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\S 1. Introduction

Tamura and Sato [7] began the study of codimension-0ne foliations
transverse to given codimension-0ne foliations. They regarded such.fol\cdot ations.\backslash

as structures of given foliated manifolds. At this viewpoint, the fundamental
probelms are to determine whether such foliations exist or not and to classify
them when they exist.

CONVENTION. In this paper, foliations are always transversely orientable,
of codimension one and of class C^{\infty}, unless stated otherwise.

In order to state the known results and ours, we introduce some nota-
tions. Let \Sigma_{g}(h) be a compact manifold obtained from the closed surface \Sigma_{g}

of genus g by deleting h small disjoint open 2-disks, where h is a positive
integer. Take an orientation preserving C^{\infty} diffeomorphism \phi:\Sigma_{g}(h)arrow\Sigma_{g}(h)

and consider an equivalence relation \sim on R\cross\Sigma_{g}(h) determined by

(t, x)\sim(t’ , x\acute{)} if t’=t+1 and x\acute{=}\phi(x) ,

where t, t’\in R and x, x’\in\Sigma_{g}(h) . Then the quotient space E(\Sigma_{g}(h) ; \phi)=

R\cross\Sigma_{g}(h)/\sim is a \Sigma_{g}(h) bundle over S^{1}=R/Z with the projection \pi:E(\Sigma_{g}(h) ;
\phi)arrow S^{1} defined by \pi([t, x])=[t] for (t, x)\in R\cross\Sigma_{g}(h) . We treat R and \Sigma_{g} as
oriented manifolds. Hence \Sigma_{g}(h) and E(\Sigma_{g}(h) ; \phi) are consequently oriented.
Take a continuous map \sigma:\partial E(\Sigma_{g}(h) ; \phi)arrow\{1, -1\} . We have a foliation
\mathscr{F}(\Sigma_{g}(h) ; \phi)^{\sigma} of E(\Sigma_{g}(h) ; \phi) by turbulizing the bundle foliation \{\pi^{-1}(x)\}_{x\in S^{1}} as
in Figure 1. 1 (see Nishimori [4] for the precise definition).

We have \Sigma_{0}(1)=S^{2}(1)=D^{2} and E(D^{2} ; id)=S^{1}\cross D^{2} . Note that \mathscr{F}(D^{2} ; id)^{1}

(or \mathscr{F} (D^{2} ; id) ) is a plus (or minus) Reeb component \mathscr{F}_{R}^{+} (or \mathscr{F}_{R}^{-}) in
Tamura-Sato [7]. For mainfold E with a diffeomorphism f:Earrow E(\Sigma_{g}(h);\phi) ,
we denote by \mathscr{F}(E)^{\sigma f}

. the induced foliation f^{*}\mathscr{F}(\Sigma_{g}(h);\phi)^{\sigma} . Note that \mathscr{F}(E)^{\sigma^{o}f}

is unique up to C^{0} isomorphism.
The known results are as follows. Tamura and Sato [7] classify the

foliations of S^{1}\cross D^{2} transverse to the Reeb component \mathscr{F}_{R}^{+}(=\mathscr{F}(S^{2}(1);id)^{1})

by introducing the notion of TS diagrams. Furthermore they proved that,
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for any non-trivial fibered knot k of S^{3} , the patched foliation \mathscr{F}_{R}^{+}\cup \mathscr{F}_{k} of
S^{3} has no transverse foliations, where \mathscr{F}_{R}^{+} is a Reeb component of a tubular
neighborhood N(k) of k, and \mathscr{F}_{k}=\mathscr{F}(S^{3}- int N(k))^{\pm 1} , where S^{8}- Int N(k) is
regarded as the total space of a surface bundle over a circle. Note that all
the foliations of S^{3} have transverse –plane fields (see [7]). In Nishimori [4],
the author generalized the classification of transverse foliations to \mathscr{F}(S^{2}(h) ;
id)^{\sigma} for all h and \sigma . Furthermore he considered the existence problem of
transverse foliations for closed foliated 3-manifolds obtained by patching a
finite number of foliated manifolds of the form (E(S^{2}(h);id), \mathscr{F}(S^{2}(h);id)^{\sigma}) ,
and gave two criterions.

The starting point of this paper is given as follows. Let k be a fibered
knot in S^{3} with fiber of genus g>0 and N(k) a tubular neighborhood of k.
Note that S^{\theta}- Int N(k) is diffeomorphic to E(\Sigma_{g}(1);\phi) for some \phi\in Diffff_{+}(\Sigma_{g}(1)) .
The result of Tamura-Sato [7] suggests the following.

PROBLEM A. Does there exist a foliation transverse to the turbulized
foliation \mathscr{F}_{k} of S^{s}- Int N(k) ?

We have the following contrasting results as to Problem A.

THEOREM 1. If k is a trefoil knot, then \mathscr{F}_{k} has no transverse foliation.
THEOREM 2. If k is a figure eight knot, then \mathscr{F}_{k} has a transverse

foliation.
It is natural to generalize Problem A as follows.

PROBLEM B. Does there exist a foliation of E(\Sigma_{g}(h);\phi) transverse to
\mathscr{F}(\Sigma_{g}(h) ; \phi)^{\sigma}.?

As to Problem B, we first obtain the following results.
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THEOREM 3. If \phi:\Sigma_{g}(h)arrow\Sigma_{g}(h) is isotopic to the identity (that is,
E(\Sigma_{g}(h);\phi) is a trivial bundle), then \mathscr{F}(\Sigma_{g}(h);\phi)^{\sigma} has transverse foliations
for all g, h and \sigma .

THEOREM 4. If \partial E(\Sigma_{g}(h) ; \phi) is connected and 2g-2 is not divisible
by h, then \mathscr{F}(\Sigma_{g}(h);\phi)^{\sigma} has no transverse foliation.

When g=0 and h=1 , the fiber \Sigma_{g}(h) is diffeomorphic to D^{2}, and hence
\phi is isotopic to the identity. Therefore we can apply Theorem 3 to this case.
There are two ways to make progress. The first one is to treat \mathscr{F}(S^{2}(h);\phi)^{\sigma} ,
and the second one to treat \mathscr{F}(T^{2}(1);\phi)^{\sigma} . At present it is difficult to treat
\mathscr{F}(\Sigma_{g}(h) ; \phi)^{\sigma} in the most general setting. For the first case, we have the
following (see \S 2 for the definition of TS diagrams of g(hJ,;.\phi_{-}^{\sigma}..\ldots. .

THEOREM 5. \mathscr{F}(S^{2}(h) ; \phi)^{\sigma} has a transverse foliation if and only if
there exists a TS diagram of (S^{2}(h);\phi)^{\sigma} .

Now consider \mathscr{F} (T^{2}(1) ; \phi)^{\sigma} , whose underlying manifold E(T^{2}(1) ; \phi) is
a fiber bundle over a circle with fiber T^{2}(1)=T^{2}- Int D^{2} (that is, a punctured
torus). For a diffeomorphism \phi:T^{2}(1)-T^{2}(1) , we denote by H_{1}(\phi) the
induced isomorphism \phi^{*}: H_{1}(T^{2}(1) ; Z)arrow H_{1}(T^{2}(1) ; Z) . It is well known
that if H_{1}(\phi)=H_{1}(\phi’) for diffeomorphisms \phi , \phi’ : T^{2}(1)-T^{2}(1) , then \phi and \phi’

are isotopic. The following theorem is our main result.
THEOREM 6. Let \phi:T^{2}(1)arrow T^{2}(1) be a diffeomorphism and \sigma:\partial E(T^{2}(1) ;

\phi)arrow\{1, -1\} a continuous map (hence \sigma is constant). Then the turbulized
foliation \mathscr{F}(T^{2}(1);\phi)^{\sigma} admits a transverse foliation if and only if Trace
H_{1}(\phi)\geqq 2 .

