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On the group of isometries of an affine

homogeneous convex domain
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Introduction

Let 2 be a convex domain in the n-dimensional real number space R",
not containing any affine line, and let G(2) be the Lie group of all affine
transformations on R" leaving the domain £ invariant. If the group G(£)
acts transitively on 2, then 2 is said to be (affine) homogeneous. By using
the characteristic function ¢ of 2, we can define a G(£)-invariant Riemannian
metric ¢, on £ as follows: '

0% log ¢
00= 2 o

dxtdx?,

where (!, 22, ---, z%) denotes a system of affine coordinates on R". The
Riemannian metric g, is called the canonical metric of 2 (cf. [7], [8]). A
homogeneous convex domain is said to be reducible if it is affinely equivalent
to a direct product of homogeneous convex domains. A homogeneous
convex domain is said to be irreducible if it is not reducible. We note
that a homogeneous convex cone is a special case of a homogeneous convex
domain. ‘

For a homogeneous convex domain £, we denote by I(£2) the group of
all isometries of the homogeneous Riemannian manifold (2, g,). Then, it
has been proved that the groups G(V) and I(V) for an irreducible homo-
geneous convex cone V have the same connected component containing the
identity element ([3], [6]).

The aim of the present paper is to extend the above result to homo-
geneous convex domains. Namely, we will prove the following statement :
If a homogeneous convex domain Q is irreducible and not ajfinely equivalent
to an elementary domain, then the groups G(2) and I(2) have the same
connected component containing the identity element (Theorem 6.1). The
definition of an elementary domain will be given in §3. In order to prove
the above result, we will need the theory of T-algebras developed by Vinberg
[8], [9], and also, we will make use of the results obtained in [5], [6] and [7].
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§ 1. Preliminaries.

In this section, we recall some of fundamental definitions and results
on homogeneous convex domains and T-algebras. The details for them may
be found in Vinberg [8], [9].

1.1. From a homogeneous convex domain £ in R”, a homogeneous
convex cone V=V(Q) in R""! can be constructed as follows :

V={tz,) eR"xXR; 29, t>0}.

The convex cone V=V(9) is called the cone fitted onto the convex domain

2 (cf. [8). The natural imbedding ¢ from 2 into V defined by
(1.1) 0: xEQ—>(x, 1)V

is equivariant with respect to the groups G(2) and G(V). Moreover, ¢ is
an isometric imbedding with respect to the canonical metrics. Therefore,
the homogeneous Riemannian manifold (2, ¢g,) can be regarded as a Rie-

mannian submanifold of (V, gy) (cf. [7].

1.2. We now recall a relation between homogeneous convex domains
and T-algebras. Let A= 3} A;; be a T-algebra of rank r (r>2) provided

1<i,j<r
with an involution *. General elements of the subspace U;; will be denoted

as ajj, bij, ¢;j, +++, and also, an element a of A will be denoted by the matrix
a=(a;;), where a;; is the ;;-component of a.
Throughout this paper, we will use the following notation :

: . 1 .
nij:dlm?l,;j:dlm?lji, ni:l+§—2nki <1<Z, _]<7‘)

k#1

e =(ei), e;; =0 (Kronecker delta) .

Let us define subsets T=T(A), X=X(A) and V=V(A) of A by

1.2 T={t=(ty)eW; 1t,>0 1<i<n), £;,;=0 (1 <j<i<n},
X={ze¥; x*=x} and V={u*,; tcT),

‘respectively. Then the set V is a homogeneous convex cone in the real

vector space X and the set T is a connected Lie group having the element

e as the identity element. The Lie group 7 acts linearly and simply tran-
sitively on V in the following manner :

(t,ss) ETXV—>(ts) (ts)* V.

The Lie algebra t of T can be identified with the subspace Y, U;; of A

1<i<j<r
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provided with the bracket product [a, b]=ab—ba (cf. [8]).
1.3. We next define subsets Ty=Ty(), Xo=X,(A) and 2=02(A) of A by

Ty={t=(t)ET; t=1}, X={z=(z)eX; ,=0)
and
(1. 3) Q=VAN(Xe+e = {x =(z;;) eV ; z,, = 1} ,

respectively. Then £ is a homogeneous convex domain in the affine subspace
Xote of X such that V() is the cone V(2) fitted onto 2. The set T, is
a closed (normal) subgroup of T acting affinely and simply transitively on
£2 in the following manner :

(1.4 (t, ss¥)ET )X Q—(ts) (ts)* =R .

