of A. Since $\mathfrak{F}^{\alpha_{i}}=F e_{i}, \mathfrak{F}^{-\alpha_{i}}=F f_{i}$ and $\mathfrak{F}^{0}=\bigoplus_{i \in J} F h_{i}$, we have $\left\{ \pm \alpha_{i} \mid i \in J\right\} \cup\{0\} \subseteq \Delta$. We call $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{\ell}\right\}$ a fundamental root system of Δ. Let $Z_{+}=Z_{+}(\Pi)$ be the set of nonzero elements $\sum c_{i} \alpha_{i} \in \Gamma$ satisfying c_{i} is nonnegative for all $i \in J$, and let $Z_{-}=-Z_{+}$and $Z=Z(\Pi)=Z_{+}{ }^{\cup}\{0\} \cup Z_{-}$. Then $\Delta \subseteq Z$, which leads to a decomposition $\Delta=\Delta_{+}{ }^{U}\{0\}^{\cup} \Delta_{-}$. Let w_{i} be a Z-module automorphism of Γ defined by $w_{i}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j} \alpha_{i}$, and let W be the subgroup of $G L(\Gamma)$ generated by w_{i} for all $i \in J$. We call W the Weyl