Now Theorem 1 and Theorem 2 follow from Theorem 6, as follows.
Let k\subset S^{3} be a trefoil knot or a figure eight knot and N(k) a tubular neigh-
borhood of k. Then the fiber of the associated bundle \pi_{k} : S^{s}- Int N(k)arrow S^{1}

is diffeomorphic to T^{2}(1) . Let \phi_{k} : T^{2}(1)arrow T^{2}(1) be the twisting map of the
bundle \pi_{k} : S^{3}- Int N(k)arrow S^{1} . By taking the appropriate basis of H_{1}(T^{2}(1);Z)

the isomorphism H_{1}(\phi_{k}) corresponds to the matrix (\begin{array}{ll}0 1-1 1\end{array}) if k is a trefoil

knot and to (\begin{array}{l}2111\end{array}) if k is a figure eight knot. Therefore Theorem 6 implies
Theorem 1 and Theorem 2.

The proof of the “only if” part of Theorem 6 is divided into two eases,
that is,

(a) all the leaves of \mathscr{G}|F are proper,
(b) \mathscr{G}|F has a non-porper leaf,

where \mathscr{G} is a foliation transverse to \mathscr{F}(T^{2}(1);\phi)^{\sigma} and F is a non-compact
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leaf of \mathscr{F}(T^{2}(1);\phi)^{\sigma} . For the case (a), we use the following.

THEOREM 7. Suppose that \mathscr{F}(\Sigma_{g}(h);\phi)^{\sigma} has a transverse foliation \mathscr{G} . If
all the leaves of \mathscr{G}|F are properfor some non-compact leaf F of \mathscr{F}(\Sigma_{g}(h);\phi)^{\sigma},
then a TS diagram of (\Sigma_{g}(h);\phi)^{\sigma} can be attached to \mathscr{G} .

Applying Theorem 7 to \mathscr{F}(T^{2}(1);\phi)^{\sigma} and analyzing the corresponding
TS diagram, we obtain the following.

THEOREM 8. Suppose that \mathscr{F}(T^{2}(1);\phi)^{\sigma} has a transverse foliation \mathscr{G}

such that all the leaves of \mathscr{G}|F are proper for some non-compact leaf F of
\mathscr{F} (T^{2}(1) ; \phi)^{\sigma} . Then Trace H_{1}(\phi)=2 .

For the case (b), we have the following.
\ddot{\dot{T}}_{HEOREM}^{z\sim\cdots\epsilon}..9 . Suppose that \mathscr{F}(T^{2}(h);\phi)^{\sigma} has a transverse foliation \mathscr{G}

such that \mathscr{G}|F has a non-proper leaf for some non-compact leaf F of \mathscr{F}(T^{2}

(h);\phi)^{\sigma} . Then H_{1}(\overline{\phi\prime})=id or Trace H_{1}(\overline{\acute{\varphi}})>2 , where \overline{\phi\prime} : T^{2}arrow T^{2} is the exten-
sion of \phi by the Alexander trick.

Now the “only if” part of Theorem 6 follows from Theorems 8 and 9.
The author would like to thank I. Tamura, A. Sato, K. Yano and T.

Tanisaki for valuable conversations.

\S 2. Preliminaries

In this paper the familiarity with Nishimori [4] is basically supposed.
First we describe the turbulized foliation \mathscr{F} (\Sigma_{g}(h) ; \phi)^{\sigma} . For simplicity let
\Sigma=\Sigma_{g}(h) and E=E(\Sigma_{g}(h);\phi) . Let k : \partial\Sigma\cross Iarrow\Sigma be a collar with k(y, O)=y

for all y\in\partial\Sigma , where I is the closed interval [0, 1] . Replacing \phi by an
isotopic diffeomorphism if necessary, we may suppose the following.

(1) If y\in\partial\Sigma and \phi^{n}(y) belong to the same connected component of \partial\Sigma

for some n\in Z, then \phi^{n}(y)=y .
(2) \phi(k(y, t))=k(\phi(y), t) for all y\in\partial\Sigma and t\in I.
Hereafter we may consider only such \phi . Define k:R\cross\partial\Sigma\cross Iarrow R\cross\Sigma

by k(x, y, t)=(x,\hat{k}(y, t)) for all x\in R, y\in R, y\in\partial\Sigma and t\in I. Now define
a foliation \tilde{\mathscr{F}} of R\cross\Sigma in such a way that

(1) \tilde{\mathscr{F}}|(R\cross\Sigma- Im k_{\vee}\grave{)} is the restriction of the trivial foliation \{\{x\}\cross\Sigma\}_{x\in R} ,
and

(2) the leaves of \tilde{\mathscr{F}}|{\rm Im} k are the connected components of R\cross\partial\Sigma and
the subsets

\{(\hat{\sigma}(y)f(t)+x, y, t)|y\in\partial\Sigma, t\in[0,1]\}

for x\in R, where \hat{\sigma} is naturally defined by \sigma and f is the function in [4, \S 2].
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Figure 2. 1. Regular TS pieces.
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Thus we have \mathscr{F}(\Sigma_{g}(h);\phi)^{\sigma} as the quotient foliation of \tilde{\mathscr{F}} by the relation \sim

in \S 1.
Here we give a list of figures which represent the regular TS pieces

defined in [4], in Figure 2. 1. We omit the explanation of them.
We generalize the notions of TS diagram by modifying Definition 13. 3

in [4], as follows.

DEFINITION 2. 1. A TS diagram of (\Sigma_{g}(h) ; \phi)^{\sigma} is a triad \mathscr{T}=(\hat{\mathscr{T}} ,
\{\phi_{t} : \Sigma_{g}(h)arrow\Sigma_{g}(h)\}_{t\in I}, (a, b;r) : \Gamma_{g}(h)- (1V\cross Z)^{*}\cross 2Z) (where \Gamma_{g}(h) is the set
of connected components of \partial\Sigma_{g}(h) and (N\cross Z)^{*} was defined in [4, \S 1] )

satisfy_{1ng} the following conditions.
(R1)^{*} \hat{\mathscr{T}}=(S, \{P_{\lambda}\}_{\lambda\in A}, \{\iota_{\lambda}\}_{\lambda\in A}) is a pre TS diagram of \Sigma_{g}(h) , and \{\phi_{t}\}_{t\in I}

is a C^{\infty} isotopy of diffeomorphisms such that \phi_{0} is the identity and \phi_{1} is an
isomorphism from \hat{\mathscr{T}} to \hat{\mathscr{T}} Furthermore \phi is an isomorphism from \hat{\mathscr{T}} to
\hat{\mathscr{T}} with (a, b;r)\circ\phi=(a, b;r) , where we regard \phi as a map: \Gamma_{g}(h)arrow\Gamma_{g}(h)

in a natural way.
(R2)^{*} Let P_{\lambda}=(\Delta_{\nu}, \nu_{\lambda}, s:\mathscr{I}_{\lambda}arrow \mathscr{S}, \omega:K_{\lambda}arrow\{1, -1\}) . Let C\in\Gamma_{g}(h) and put

p(C) (or q(C) ) =\# {J|J\in{?}_{\lambda} for some \lambda\in\Lambda , *J\subset C, s(J)=0 (or 0)}.
(i) (a(C), b(C))=(0,1) or (\infty, \infty) , then r(C)=0 and there are \lambda\in\Lambda and