Conversely, every homogeneous convex domain is affinely equivalent to a
convex domain of the form () by means of a T-algebra A. The subspace
t, of t defined by

t={t= () €t; ., =0}

is the Lie subalgebra of t corresponding to the subgroup T, of T (cf. [8).
1.4. For a T-algebra A= 3 UA;; of rankr (r>2), we define a set I

1<, j<r
of indices by I={1,2,---,7}. A permutation ¢ of the set I is said to be
admissible to A if the condition 7,¢.; =0 holds for every pair (7, ) of indices
satisfying 1<j and ¢(j)<e(i). Using a permutation ¢ admissible to 2, we
have a new T-algebra A= Y A:; which is different from % only in the
1<i,j<r
grading as follows :

As; =Wy -

Then the cone V(¥) is linearly equivalent to the new cone V() under the
permutation of the coordinates on X() by ¢. As for homogeneous convex
domains, we can easily see that a convex domain 2(%) is linearly equivalent
to the domain Q(A¢) if &(r)=r.

We now state a necessary condition for a homogeneous convex domain
2=02() to be irreducible in terms of a T-algebra A. The following pro-
position will be used in § 4. '

ProrosiTiON 1.1. If a homogeneous convex domain Q) is irreduci-
ble, then for every pair (i,j) of indices 1<i<j<r—1, there exists a series
Iy, Uy, =5 I Of indices 14y, 1y, -+, tn<r—1 satisfying the conditions i,=i,
in=j and n,_,; #0 2<I<m).
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ProOF. Let us suppose that there exist proper subsets J; and J, of
J={1, 2, ---,r—1} satisfying the conditions
c]::cLiJuh and 7Hj::()<iEEJL jEEJ».
Then, the domain Q() is reducible. In fact, if

Jl = {ila z.29 . zp} (Zl<12< <zp) and JZ {JI,JZ) ""jq} (]1<]2< vee <]q) ’
then the permutation ¢ of the set I defined by

i (1<k<p)
(k)= jr-p (PF1<k<r—1)
r (k=r)

is admissible to 2. As was stated above, the convex domain 2(2) is linearly
equivalent to Q(A?). So, without loss of generality, we may assume that
Ji={1,2, -, p} and J,={p+1,p+2,---,r—1} (g=r—p—1). We now define
two subspaces AP= >, AL and A®= > AP of A by

1<4,j<p+1 1<4,J<q+1

Wy (14, j<P)
oy — W, AI<<i<p, j=p+1)
A, ((=p+1, 1i<p)
Ay, (i=j=p+1)
and
WUy (1<, j<q, k=i+p, I=j+P)
o) Wer (1Ki<q, j=q+1, k=i+p)
Y| U (1<5<g, i=q+], I=j+p)
A, (i=7j=q+1)
respectively.

Then A® is closed with the multiplication and invariant under the involution
* (k=1, 2). We now introduce a new multiplication in A" as follows: For
arbitrary elements a, b&A{),, (1<i<p), we employ a multiplication (n,/m)a*b

i . . 1
in AP instead of a*b in A, where m=1—i——2— 2. 7 and we do not change
1<k<p

other relations of multiplication between elements in AY (1<i, j<p+1).
Then it is easy to see that AP is a T-algebra of rank p+1 with this multi-
plication and the involution *. Similarly, A® becomes a T-algebra of rank
g+1 (For the definition of a T-algebra, see p. 380 of [8]). Next, let us
show that the domain Q(2) is affinely equivalent to the product domain
QA X QA®). For an arbitrary element z&A, we write
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n 0 x

=0 x5 x|,

X5 Xg g
where ;e 3 Wy xp xi€ Y Wi s Y, W xp xfe Y Ui, and
1<4,j<p 1<i<p P+1<i, j<r—1 P+I<i<r—1
2;€U,,. Then the mapping :
tl 0 tg
Iy & ly 1ty
0 5 t]lEeT(WA)—> , & To(UAD) X TH(A2)
00 1 0 1 0 1

is a Lie group isomorphism, and the following affine isomorphism :

I 0 V)

0 X3 4| & Y——) (I:xl xz] , [xs ‘:4]) = Y(l) X Y(2)

® *
N + 1 Xy 1 Ty
Ty Xy

maps the domain 2() onto the product domain Q(UA?) x 2(A?), where
Y=XoA)+e, Y®=X(AP)+¢*® and e® is the unit element of A® (k=1, 2)
(cf. (1.2), (1.3) and (1. 4)). q-e.d.

It should be noted that for homogeneous convex cones, the above pro-
position has been proved by [I].

§ 2. Canonical metric and curvature tensor.

In this section, by following [6], we define an R-derivation for the
curvature tensor R on a Riemannian manifold. Furthermore, for a homo-
geneous convex domain, we recall fundamental formulas on the curvature
tensor in terms of a T -algebra.

2.1. Let M be a connected homogeneous Riemannian manifold. Let
us take an arbitrary point e M and denote by m the tangent space of M
at e. Then, by using the Riemannian metric at the point ¢, we have an
inner product {,» on m and the norm ||z||=<x, 2>¥? for x&m. Let us
consider the Riemannian curvature tensor R at the point e as a trilinear
mapping

R: mxmxm—m by R(r,v,2) =Rz, =z,
and define a quadrilinear function
(2.1) K: mxmxmxm—R by K(zy,2 w)=(R(xv,2), w).

Then the following identities are well-known (cf. e. g., p. 201 in vol. 1 of [2) :
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K(x’ Y, 2, w) = —-K(@/, xX, 2, w) = —K(x9 Y, w, z) ’
(2.2) K(x, vy, z, w)+ K{¥, 2, 2, w)+ K(z, 2, Y, w) =0,
K(z,y, 2, w) = K(z, w, z,Y)

for all z,v, 2z, wem. Let D: m—m be a skew-symmetric linear mapping.
Then, D is called an R-derivation if R is D-invariant, that is, D satisfies
the following identity :

D(R(z,9, 2)) = R(Dz,, 2)+R(x, Dy, 2)+R(z,9, D2)

for all z,9, zem. For an arbitrary linear mapping D: m—m, we define
a function DK: mxmxmxm—R by

(DK) (x, ¥, 2, w) = K(Dz, y, 2, w)+ K(z, Dy, 2, w)

(2. 3)
+ K(z,y, Dz, w)+ K(z, ¥, 2, Dw)

for z,v, 2z, wem. Then, a skew-symmetric linear mapping D: m—m is an
R-derivation if and only if D satisfies the following identity :

(2. 4) (DK) (z,¥, 2, w) =0,

for all z,7, 2, wem. From now on, we denote by D(M) the Lie algebra of
all R-derivations on m. It should be noted that ‘the structure of the Lie
algebra ®(M) is invariant under an isometric equivalence and independent of
choosing the point e.

Let i=1(M) be the Lie algebra of the group I(M) of all isometries, and
H=H(M) the isotropy subalgebra of i at the point e. Then the infinitesimal

linear isotropy representation #: §)—gl(in) at the point e is injective and the
condition

(2.5) 6(5 CD(M)
is satisfied.
2.2. We now want to describe the curvature tensor for the canonical

metric on a homogeneous convex domain in terms of a 7T-algebra. Let
A= >, A, be a T-algebra of rank » (r>2). Then, the unit element e of

1<, j<r
the Lie group T =T() is contained in the homogeneous convex cone

V=V(A). Hence, the tangent space T.(V) of V at the point e can be
naturally identified with the ambient space X=X() and also with the Lie
algebra t=t(A) by the following linear isomorphism :

£: tet—t+txeX=T,(V).

By using the canonical metric ¢y and the linear isomorphism &, we have an
inner product {,> on t as follows:
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@,y = gvle) (£(2), 6)

for x, y&t. Then, the inner product ¢, satisfies the following conditions

(cf. [8], [6]) :

(2. 6) iy, Wy =0 ((i,1) # (. 1), 1<i<j<r, 1<k<I<T),
1

(2.7) | @is bl = lelawH?Hbij?

and

(2. 8) <a7:j bjk, Cix) = <bjk’ a?j Cik> = <aij’ Cikbj;k>

for aijE%Iij, bj}cE%[jk and Cikeaik (1 <Z<]<k<r) Let us put
1

€; :Z/;Ti_eﬁn

where e;=1 is the unit element of the subalgebra ;=R ('1 <i<r). Then
|lesl|=1.

For a homogeneous convex domain 2=02(%), similarly as in the above
case, we can identify the Lie algebra t,=t,(2) with the tangent space T,(f2)
of £ at the point e and also with the real vector space Xo=Xo(A) by the
following linear isomorphism :

&: tetr—t+re X, =T,(2).

By using the canonical metric g, and the linear isomorphism &, we have an
inner product {, >, on t, as follows :

(2, Yo = Gale) (&0(2), &o¥))

for x,y&t;, Since the inclusion mapping from 2 into the cone V(%) coin-
cides with the isometric imbedding ¢ defined by (1. 1), we have the following
relations :

S(x) =¢(x) and <z, yYDy={x, ¥

for all z,y=t, So, we may omit the subscript zero in (, .

2.3. Let B (resp. R) be the connection function (resp. the curvature
tensor) for the canonical metric on a homogeneous convex domain 2=0Q().
Then g and R are given by the following formulas (cf. [4]):

‘8 : to Xto_")to N

S0 2 stanh B =(ls 2w+ (m ol )+l 11, )
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and

R: toxtoxt0_>t0 y
(2. 10)

\

R(z,y, 2 = R(z,9) = p(z, fly, 2)) — (v, Blz, D)) —B([=: Y], 2)

respectively. The connection function
a: tXt—ot
and the curvature tensor
R: txtxt—t

for the canonical metric ¢ of a homogeneous convex cone V=V() are
given by the same formulas as in the above (2.9) and (2.10), respectively.
We note that the relations between the connection functions a and B have
been clarified by Lemma 2.1 of [7].