K\in \mathscr{K}(\Delta_{\lambda})-\mathscr{K}_{\lambda} with *K=C.
(ii) If (a(C), b(C))=(a, b)\in(N\cross Z)^{coprime} , then r(C)=(p(C)-q(C))/a,

there are \lambda\in\Lambda and J\in f_{\lambda} with *J\subset C, the map (\phi_{1}|C)^{a} is the identity,
(\phi\circ\phi_{1}|C)^{a} is the identity, (\phi\circ\phi_{1}|C)^{a’} has no fixed point for 0<a’<a , and the
degree of \eta:[0, a]/\{0, a\}arrow C equals to b, where \eta is defined by

x/([t])=\phi^{-k_{O}}\phi_{t’}\circ(\phi\circ\phi_{1})^{k}(y_{0})

for t=k+t’ , k\in Z, 0\leqq t’<1 and a fixed point y_{0}\in C.
(s) Let S_{i} be a circle in S, and take C, C’\in\Gamma_{g}(h) as in [4, Definition

13. 1 (PR3)] . Then (a(C’), b(C’))\neq(a(C), - b(C)) .
(\^i3) (The condition on \sigma). In the below, J and J’ are elements of \mathscr{S}_{\lambda}

with *J, *J’\subset\partial\Sigma_{g}(h) .
(iii) If \nu_{\lambda}=III , then \sigma(^{*}y’)=\sigma(^{*}y) (or -\sigma(^{*}y) ) for y\in J and y’\in J’ such

that J and J’ are contained in the same connected component of \partial\Delta_{\lambda}-\cup

{J’|J’\in{?}_{\lambda} , s(J’)=\vee or \Lambda }.
(iv) If \nu_{\lambda}=IV , then \sigma(^{*}y’)=-\sigma(^{*}y) for y\in J and y’\in J’ such that s(J)=

o and s(J’)=0 .
(vi) If \nu_{\lambda}=VI and (a(C\rangle, b(C))=(0,1) for C\supset*K, K\in \mathscr{K}(\Delta_{\lambda})-\mathscr{K}_{\lambda} , then

\sigma(^{*}y’)=-\sigma(^{*}y) for y\in K and y’\in J.
(viii) If \nu_{\lambda}=VIII, then \sigma(^{*}y’)=\sigma(^{*}y’) for y\in J and y’\in J’ .
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We can define an isomorphism between two TS diagrams of (\Sigma_{g}(h);\phi)^{\sigma}

as in [4, \S 13], but we omit it.

\S 3. The proof of Theorem 3

We may suppose that \phi\in Diffff_{+}(\Sigma_{g}(h)) is the identity. It is sufficient to
construct a TS diagram of (\Sigma_{g}(h);id)^{\sigma} . For we can construct a transverse
foliation by taking suitable components in the table of [4, Theorem 3] for
each TS pieces of the obtained TS diagram.

Let \Sigma_{g}(h)=\Sigma_{g}- (Int D_{1}\cup\cdots\cup Int D_{h}), where D_{1} , \cdots , D_{h} are disjoint 2-disks
in \Sigma_{g}. Take disjoint circles C_{1} , \cdots , C_{g}\subset\Sigma_{g}(h) in such a way that the closure
T_{i} of a connected component of \Sigma_{g}(h)-C_{i} is homeomorphic to T^{2}(1) and that
\Sigma_{g}(h)-T_{i} contains C_{1} , \cdots , C_{i}, \cdots , C_{g} and \partial D_{1} , \cdots , \partial D_{h} . Furthermore take dis-
joint simple curves K_{1} , \cdots , K_{g} and L_{2}, \cdots , L_{h} such that one endpoint of K_{i}

belongs to \partial D_{1} and the other belongs to C_{i} , and that one endpoint of L_{i}

belongs to \partial D_{1} and the other belongs to \partial D_{i} . Let M_{i} (or N_{i}) be a compact
regular neighborhood of C_{i}\cup K_{i} (or D_{i}\cup L_{i}) in \Sigma_{g}(h)-\bigcup_{j=1}^{g}(T_{j}-C_{j}) . Then
the closure \Sigma* of \Sigma_{g}(h)-\cup g(M_{i}\cup T_{i})-\cup hN_{i} in \Sigma_{g}(h) is a polygon with

i=1 i=2
2 (g+h) sides (see Figure 3. 1.
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(a)

Figure 3. 2.

Choose a TS piece P_{0} of type III with |P_{0}|=\Sigma^{*} . On N_{i} , we take two

TS pieces P_{i} , P_{i}’ as in Figure 3. 2 (a). On M_{i}\cup T_{i} , we take three TS pieces
Q_{i}, Q_{i}’ , Q_{i}’ as in Figure 3. 2 (b).

Now we have easily a TS diagram containing P_{0} , P_{1} , \cdots , P_{h}, P_{1}’ , \cdots , P_{h}’ ,
Q_{2}, \cdots , Q_{g}, Q_{2}’ , \cdots , Q_{g}’ , Q_{2}’ , \cdots , Q_{g}’ . This completes the proof of Theorem 3.

\S 4. The proof of Theorem 4

For simplicity let E=E(\Sigma_{g}(h) ; \phi) and \mathscr{F}=\mathscr{F}(\dot{\Sigma}_{g}(h) ; \phi)^{\sigma} . Suppose that
\partial E is connected and \mathscr{F} has a transverse foliation \mathscr{G} . Let p (or g) be the
number of positive (or negative) Reeb components of \mathscr{G}|\partial E (see [4] for the
definition). Take a basis \alpha, \beta of H_{1}(\partial E;Z)\cong Z\oplus Z such that \pi_{\star}’(\alpha)=\sigma(\partial E) .
[S^{1}] and \pi_{*}’(\beta)=0 , where \pi’=\pi|\partial E:\partial E-S^{1} . When \mathscr{G}|\partial E has no compact
leaf, let a=\infty . When \mathscr{G}|\partial E has a compact leaf L, determine a non-negative
integer a by [L]=a\alpha+b\beta in H_{1}(\partial E;Z) , where L is oriented in such a way

that a>0 or (a, b)=(0,1) . Then for a non-compact leaf F of \mathscr{F} the induced
foliation \mathscr{G}|F can be illustrated as Figure 4. 1.
Therefore we have

ha(p-q)=4-2h-4g
as in Tamura-Sato [7] and Nishimori [4]. Since \mathscr{G}|\partial E is transversely ori-
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Figure 4. 1.

entable, it follows that p+q is even. This implies that p – q=2r for some
r\in Z. Hence we have h(ar+1)=2-2g, which contradicts the assumption
of Theorem 4.

\S 5. Outline of the proof of Theorem 5 and Theorem 7

We only sketch the proof of Theorem 7 and omit the detail. Theorem
5 follows from Theorem 7, since non-compact leaf F of \mathscr{F}(S^{2}(h);\phi)^{\sigma} have
genus 0 and the Poincare-Bendixson theorem implies that all the leaves of
\mathscr{G}|F are proper for all the foliations \mathscr{G} transverse to \mathscr{F}(S^{2}(h);\phi)^{\sigma} .