Let 7: tyxt,—2%,, be the second fundamental form. Then, by the
formula (2.6) of [7], 7 is given by

—1
(2.11) (@) =5 <zl er

for all xz,y<t, where xz, and y, are the > A, — components of z and ¥,
1€isr—1

respectively. Let
K: t,xtyxty;Xxtp— R and K: txtxtxt—R

be the functions defined by (2.1) from the curvature tensors R and R,
respectively. Then, from the equation of Gauss (cf. vol. 2 of [2]) and the
formula (2.11), it follows that the identity

1
(2 12) K(x, Y, 2, w) = K(l‘, Y, 2, w) +4—m <<$1’ zl> <’£/1, wl> - <x1, w1> <yla z1>>
holds for all z,v, 2, w&Et,.

§ 3. Elementary domains.

Let ( , ) be an inner product on the n-dimensional real number space
R" (n>2). Then the homogeneous convex domain Q2(n) in R* defined by

2(n) ={(x,y)ERXR™; 2—(y,9)>0}

is called an elementary domain. It is known that the elementary domain
Q(n) is affinely equivalent to a domain of the form Q(2) given by means of
a T-algebra ¥ of rank two satisfying the condition n,=n—1 ([8]). In this
section, we determine the Lie algebra ®(2(n)) of all R-derivations on 2(n).
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It is easy to see that the group G(2(n)) is generated by the following
three types of transformations :

(2,9)— (2420, 9 +(a, @), y+a) (acR™),
(2, y)— (Bx, W) (A€R, 1>0),
(2, 9)—(x, Ay) (Ac0(n-1),

where O(n—1) is the orthogonal group of degree n—1.

Let us put a point e=(1,0)€2(n). Then, an affine automorphism f of
2(n) leaves the point ¢ fixed if and only if f has the following form : flz,y)
=(z, Ay) (A€O0(n—1)) for all (x,y)=0(n).

On the other hand, it is known in Proposition 2.4 of that 2(n) is
a simply connected hyperbolic space form of the sectional curvature —1/2n+
2). Therefore, 2(n) is isometric to the Riemannian symmetric space SO°(1,
n)/SO(n) (cf. p. 268 in vol. 2 of [2]). Since the covariant derivative of the
curvature tensor vanishes, the Lie algebra ®(2(n)) coincides with the linear
isotropy subalgebra 6(f(2(n))) (cf. chap. VIin vol. 1 of [2]). Hence, summing
up the results stated above, we have the following

ProrosITION 3.1. For the elementary domain Q=Q(n) of dimension n,
the isotropy subalgebra ¥(Q2) of §(2) is isomorphic to the Lie algebra o(n—1)
of O(n—1). Both the Lie algebra ®(Q) of all R-derivations and the isotropy
subalgebra Y(Q) of 1(Q) are isomorphic to the Lie algebra 8o(n) of SO(n).

§4. Some lemmas on R-derivations.

In this section, we study general properties of R-derivations on a
homogeneous convex domain. Let £ be a homogeneous convex domain.
Then, according to the result of Vinberg recalled in §1, we can assume
that 2 is a domain of the form Q() given by means of a T-algebra A=

2 Uy of rank 7 (r>2) (cf. (1.3)). We denote by D(R2) the Lie algebra of

1<i,j<r

all R-derivations on £.

4.1. We first remark that the value of the curvature tensor can be
calculated explicitly by using Lemma 2.2 of [5], Lemma 2.1 of and the
formula (2.10). The following lemma can be proved by the same formulas
on the curvature tensor as used in the proofs of Lemmas 3.1, 3.2 and 3.3
of [6]. So, we may omit the proof.

LemMA 4.1. Every DED(Q) satisfies the following conditions :
(1) <DUy W>=0 for all indices 1<i<j<r—1 and 1<k<I<r sat-
isfying (i, j} N {k, I} = 9.
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(2) (DU An;e;+4nje;y =0 for all indices 1<i<j<r—1.
1 1
(3) Tn {e;, De">:—x/n_ {ej, Dery for all indices 1<k<r—1 and 1<
: j \
1<j<r—1 satisfying n;;#0.

For each DeD(Q), we define a skew-symmetric element a=(a;;) of A
fi.e. afy=—az) by

—An Py(Dle))  (1<i<j<n)

(4.1) Aij = ,
0 (1<i=j<r)

where P;; is the projection from U onto the subspace ;;. By the condition
(2) of Lemma 4.1, we have

ay;=An, Py(Dle))  (1<i<j<r—1).

We next show the following lemma which is quite similar to Lemma

6.1 of [6].

LEMMA 4.2. Every DeD(Q) and the element a=(a;;) €U defined by
(4. 1) satisfy the following three identities :

(1) <Dzxj, 259 = Qs TijTiie)s

(2) Dz, 2159 = {a T Tir)s

(3) <Dz xay = aij TinTjr)
for x;€Wyj x5 EWy and xup €Wy (1<I<G<ET).

Proor. By using (2. 2), (2. 3) and the following formulas :

1 —1
R(es, xjk) =0, Rle, Zijs e;) = 4n, Zijs R(e;, Xijs xjk) = 4\/71_z i XLk

we have
(DK) (ei’ Zjks €is xzj) = K(e;, Xijy €is ijk) - K(ei) Zijs Ljks De;)
1
= 4—7h (<ijk’ Zij) — < Qipy Tig xjk>) .

Therefore, the identity (1) follows from the condition (2.4). For the proof
of the second identity, we use the condition

(DK) (ej’ Ziks ej’ x’l)j) = O .
From the formulas:

1 -1

R(ej, Ziw) = 0, R(ej, Xy js ej) = 4n, Xijs R<€j, Xijs L) = Wn, T Tig

ng
it follows that
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(DK> (ej’ Ziks €5 CCU) = K(é’j’ Xy €4, Do) — K(é}, Xijs Liks Dej)

1
— ——471,- <<Dxik, xij> — <ajk, x;"j xz.k>> ,

which implies the identity (2). Similarly as in the above cases, the identity (3)
follows from the condition (DK)(e; xjx € Zix) =0. g.e.d.
From the above lemma, we have the following

LEMMA 4.3. For each DED(Q), the element a=(a;;)EWN defined by
(4.1) satisfies the following four identities :

\

1
( 1) <~T:} Aigs x;kj Zik) = 2—7% ”xin2<aik’ Zik)s
1
( 2) {au x?k) Zik x;‘k> = _Qn—k(l —Bkr) ||xjk|l2<aika ik,

1
( 3) <xika;‘<k’ Zik x;"‘k> = 2—71,;
1
( 4) <afj Tiks x;kj Tig) = '271— || ol 2 <aij’ X
for z,;€U,5 xpEWje and xuE Wi (1 SI<j<k<r).

Proor. By Lemma 2.1 of [7] and the formula (2. 10) we can see that
the following identities hold :

(1 — 5m) il [P s T s

1
R(xij, Ziks ej) R(ejs X js x@k) 44/71 xz] Lik »

1 1
R(zij, €5 x1) = 4n; |5l €5 — 4«/nin,- |51 |%es
and
1 . 1 N
R(xij, iy 215) = 4an. |51 P e — inj(xij Tix) -
(2

From these formulas, (2.2) and (1) of Lemma 4.1, it follows that
—1 1
(DK) (25, Ty x5y €5) = 4‘/,1—] (2 {xfy ins Dxis) + Vn; || zi5l 2 <ess Dxik>) .

Hence, by (1) of Lemma 4.2 and (2. 4), the identity (1) holds. Using the
following formulas :

1
R(ei, xjk) 0 R(xzk’ L jks ez) - 4~/ Lk x]k ’

1 1
R(xjk, Liks x]k) = 4 (1 5k’r) Hx]kH Lix— 4 (xz‘lcx;"k) Zjk
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and the condition (1) of Lemma 4.2, we have

(DK) (eisxjk’ xjk’ xik)
—1 ‘ ’ N 1 \
= 4~/7”1; 2'.<aik’ (xiklec) Xk —‘7’;(1—51“) 2| [2{ Qs Zig)( -

Hence, by (DK)(e;, x, zj xa)=0 and (2.8), the identity (2) holds. The
identity (3) can be proved similarly from the condition (DK) (e, s, Zi, Zjr)=
0 and the identity (2) of Lemma 4.2. Moreover, as in the above cases, the
identity '({1) follows from the conditions (DK)(ej, xu, xij» i)=0 and (3) of
Lemma 4. 2. g.e. d.

By using the above lemma, we can prove the following

LEMMA 4.4. The element a=(a,;)eN defined by (4.1) satisfies the
condition a,=aj;=0 for every indices 1<i<j<r—1 with n;;#0.

Proor. Putting k=7 and z;,=a;, in the identity (1) of Lemma 4.3 and
using the condition (2. 8), we have

1
(4.2) z—m | zs5l || @s || = ”x?j a,l||?= <a127‘<a1>lkr xij)’ xij> .

On the other Hand, by putting 2=7 and x;,=a;, in the identity (2) of Lemma
4, 3, we get

A;r x}", =0
for every xz;,€U;. Therefore, by putting x;,=zx}a; in (4.2), we have
a;;=0. From the identity (3) of Lemma 4. 3, it follows that

ziraj, =0

for every x;,€%;,. By (2.7) and (2. 8),

S Il Pllasel = Nl @l = (o (2,0 ay =0

for every x,;=%,;;, which implies that a,,=0. g.e.d.
Summing up the results obtained in the above lemmas and

1.1, we have the following

ProrosiTiON 4.5. Let A be a T-algebra of rankr (r>3) and let the
homogeneous convex domain =) be irreducible. Then the conditions
{De;, ;=0 and {DU,; Wp,»=0 are satisfied for every DcD(Q) and all
indices 1<1, j, k<<r—1.