Suppose that \mathscr{F}(\Sigma_{g}(h);\phi)^{\sigma} has a transverse foliation \mathscr{G} such that \mathscr{G}|F

has no non-proper leaf for some non-compact leaf F of \mathscr{F}(\Sigma_{g}(h);\phi)^{\sigma} . By
the arguments using the characteristic diffeomorphism of \mathscr{G} and the projec-
tion of a leaf of \mathscr{G}|\partial E(\Sigma_{g}(h);\phi) to F (see [4] for the definition of the words
in italics), we see that for each strange negative Reeb cycle \mathscr{C} there exists
a separating torus S(\mathscr{C}) satisfying the conditions in [4, Proposition 6. 4]. Let
\mathscr{C}_{1} , \cdots , \mathscr{C}_{\mu} be the strange negative Reeb cycles of \mathscr{G} and take a separating
torus S(\mathscr{C}_{i}) for each \mathscr{C}_{i} . Let A be the compact manifold obtained from
E(\Sigma_{g}(h);\phi) by deleting a sufficiently small collar of \partial E(\Sigma_{g}(h);\phi) . In the
same way as in [4, \S 9], construct TS decompositions \Omega\cup\Theta and \Omega^{x}\cup\Theta^{x}, and
define the characteristic hexad ch(D)=(l(D), m(D), n(D) ; p(D), q(D), s(D)) of
D\in\Omega . In the present case, we must take the genus g(D) of D_{i^{0J}}^{\lceil} also into
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consideration. Now construct the double W of D_{1^{01}}^{L}\ulcorner as in [4, \S 11]. Since
W is diffeomorphic to a compact manifold obtained from a closed surface
of genus 2g(D)+n(D)-1 by deleting 2 (l(D)+m(D))+p(D)+q(D)+s(D) open
2-disks, we have the modified equation

4g(D)+2(l(D)+m(D)+n(D)+p(D))+s(D)=4

Since l(D)+m(D)+n(D)>0 , it follows that g(D)=0. Therefore the modi-
fication of the equation is not essential and we can prove the similar decom-
position theorem as [4, Theorem 3]. Then Theorem 7 can be proved in the
similar way as in [4].

\S 6. Pre TS diagrams of T^{2}(1) containing an annular piece

The purpose of this and next sections is to make some preparations for
the proof of Theorem 8. Let \hat{\mathscr{T}} be a pre TS diagram of T^{2}(1) and fix it
throughout this section.

Let P be a TS piece contained in \hat{\mathscr{T}} We call P a disklike piece if |P|

is homeomorphic to D^{2} (equivalently, the type of P is I, II, III or IV), and
an annular piece if |P| is homeomorphic to S^{1}\cross I (equivalently, the type of
P is V, VI, VII, VIII or IX). In this section, we investigate \hat{\mathscr{T}} containing
an annular piece.

DEFINITION 6. 1. A subset A of T^{2}(1) is called a special annulus with
respect to \hat{\mathscr{T}} if A satisfies the following conditions (1)-(3) .

(1) A=|P_{1}|\cup\cdots\cup|P_{k}| for some TS pieces P_{1} , \cdots , P_{k} contained in \hat{\mathscr{T}}

(2) A is homeomorphic to S^{1}\cross I.
(3) Each connected component of \partial A intersects \partial T^{2}(1) .
NOTATION. Let A be a subset of T^{2}(1) satisfying the condition (1) of

Definition 6. 1. We denote by Int A the interior of A as a manifold, and
by Int_{*}A the interior of A as a subset of T^{2}(1) .

We identify T^{2}(1) and T^{2}- Int D^{2} . Then \partial T^{2}(1)=\partial D^{2} . We have the
following lemmas.

Lemma 6. 2. Let A be a special annulus. Then each connected com-
ponent of \partial A does not bound a disk in T^{2} .

PROOF. Let K_{1} and K_{2} be the connected components of \partial A . Suppose
that K_{1} bounds a disk D_{*} in T^{2} . Note that T^{2}-K_{1} has two connected com-
ponents Int D_{*} and T^{2}-D_{*} , and that D^{2}\cap IntA=\emptyset . When Int Aclnt D_{*} ,
the fact D^{2}\cap K_{2}\neq\emptyset implies that D2clnt D_{*} , which contradicts the fact D^{2}\cap K_{1}

\neq\emptyset . When Int A\subset T^{2}- Int D_{*} , it follows that D^{2}\subset T^{2}-D_{*} , which con-
tradicts the fact D^{2}\cap K_{1}\neq\emptyset . This completes the proof of Lemma 6. 2.
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LEMMA 6. 3. Let A be a special annulus. Then each connected com-
ponent of T^{2}(1)-Int_{*}A is homeomorphic to D^{2} .

PROOF. Let C_{1} , \cdots , C_{n} be the connected components of T^{2}(1)-Int_{*}A .
Then the connected components of C_{j}\cap A are homeomorphic to I. Denote
by c_{j} the number of the connected components of C_{j}\cap A . Since the con-
nected components of A do not bound a disk in T^{2} by Lemma 6. 2, the
complement T^{2}-A is connected (see RoHsen [6]). Hence there is an arc \omega

in T^{2}-Int_{*}A such that Int \omega\cap A=\emptyset and the endpoints of \omega are contained
in distinct connected components of \partial A . By the general position argument,
we may suppose that \omega\subset T^{2}(1)-Int_{*}A , and furthermore that \omega\subset C_{1} . This
implies that c_{1}\geqq 2 . Let b_{j}=rank H_{1}(C_{j}) , where the omitted coefficient is Z.
From the Mayer-Vietoris sequence

0= \bigoplus_{j=1}^{n}H_{1}(C_{j}\cap A)arrow H_{1}(A)\oplus(\bigoplus_{j=1}^{n}H_{1}(C_{j}))arrow H_{1}(T^{2}(1))

arrow\bigoplus_{j=1}^{n}H_{0}(C_{j}\cap A)arrow H_{0}(A)\oplus(\bigoplus_{j=1}^{n}H_{0}(C_{j}))arrow H_{0}(T^{2}(1))arrow 0 ,

we have

(1+ \sum_{j=1}^{n}b_{j})+\sum_{j=1}^{n}c_{j}+1=2+(1+n) [

Since \sum_{j=1}^{n}c_{j}\geqq n+1 , it follows that

b_{1}=\cdots=b_{n}=0’. c_{1}=2 , c_{2}=\cdots=c_{n}=1

Therefore each C_{j} is homeomorphic to D^{2} .
Lemma 6. 4. If there are two special annuli A_{1} and A_{2} with respect

to \hat{\mathscr{T}} , then Int A_{1}\cap IntA_{2}\neq\emptyset .

PROOF. Let A_{1} and A_{2} be special annuli with respect to \hat{\mathscr{T}} Suppoee
that Int A_{1}\cap IntA_{2}=\emptyset . Then A_{2} is contained in some connected component
of T^{2}(1)-Int_{*}A_{1} . By Lemma 6. 3, each connected component K of \partial A_{2} is
contained in a disk\subset T^{2}(1) . Hence K bounds a disk in T^{2}(\supset T^{2}(1)) . On
the other hand, K does not bound a disk in T^{2} by Lemma 6. 2, which is
a contradiction.