Proor. If ¢=j, then {De; e;>=0 since D is skew-symmetric. If i+j,
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then by Proposition 1.1, there exists a series of different indices 1<z, 25, *-,
in<r—1 satisfying the conditions ,=1, i,=j and n; _; #0 (2<2<m). Then,
by (3) of Lemma 4.1, the identity
1 1
W@h—l’ De;» = %—‘;(eil, De;>

holds for every index 2<A<m. Therefore, by {De;, ¢;>=0, we have {De, e;)
=0. Moreover, by Lemma 4.4, a; ,=a;,,=0 (2<4<m). Thus, a;, =0
(1<i<r—1), and hence, the condition (D;; s,»=0 follows from (1) of
Lemma 4.1 and Lemma 4. 2. g.e.d.

4.2. Finally, we prepare two lemmas which will be used in the next
section. The following lemma can be proved by computation quite similar
to the method in the proof of Proposition 5.1 of [6].

LEMMA 4.6. Every DED(Q) satisfies the following identity :
Py <D(xw xjk)) = Py (D(Iw) xjk‘*‘wa(xjk))

for x,;€Wy; and xjpEWy 1<Ii<G<RLT).
Proor. If n,;=0, then the identity holds trivially. So, we may assume
that n;;7#0. Let us calculate the condition

(DK) (eia Zijs Ljks x’ik) =0

by using the following formulas :

1 - 1 1
R(xjk, Tiks xij) = Z <xij Z jks Zix) ( x/n_z €;— N/n_j ej) ’

=1 1
R(xjk’ Ziks ei) = 41/71— ik x;kk, R(é’i, Zijs xik) = 4~/ﬂ—z -’C?j ik »
1

—1
R(ei, T js xjk) = 4~/n—i Zij L »

Then, by (3) of Lemma 4.1, we have
K (x5, Zixs Zij» De;) =0
Therefore, by (2.2) and (2. 8),
(DK) (s, xijy Zjrs Zix)

= K(xjk, ks €45 Dxij) —-K (ei’ Zijs Liks ijk) + K(ei’ Zijs Ljks Dxik)

—1

= (<@ 2o Dris) <l T D) <215 T Dzyy)

ot 4~/‘7; <{D(xw) xjk+xijD(xjk)—‘D(xijxjk)}, xik> . qg. €. d.
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LEMMA 4.7. For each DED(Q), the element a=(a;;)EN defined by
(4.1) satisfies the following four identities : v

(1) (xhay) x5 = xf(aijzs0),

(2) (afizij) 2jr = afi(zi5240),

( 3) (aw xjk) Xjr = aik(x}:k xjr)7

(4) (zwaji) xjr = zu(afe ;1)

Jor ;€W €W gy, x0e €W and z;, €W 1<i<j<k<r—1).

Proor. By using the formula (VII') in p. 380 of [8], we have x;(z,, x)
=(xi;x) 2. F rom this and the condition (2. 8), it follows that the equality
(xf xi5) je =25 (255 25,) holds. Therefore, we have the identities (1) and (2).
We next show the identity (4). In order to do this, we consider the condition
(DK) (ks Zjrs Zirs £iy)=0. Then, by the following formulas :

—1
R(ek, -Tjr) =0, R(xﬂc’ Zirs xjr) = ‘4—<$jr x:;') Zik »

1
R(xik’ Tirs ek) = 4~/;2—7C T Lir

we get .

(DK) (ek’ XL jry Liks xir) = K(xik, Liry Crs ijr) _K(xik’ Lirs Ljrs Dek)
1 1

Hence, by (3) of Lemma 4. 2, we have the identity (4). By using the identity
(1) of Lemma 4.2, we can similarly verify that the identity (3) follows from
the condition (DK) (e;, xj, Zir, xjr)=0. g.e. d.

§ 5. Extension of an R-derivation.

In this section, we study an extension of an R-derivation on a homo-
geneous convex domain 2=0(A) to an R-derivation on the homogeneous
convex cone V=V(A) fitted onto 2. We remark that the structure of the
Lie algebra ®(V) of all R-derivations on V has been clarified by [6].

5.1. For a T-algebra A= 3, U;; of rank r (>2), we define subspaces

1<i,j<r
A, (k=0,1,2) of A by
QI(): Z %Iij’ 211: Z ;‘)Ii'r and 912:91”-

1<ig<j<r—1 1<i<r—1

Let us assume that the domain 2=0Q(¥) is irreducible and »>3. Then, by
(2. 6) and Proposition 4.5, the conditions

(5.1) ID(QQ)C:%IQ and ID(QIDC:QII
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are satisfied for every DED(2). By (2. 8) and (3) of Lemma 4. 2, the iden-
tities
<D$ir, Zier) = <aki Tirs xkr> (k<i) and <Dxir, xkr> = — <a1>;kk Tirs xkr> (i< k)
hold for all z, €, and zx, Wi, We now denote by D, the grade-pre-
serving part of D, that is,
Dl == Z PijODOPij .