Now suppose that \hat{\mathscr{T}} contains an annular piece. We investigate \hat{\mathscr{T}} case
by case in order to find something made invariant by all the automorphisms
of \hat{\mathscr{T}}

Lemma 6. 5. If \hat{\mathscr{T}} contains a TS piece P of type V, then P is the
unique TS piece of type V in \hat{\mathscr{T}}
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PROOF. Let P’ be another TS piece of type V in \hat{\mathscr{T}} Since |P| and
|P’| are special annuli, it follows that Int |P|\cap Int|P’|\neq\emptyset by Lemma 6. 4.
Therefore P=P’ .

Lemma 6. 6. If \hat{\mathscr{T}} contains a TS piece P of type VI, then P is the
unique TS piece of type VI in \hat{\mathscr{T}}

PROOF. Let P’ be another TS piece of type VI in \hat{\mathscr{T}} Since \sigma is con-
stant, P and P’ are separated by some circles S and S’ respectively. Further-
more neither S nor S’ bounds a disk in T^{2} . Suppose that P\neq P’ . Then
S\cap S’=\emptyset . Therefore S and S’ bound an annulus in T^{2}(1) (see Rolfsen [6]).
This contradicts the condition (PR3) in [4, Definition 13. 1].

Lemma 6. 7. (1) \hat{\mathscr{T}} contains no TS piece of type VIII.
(2) If \hat{\mathscr{T}} contains a TS piece of type IX, then \hat{\mathscr{T}} contains a TS piece

of type VII.
PROOF. (1) Suppose that \hat{\mathscr{T}} contains a TS piece of type VIII. By

constructing cannonically non-singular vector fields for all the TS pieces,
we find a non-singular vector field on T^{2}(1) tangent to \partial T^{2}(1) . Since \chi(T^{2}(1))

=-1, this is a contradiction.
(2) follows directly from the configuration of TS pieces and the fact (1).

LEMMA 6. 8. If \hat{\mathscr{T}} contains a TS piece of type VII, then \hat{\mathscr{T}} contains
exactly two TS pieces P_{1} and P_{2} of type VII. Furthermore connected com-
ponents of \partial|P_{1}| and \partial|P_{2}| are isotopic in T^{2}(1) , and neither of them bounds
a disk in T^{2} .

PROOF. Let P_{1} be a TS piece of type VII in \hat{\mathscr{T}} Considering the
configuration of TS pieces, we find a finite sequence Q_{1} , \cdots , Q_{k} of TS pieces
of type IX and a TS piece P_{2} of type VII such that A=|P_{1}|\cup|Q_{1}|\cup\cdots\cup

|Q_{k}|\cup|P_{2}| is a special annulus. Using Lemma 6. 4 as in the proof of Lemma
6. 5, we see that \hat{\mathscr{T}} contains no TS piece of type VII other than P_{1} and P_{2} .
Clearly all the connected components of \partial|P_{1}| , \partial|Q_{1}| , \cdots , \partial|Q_{k}| , \partial|P_{2}| are
isotopic in T^{2}(1) , and neither of them bounds a disk in T^{2} by Lemma 6. 2.

\S 7. Pre TS diagrams of T^{2}(1) containing no annular piece

Let \hat{\mathscr{T}} be a pre TS diagram of T^{2}(1) containing no annular piece and
fix it throughout this section.

DEFINITION 7. 1. Let P be a TS piece in \hat{\mathscr{T}} A connected component
of |P|\cap\partial T^{2}(1) is called a boundary side of P. The closure of a connected
component of \partial|P|\cap IntT^{2}(1) is called a gluing side of P.
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The following lemma is clear and we omit the proof.

Lemma 7. 2. Let P_{1} , \cdots , P_{m} , Q_{1} , \cdots , Q_{n} be distinct TS pieces in \hat{\mathscr{T}}

Then each connected component of
(|P_{1}|\cup\cdots\cup|P_{m}|)\cap(|Q_{1}|\cup\cdots\cup|Q_{n}|)

is the common gluing side of some P_{i} and some Q_{j} .
DEFINITION 7. 3. A primary piece in \hat{\mathscr{T}} is a TS piece P in \hat{\mathscr{T}} such

that P has more than two gluing sides and each connected component of
T^{2}(1)-Int_{*}|P| is homeomorphic to D^{2} .

The purpose of this section is to show that \hat{\mathscr{T}} has exactly one or two

primary pieces. Note that every automorphism of \hat{\mathscr{T}} shifts a primary piece
to another one. First we show that \hat{\mathscr{T}} has a primary piece.

Lemma 7. 4. If \hat{\mathscr{T}} has a special annulus, then \hat{\mathscr{T}} has a primary piece.

PROOF. Let A be a special annulus. We may suppose that A is
minimal, that is, for each TS piece P in \mathscr{T} with |P|\subset A , each connected
component of A-Int_{*}|P| is homeomorphic to D^{2} . Let C_{1} , \cdots , C_{k} be the
connected components of T^{2}(1)-Int_{*}A . By Lemma 6. 3, each C_{f} is home0-
morphic to D^{2}. Furthermore we may suppose that C_{1}\cap A has exactly two

connected components K_{1} and K_{2} and that C_{j}\cap A is connected for all j>1 ,

by renumbering C_{j}’s if necessary. By Lemma 7. 2, for i=1,2 there is a TS
piece P_{i} in \hat{\mathscr{T}} such that |P_{i}|\subset A and K_{i} is a gluing side of P_{i} . Clearly P_{i}

is not of type I. If P_{i} has exactly two gluing sides, then A’=A-Int_{*}|P_{i}| is
a special annulus, which contradicts the minimality of A. Therefore P_{i} has
more than two gluing sides. Since C_{j}\cap(A-Int_{*}|P_{i}|) is homeomorphic to I,

each connected component of T^{2}(1)-Int_{*}|P_{i}| is homeomorphic to D^{2}. Thus
we have primary pieces P_{1} and P_{2} .

Lemma 7.5. \hat{\mathscr{T}} has a primary piece.

PROOF. Let P_{1} , \cdots , P_{n} be the TS pieces with more than two gluing

sides in \hat{\mathscr{T}} Put A_{k}=T^{2}(1)- Int_{*}(\bigcup_{i=1}^{k}|P_{i}|) . Note that each connected com-

ponent of A_{k} is homeomorphic to D^{2}, S^{1}\cross I or T^{2}(1) and that all of them are
homeomorphic to D^{2} if k=n. If each connected component of A_{1} is home0-
morphic to D^{2} , then P_{1} is a primary piece and we are done.

Now suppose that there exists k such that some connected component
of A_{k} is not homeomorphic to D^{2} . Let \kappa be the maximum of such k9s . Then
\kappa<n . When a connected component A of A_{\kappa} is homeomorphic to S^{1}\cross I,

it is easy to see that A is a special annulus. In this case \hat{\mathscr{T}} has a primary
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piece by Lemma 7. 4. When a connected component B of A_{\kappa} is home0-
morphic to T^{2}(1) , we see that P_{\kappa+1} is a primary piece, as follows.

Clearly |P_{\kappa+1}|\subset B. Furthermore each connected component of B-Int_{*}
|P_{\kappa+11^{1}} is homeomorphic to D^{2} . Let C_{1} , \cdots , C_{m} be the connected component
of T^{2}(1)-Int_{*}B. Let b_{j}=rankH_{1}(C_{j}) . Denote by c_{j} the number of the
connected components of C_{j}\cap B. From the Mayer-Vietoris sequence

0= \bigoplus_{j=1}^{m}H_{1}(C_{j}\cap B)arrow H_{1}(B)\oplus(\bigoplus_{j=1}^{m}H_{1}(C_{j}))arrow H_{1}(T^{2}(1))

arrow\bigoplus_{j=1}^{m}H_{0}(C_{j}\cap B)arrow H_{0}(B)\oplus(\bigoplus_{j=1}^{m}H_{0}(C_{j}))arrow H_{0}(T^{2}(1))arrow 0 ,

we have

2+ \sum_{j=1}^{m}b_{j}+\sum_{j=1}^{m}c_{j}+1=2+1+m .

Since c_{j}\geqq 1 for all j, it follows that b_{j}=0 and c_{j}=1 for all j. Therefore
C_{j} is homoeomorphic to D^{2} and C_{j}\cap B is connected. By Lemma 7. 2, we
see that if C_{j} intersects a connected component C of B-Int_{*}, |P_{\kappa+1}| , then
C_{j}\cap C is connected and homeomorphic to I. Therefore each connected com-
ponent of T^{2}(1)-Int_{*}|P_{\kappa+1}| is homeomorphic to D^{2} . Hence P_{\kappa+1} is a primary
piece. This completes the proof of Lemma 7. 5.

Now we have the following.

PROPOSITION 7. 6. \hat{\mathscr{T}} has exactly one or two primary pieces.
PROOF. Let P be a primary piece in \hat{\mathscr{T}} Let C_{1} , \cdots , C_{m} be the connected

components of T^{2}(1)-Int_{*}|P| . Using the Mayer-Vietoris sequence of \{

|P|, \bigcup_{j=1}^{m}C_{j}) , we find that one of the following occurs by renumbering

T^{2}(1) ;

C_{j}’ s if
necessary-

(A) C_{1}\cap|P| has exactly three connected components and C_{f}\cap|P| is
connected for all j>1 .

(B) C_{1}\cap|P| and C_{2}\cap|P| have exactly two connected components and
C_{f}\cap|P| is connected for all \overline{J}>2 .

In the case (B), we see that there is no primary piece other than P, as
follows. Suppose that \hat{\mathscr{T}} has a primary piece Q\neq P. Then |Q| is con-
tained in some C_{j} . If |Q|\subset C_{1} , then the connected component of T^{2}(1)-

Int_{*}|Q| containing |P|\cup C_{2} is homeomorphic to S^{1}\cross I , which is a contradic-
tion. If |Q|\subset C_{2} , then we have a contradiction in the same way. If |Q|\subset C_{j}

for some j>2 , then the connected component of T^{2}(1)-Int_{*}|Q| containing
Int_{*}(|P|\cup C_{1}\cup C_{2}) is homeomorphic to T^{2}(1) , which is a contradiction.
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Hereafter consider the case (A).
By the same arguments as above,
C_{j} contains no primary piece for
any j>1 . Let J_{1} , J_{2} and J_{3} be the
connected components of C_{1}\cap|P| .
See Figure 7. 1.

Then we can take a finite se-
quence K_{1}=J_{1} , K_{2}, \cdots , K_{\nu} satisfying
the following conditions, where \nu

possibly equals to 1.
(1) Let 1\leqq i\leqq\nu . Then K_{i}

and K_{i+1} are gluing sides of a com-
mon TS piece P_{i} with more than J_{3}

one gluing sides such that |P_{i}|\subset C_{1} . Figure 7. 1.
(2) For i>1 , the connected

component of C_{1}-K_{i} containing J_{1} contains neither J_{2} nor J_{3} .
(3) for each gluing side K\neq K_{\nu} of the TS piece Q such that |Q|\supset K_{\nu}

and |Q|\not\supset^{l}K_{\nu-1} , the connected component of C_{1}-K containing J_{1} contains
either J_{2} or J_{3} .

We are going to show that Q is a primary piece. It is easy to see
that Q has more than two gluing sides. Let B_{j} be the connected com-
ponent of C_{1}-Int_{*}|Q| containing J_{j} for j=1,2,3. Clearly B_{1}\neq B_{2} and
B_{1}\neq B_{3} . Since |Q|\cup B_{1}\cup B_{2}\cup B_{3} is homeomorphic to D^{2} , the intersection
L=|Q|\cap B_{2} is connected. Hence L is a gluing side of Q. Clearly L\neq K.
By the condition (3), the curve L separates Int_{*}B_{2} and B_{3} . Therefore B_{2}\neq B_{3} .
Let B be the connected component of (|P|\cup C_{1})-Int_{*}|Q| containing Int_{*}|P| .
Then B\cap|Q| has exactly three connected components |Q|\cap B_{1} , |Q|\cap B_{2} and
|Q|\cap B_{3} . The similar arguments using the Mayer-Vietoris sequence as before
imply that each connected component of (|P|\cup C_{1})-Int_{*}|Q| is homeomorphic
to D^{2} . Now we easily see that each connected component of T^{2}(1)-Int_{*}|Q|

is homeomorphic to D^{2}. Therefore Q is a primary piece. Furthermore by
the similar arguments as in the case (B), we can show that \hat{\mathscr{T}} has no
primary piece other than P and Q. This completes the proof of Proposition
7. 6.

\S 8. The proof of Theorem 8

Suppose that \mathscr{F}(T^{2}(1);\phi)^{\sigma} has a transverse foliation \mathscr{G} such that all
the leaves of \mathscr{G}|F are proper for some non-compact leaf F of \mathscr{F}(T^{2}(1);\phi)^{\sigma}.
By Theorem 7, we have a TS diagram \mathscr{T} of (T^{2}(1);\phi)^{\sigma} . Then \phi is an
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automorphism of the pre TS diagram \hat{\mathscr{T}} subordinated to \mathscr{T}

Part I. First suppose that \hat{\mathscr{T}} has an annular piece.

LEMMA 8. 1. Under the above assumption, there exists a circle K in
T^{2}(1) such that \phi(K) is isotopic to K in T^{2}(1) and K does not bound a
disk in T^{2}=T^{2}(1)\cup D^{2} .

PROOF. When \hat{\mathscr{T}} contains a TS piece P of type V, it follows from
Lemma 6. 5 that \phi(|P|)=|P| . Let K be a connected component of \partial|P| .
Since \phi preseerves the orientations of T^{2}(1) and gluing sides of TS pieces,
\phi maps K to K. By Lemma 6. 2, K does not bound a disk in T^{2} . When
\hat{\mathscr{T}} contains a TS piece of type VI, VII or IX, we can find K in the similar
way as above using Lemma 6. 6, Lemma 6. 7 and Lemma 6. 8.

Let K be as in Lemma 8. 1. Taking an element \beta\in H_{1}(T^{2}(1)) , we can
obtain a basis \alpha=[K] , \beta of H_{1}(T^{2}(1))=Z\oplus Z, where the omitted coefficient
is Z. Since H_{1}(\phi)(\alpha)=\alpha , the matrix \Phi respesenting H_{1}(\phi) with respect to

the basis \alpha, \beta has the form (\begin{array}{ll}1 0r s\end{array}) for some r, s\in Z. Since det \Phi=1 , we
have s=1 . Therefore Trace H_{1}(\phi)=2 .

Part II . Hereafter suppose that \hat{\mathscr{T}} contains no annular piece. By
Proposition 7. 6, \hat{\mathscr{T}} has exactly one or two primary pieces. Clearly \phi maps
a primary piece to another one. Since \partial T^{2}(1) is connected, \mathscr{T} has no TS
piece of type IV. Therefore a primary piece is of type III.