IKi<j<r

Then, by (5.1), we have
(5 2) Dx = Dl (x) -+ Z Ayi LTir — Z a;"k Lir

k<i i<k

for every z= 3, x,€¥U,. By (4.1), (5.1) and (1) of Lemma 4.1, it is easy

1<igr—-1
to see that the identity

(5 3) De,;,; =2 Z Ags — 2 Z ik

k<t i<k

holds (1<i<r—1). By using (5.1) and Lemma 4. 2, we can similarly verify
that the identity

1 1
(5- 4) Dz = Dl(zij) + N/n—@ <aij’ zz’j> €;— J‘,Z <aij’ zij> €;
+ Ylapszli+auzi)+ 2 (zjai;—ahzij)
k<i i<k<j
- Z (zij ajk"l"z;kj As)
J<k

holds for every z=z;€U;; (1<i<j<r—1).
Now, we prove

LEMMA 5.1. Let 2=0() be an irreducible homogeneous convex do-
main and rank A=r>3. Then every DED(Q) satisfies the following con-
dition :

<D(zx), x> = <D(z) x, x>—|—<zD(x), x>
for 2N, and z€U,.

Proor. We first consider the case z=e;E; (1<i<r—1). Putting
z= Y €, we have zx=ux;,. Therefore, by (5.2) and {Dy(xi), )=

1<k<r—1

{Dx;r, xiry=0, it follows that the identity
<D(zx), x> - Z <aki Liry xk’r>_ Z <azkk Lirs xkr>
k<t i<k
holds. By (5. 3), we have
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<D(Z) z, x> — 2 Z <aki Tirs xm->—2 Z <aik Trers x’ir> .
k<t i<k
Again, by (5. 2), the identity
<zD(x), x> = Z <aik Tiers xir>_ Z <a;cki Tkrs xi7‘>
1<k k<i
is satisfied. Therefore, from these identities, we have
<D(eii x), x> = <D(e,~i) z, x>+<eu-D(x), x> .

We next consider the case 2=z2;;EU;; (1<i<j<r—1). Then, 2L =2;; L jy.
Therefore, by (5. 2),

(5 5) <D(zx), x> = <D1<ztjxjr)’ xir> _<a£kj(zij Z ), xfr>
+ 1;:1' <am‘(2¢j Zr), xkr> - i<;< ; <a;kk(zij Zjr)s xkr>
EPRCACIERRE WS

By (5.4), we can similarly verify that the identity

5.6 (D)7, 2) = (Difee) i 2y + 5 1] s 215>

1
- ‘zn—jll%er@m 24y

+ 2 <<(akj 2}5) Zirs xkr>+<(akizij) Zjrs xkr>)

k<i
+ 2 (et 2 31y — @iz Tin )
- ,];k <<(zij ajk) Tirs xir>+<(z?} Air) ZTiers xj,>)

holds. By using (5.2), we have
2D(x) = 2;;Dy(x4r) + j;kzij(ajk Tir) — k;jzij(a;:j Lier)

and hence,

(5. 7) <2D(x), x> = <Z,;jD1(xj,-), x,-,> —<Zij(a;kj xi,-), xi7->
- I;i <zij(a;c(-j Lir)s l'ir> - K;q_ <Zij(a;:j Zr)s xir>
+ J§k <zij(ajk Lir), xir> .

On the other hand, by Lemma 4.6, the identity

(5. 8) <D1(2ij xjr)’ xir> = <D1(zij) Zjrs xir> +<zij Dl(xjr), xi1'>
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holds. Since the subalgebra t of a T-algebra U is associative, the following
identities are satisfied :

(5.9) Ary( 25 Tgr) = (arizij) jr (k<i) and z;j(a Ter) = (245 ajr) Tir (F<k).
Furthermore, by (2.7), (2.8) and (4) of Lemma 4.3, we have
' 1
(5. 10) (aty(zis i) Zir) = g 123l i 215
and
1
(5.11) (zislats @)y Tir) = g |20l ass, 207

respectively. Therefore, using (2. 8), and the identities (5.5)-
(5.11), we can verify that the condition

<D 2i; Z), x> <D 2ij) X, x>+<zsz >

is satisfied. g.e.d.
5.2. For an arbitrary R-derivation DE®(2), we define an extension D
of D to t=t,+%,, by

~ . JD on ft,
(5.12) D:t—t, D= :
|0 on %,,
We next prove the following

LeEMMA 5.2. Let 2=0() be an irreducible homogeneous convex do-
main and rank A=r>3. Then the extension D of an arbitrary DeD(Q)
defined by (5.12) satisfies the following three conditions :

(1) (DR)(z,, 2, w)=0 for all z,y, 2z, wet,.

(2) (DR) ey, er, x,9)=(DK) (e, , €, y) =0 for all z, y<t.

(3) (DR) (e, x,9, 2)=0 for all z, y, z&t,.