Suppose that \hat{\mathscr{T}} has exactly one primary piece, say P. Then we have
\phi(|P|)=|P| . Note that if \phi fixes a TS piece of type III, then \phi fixes all of
its sides (because \phi preserves the symbols of boundary sides) and furthermore
all the TS piece in \hat{\mathscr{T}} (because \hat{\mathscr{T}} contains no annular piece). Let C_{1} , \cdots , C_{m}

be the connected components of T^{2}(1)-Int_{*}|P| satisfying the condition (B)
in the proof of Proposition 7. 6. Denote by L_{i} and L_{i}’ the connected com-
ponents of |P|\cap C_{i} for i=1,2 . See Figure 8. 1.

Take circles K, L as in Figure 8. 1. Then the homology classes [K]
and [L] generate H_{1}(T^{2}(1)) . Furthermore we have

H_{1}(\phi)([K])=[K] ,, H_{1}(\phi)([L])=[L]

Therefore H_{1}(\phi)=id and Trace H_{1}(\phi)=2 .
Now suppose that \hat{\mathscr{T}} has exactly two primary TS pieces, say P and Q.

When \phi(|P|)=|P| and \phi(|Q|)=|Q| , it is easy to see that H_{1}(\phi)=id as above
and we are done. Hence suppose that \phi(|P|)=|Q| and \phi(|Q|)=|P| . Take
gluing sides J_{1} , J_{2} , J_{3} of P as in the case (A) of Proposition 7. 6. Let K_{j} be
the gluing side of Q belonging to the connected component of T^{2}(1)-(Int_{*}|P|
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Figure 8. 1.

Figure8.2.
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\cup Int_{*}|Q|) containing J_{j} . We may suppose that J_{1} , J_{2}, J_{3} are arranged in the
order compatible to the orientation of \partial|P| . Then K_{1} , K_{2} , K_{3} are arranged in
the order compatible to the orientation of \partial|Q| . Denote by B_{i} the connected
component of T^{2}(1)-Int_{*}, |P|\cup Int_{*}|Q|) containing J_{i} for i=1,2,3 . See
Figure 8. 2.

We have possibly three cases, that is,
(i) \phi(J_{1})=K_{1} ,
(ii) \phi(J_{1})=K_{2},
(iii) \phi(J_{1})=K_{3} .

Let us check these cases one by one.
Case ( i) . Suppose that \phi(J_{1})=K_{1} . Then B_{1}\supset K_{1} . Note that J_{1}\neq K_{1} ,

for otherwise \phi could not preserve the orientations of T^{2}(1) and J_{1} . Therefore
B_{1} is homeomorphic to D^{2} . Let \mathscr{L} be the set of gluing sides of TS pieces
in \hat{\mathscr{T}} connecting the different connected components of \partial B_{1}-(J_{1}\cup K_{1}) . We
give L\in \mathscr{L} an orientation following to [4, Remark 12. 7]. Let \mathscr{X} be the set
of the closures X of connected components of B_{1}- \bigcup_{L\in \mathscr{L}}I_{\lrcorner} satisfying the follow-
ing condition (^{*}) .

(*) For L_{1} , L_{2}\in \mathscr{L} with L_{1}\cup L_{2}\subset\partial X and L_{1}\neq L_{2} , the orientation of
L_{1} coincides with that of \partial X if and only if that of L_{2} coincides with that of
\partial X.

Since \phi(J_{1})=K_{1} , the orientation of J_{1} coincides with that of \partial B_{1} if and
only if that of K_{1} coincides with that of \partial B_{1} . Therefore the number \#(\mathscr{X})

is odd. Since \phi(X)\in \mathscr{X} for all X\in \mathscr{X},\cdot there exists X_{0}\in \mathscr{X} with \phi(X_{0})=X_{0} .
It is easy to see that X_{0} contains exactly one TS pieces P_{0} of type III with
two gluing sides in \mathscr{L} . Therefore \phi(|P_{0}|)=|P_{0}| . Then \phi fixes all the TS
pieces in \hat{\mathscr{T}} , which is a contradiction. We conclude that the case (i) does
not occur.

Case (ii) . Suppose that \phi(J_{1})=K_{2} . Then \phi(B_{1})=B_{2}, \phi(B_{2})=B_{3} and
\phi(B_{3})=B_{1} . Since \phi^{2}(|P|)=|P| , the automorphism \phi^{2} fixes all the TS pieces
in \hat{\mathscr{T}} Then we have B_{1}=\phi^{2}(B_{1})=\phi(B_{2})=B_{3} , which is a contradiction.
Therefore the case (ii) does not occur.

Case (iii). Suppose that \phi(J_{1})=K_{3} . Then we have a contradiction as
above and the case (iii) does not occur.

Now we come to a conclusion that if \hat{\mathscr{T}} contains no annular piece, then
\phi fixes all the TS pieces in \hat{\mathscr{T}} and H_{1}(\phi) is the identity. This completes
the proof of Theorem 8.
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\S 9. The proof of Theorem 9

Suppose that \mathscr{F}=\swarrow^{}, (T^{2}(h);\emptyset)^{\sigma} has a transverse foliation \mathscr{G} such that
\mathscr{G}|F has a non-proper leaf G_{0} for some non-compact leaf F of \mathscr{F} .

Take a non-singular vector field X on E(T^{2}(h);\phi) tangent to \mathscr{G} and
transverse to \mathscr{F}_{r} For each x\in F, let \psi(x) be the first intersecting point of
the orbit of X strating from x with F. Then \psi:Farrow F is a diffeomorphism.
Clearly \psi^{*}(\mathscr{G}|F)=\mathscr{G}|F. Let F^{*}=F\cup \mathcal{E}(F) , where \mathcal{E}(F) is the space of ends
of F, and extend \psi to \overline{\psi} : F^{*}arrow F^{*} . Then F^{*} is homeomorphic to T^{2} and
the induced isomorphism H_{1}(\overline{\psi}) : H_{1}(T^{2} ; Z)arrow H_{1}(T^{2} ; Z) coincides with
H_{1}((_{\Gamma}\acute{\prime}) when F^{*} and T^{2} are adequately identified.

Hereafter we fix an identification F=T^{2}-h\cdot D^{2} . Let L be an oriented
circle in F transverse to \mathscr{G}|F and intersecting G_{0} . Since G_{0} is not proper,
it follows that \# (G_{0}\cap L)=\infty . Therefore L does not bound a disk in T^{2} .
We can take an oriented circle K in F such that K\cap L is a single point
and the homology classes [K] and [L] generate H_{1}(T^{2} ; Z) . We identify
T^{2} with (R/Z)\cross(R/Z) in such a way that K=(R/Z)\cross\{[0]\} and L=\{[0]\}\cross

(R/Z), where [0] means 0 mod 1. Let \pi:R^{2}arrow(R/Z)^{2} be the projection. On
the open subset \pi^{-1}(F) of R^{2} , we have the induced foliation \pi^{*}(\mathscr{G}|F) . For
each n\in Z, the line \tilde{L}_{n}=\{n\}\cross R is transverse to \pi^{*}(\mathscr{G}|F) because \pi(\tilde{L}_{n})=L .

In our situation, we can still define the rotation number as follows. Let
\Omega be the set of y\in R such that the leaf \tilde{G}_{y} of \pi^{*}(\mathscr{G}|F) passing through
(0, y) intersects \tilde{L}_{n} for all n\in Z. For all y\in\Omega , the leaf \tilde{G}_{y} intersects \tilde{L}_{n} at
a single point (n, z(y, n)) .