Proor. For an arbitrary element x&t, we write
x=xy+ 2+ Zg,
where z,€%, (k=0,1,2). Then, by (5.1) and (5. 12), we have
(5.13) (Dx), = Dy, (Dx); = Dzx; and (Dx);=0.

Hence, by using (5.13) and the equation of Gauss stated in (2.12), we can
verify that (DR)(x,, 2, w)=0 for all z, ¥, 2, weEt,. From the condition
R(e,, e,)=0 and (5.13), it follows that

(DR) (e,, ey, 2,9) =0
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for all z, YEt. Moreover, using (5.13) and the formula

~ 1
R(er, x, er) = Fxl )

we get

(DR) (e, z, e», y) = Kl(e,, Dz, e,,y)+ K e,, x, e, Dy)
= (<Dt g+ Dy>) =0

for all z, y=t. Finally we use the following formulas :

« 1
Rien 2,y) = 57— alz, y)

and

1
Kler, z,9,2) = W, (alz V), 2)
1
=2 (= ml ) +{2 9, 2y + {2, U], =))

1
= 4n, <<20 T, Y +< 20l 210 — Yo 21y 1) — Yo s 21>>

for all z, y, 2&t, (cf. (2.9) and (2.10)). Now, by linearizing the variable x
in the identity obtained by Lemma 5.1, we have

<D (zoy), ?/1>+<D (oY1), x1> <( (20) x1+zoD(x1)>, ?/1>

-|-<< (20) Y1 +2,D )> x1>

for all z, y, 21, Hence, from this identity and (5. 13), the identity (3)
holds. g.e.d.

By using the above lemma, we have the following

ProrosiTiON 5.3. Let 2=02() be an irreducible homogeneous convex
domain and rank A=r>3. Then the extension D of every D=D(2) defined
by (5.12) is an R-derivation on the cone V(Q) fitted onto Q.

Proor. By the Bianchi’s identities (2. 2) and the fact t=t,+%,, (direct
sum of subspaces, 7>3), we can see that the condition DR =0 is equivalent
to the conditions (1), (2) and (3) in Lemma 5. 2. q.e. d.
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§ 6. Isotropy subalgebras and the Lie algebra D(2).

In this section, we prove the main theorem of this paper. Let 2
be a homogeneous convex domain. Then, as was stated in the previous
sections, it can be assumed that 2 is a domain of the form 2() by means
of a T-algebra A of rank r (r=2).

We now show the following main theorem.

THEOREM 6.1. If a homogeneous convex domain Q is irreducible and
not affinely equivalent to an elementary domain, then the Lie algebra g(£)
of the affine automorphism group G(2) is identical with the Lie algebra
i(Q) of the isometry group I1(Q).

Proor. It suffices to prove that the isotropy subalgebra f=£(£2) in g(£2)
is identical with the isotropy subalgebra Hh=§H(2) in 1(2). We first consider
the case r=2. If n,+#0, then £ is affinely equivalent to an elementary
domain (cf. §3). So, by the assumption, 7, must be zero and A=A+ Ws,.
Therefore, by (1.2) and (1. 3), 2 is the cone of all positive real numbers and
t=H—=(0). We next consider the case r>3. Then, by Proposition 5.3, the
extension D of every DeD(2) is an R-derivation of the homogeneous convex
cone V fitted onto 2. Moreover, by [Proposition 4.5 and (5.12), we have
(Dey, e;,5>=0 (1<i, j<r). Therefore, the D,-part of D is zero (For the defini-
tion of the Dy-part of D, see §3 of [6]). Hence, from Propositions 5.1 and
6.6 of [6], it follows that there exists a derivation z: A— of a T-algebra
such that

D= to(e+k)os €0(H(V)),

where a is the element of U given by (4.1) and k,: X—X is the linear
operator defined by k,(x)=ax—axa. Since the derivation r preserves the
grading and commutes with the involution of 9, r keeps the subspace X,
invariant and vanishes at e. Furthermore, by the condition a;;=0 (1<i<
r—1) (cf. Proposition 4.5), we can see that &, (X;)C X, and k,(¢)=0. There-
fore, by (1.2) and (1.3), the restrictions of ¢ and %, to the subspace X, are
contained in the subalgebra . Hence,

D= DNHo = 5{1°(T|X°+kalxo)°$0

is an element of #(f). From this, it follows that D(2)C@(f). Combining
this and the condition #(f)C6(f) with (2.5), we get

(6.1) o(t) =0(h) =D(2) .

Since the infinitesimal linear isotropy representation @ is injective, f is identi-
cal with b. g.e.d.
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By Proposition 3.1 and the condition (6.1), we have the following

THEOREM 6.2, Let Q be an irreducible homogeneous convex domain.
Then the isotropy subalgebra %) of () is isomorphic to the Lie algebra
D(Q) of all R-derivations on 1.

Finally we remark that the above theorem holds for an arbitrary homo-
geneous convex cone (cf. Theorem 7.3 of [6]).
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