Lemma 9. 1. \Omega\neq\emptyset .
PROOF. Let \mathscr{A} be the set of leaves of \mathscr{G}|F contained in the closure of

the non-proper leaf G_{0} as a subset of F. It follows that \mathscr{A} is uncountable.
On the other hand, \mathscr{A} contains at most two compact leaves, because n
compact leaves of \mathscr{G}|F separates F into n connected components and G_{0} must
be contained in one of them. Denote by \mathscr{B} the set of non-compact leaves
G\in \mathscr{A} such that \tilde{G}\cap\tilde{L}_{n}=\emptyset for some lift \tilde{G} of G and some n\in Z. Let
G\in \mathscr{B} . Then an end \epsilon of G is cofinal with an end \overline{\epsilon} of F. Since G is
contained in the closure of G_{0} , the limit set of \epsilon in E(T^{2}(h); \phi) consists of
compact leaves of \mathscr{G}|\partial E(T^{2}(h);\phi) contained in \partial|\mathscr{N}| for some negative Reeb
component \mathscr{N} in \mathscr{G}|\partial E(T^{2}(h) ; \phi) . Since only a finite number of leaves
of \mathscr{G}|F can correspond in this way to each compact leaf of \mathscr{G}|\partial E(T^{2}(h);\phi)

and \mathscr{G}|\partial E(T^{2}(h);\phi) has at most a finite number of negative Reeb com-
ponents, we have \#’\backslash \mathscr{B} ) <\infty . Take a non-compact leaf G\in \mathscr{A}-\mathscr{B} . Then
a lift \tilde{G} of G intersects \tilde{L}_{n} for all n\in Z. Therefore \Omega\neq\emptyset .
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We can prove the following lemma by the similar arguments as in
Nitecki [5], and we omit the proof.

Lemma 9. 2. Let y\in\Omega . Then the sequence z(y, 1)/1 , z(y, -1)/-1 ,
z(y, 2)/2 , z(y, -2)/-2 , \cdots converges and the limit \rho(y)=\lim_{1n1arrow\infty}z(y, n)/n does

not depend on y.
We call \rho=\rho(y) the rotation number of \mathscr{G}|F with respect to [K] and

[L] . As to the rationality of \rho , we have the following.

Lemma 9. 3. If \rho is rational, then all the leaves of \mathscr{G}|F are proper.
PROOF. Suppose that \rho is rational, say k/m for some k, m\in Z. Replac-

ing T^{2} by a covering space if necessary, we may suppose that \rho=k . Define
a homeomorphism g:\Omegaarrow\Omega by g(y)=z(y, 1) for all y\in\Omega . Then g has the
following property.

(1) If y_{1}<y_{2} for y_{1} , y_{2}\in\Omega , then g(y_{1})<g(y_{2}) .
(2) g(y+n)=g(y)+n for all y\in\Omega and n\in Z.

Let G be a leaf of \mathscr{G}|F . If G is non-proper, then there is a non-proper
leaf G’ in the closure of G such that G’=\pi(\tilde{G}_{y}) for some yarrow=\Omega . Hence we
may suppose that G=\pi(G_{0}) and 0\in\Omega .

We see that k-1<g(0)<k+1 , as follows. If g(0)\geqq k+1 , then g^{n}(0)\geqq

n(k+1) and \rho\geqq k+1 , which is a contradiction. If g(0)\leqq k-1 , then g^{n}(0)\leqq

n(k-1) and \rho\leqq k-1 , which is a contradiction.
Case I. Suppose that g(0)=k. Then G is a compact leaf and we are

done.
Case II . Suppose that k<g(0)<k+1 . Then - k-1<g^{-1}(0)<-k . We

have nk<g^{n}(0)<nk+1 for all n\in\underline{/}\backslash ^{\gamma} and hence - nk - 1<g^{-n}(0)<-nk for
all n\in N. For, if g^{n}(0)\geqq nk+1 , then g^{mn}(0)\geqq m(nk+1) for all m\in N and
\rho\geqq k+(1/n) , which is a contradiction.

CLAIM 9. 4. G\cap\pi(\{0\}\cross]0, g(0)-k[)=\emptyset .

PROOF. Suppose the contrary. Then there are n, N\in Z with N<g^{n}(0)

<N+g(0)-k . Clearly n\neq 0 .
(i) Suppose that n>0 . Then N=nk and g^{n}(0)<(n-1)k+g(0) . On

the other hand, that g(0)>k implies that g^{m+1}(0)>g^{m}(k)=g^{m}(0)+k for all
m\in Z. Then we have

g^{n}(0)>g^{n-1}(0)+k>\cdots>g(0)+(n-1)k .
which is a contradiction.

(ii) Suppose that n<0 . Let n=-n’ . Then N=-n’k-1 and g^{-n’}(0)

<-(n’+1)k-1+g(0) . Hence 0<g^{n’}(-(n’+1)k-1+g(0))=-(n’+1)k-1+
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g^{n’+1}(0) . Therefore g^{n’+1}(0)>(n’+1)k+1 for some n’\in JV, which is a con-
tradiction.

From Claim 9. 4 and the following claim, we conclude that G is proper
in Case II.

CLAIM 9. 5. G\cap\pi(\{0\}\cross]g^{-1}(0)+k,0[)=\emptyset .
PROOF. Suppose the contrary. Then there are m, M\in Z with M+g^{-1}(0)

+k<g^{m}(0)<M. It follows that M+k<g^{m+1}(0)<g(0)+M. Put n=m+1
and N=M+k. Then we have the same equation as in the proof of Claim
9. 4 and a contradiction.

Case III. Suppose that k-1<g(0)<k . By the similar arguments as in
Case II, we see that G is proper. This completes the proof of Lemma 9. 3.

Here we give another description of the rotation number \rho . Let G be
a non-proper leaf of \mathscr{G}|F. Then \# (G\cap L)=\infty . Let x_{0} be an accumulation
point of G\cap L . Take an infinite sequence z_{1} , z_{2} , \cdots of points in G\cap L con-
verging to x_{0} . Denote by P_{n} the closed path in T^{2}=T^{2}(h)\cup h\cdot D^{2} consisting
of the segment of G between z_{n} and z_{2n} and the shorter segment of L
between z_{n} and z_{2n} . We give P_{n} the orientation compatible with that of G.
Then the homology class [P_{n}]\in H_{1} (T^{2} ; Z) is represented as \alpha_{n}[K]+\beta_{n}[L]

for some \alpha_{n} , \beta_{n}\in Z. We obtain the following lemma and omit the proof.
Lemma 9. 6. \rho=\lim_{narrow\infty}\beta_{n}/\alpha_{n} .
Now return to the proof of Theorem 9. By Lemma 9. 3, it follows

that \rho is irrational. Denote by (\begin{array}{ll}p qr s\end{array}) the matrix corresponding to H_{1}(\overline{\psi})

with respect to the basis [K] , [L] . Let G be the above non-proper leaf of
\mathscr{G}|F. Since \psi(G) is also a non-proper leaf of \mathscr{G}|F and \psi(P_{n}) can play the
role of P_{n} , it follows that

\rho=\lim_{narrow\infty}\frac{r\alpha_{n}+s\beta_{n}}{p\alpha_{n}+q\beta_{n}}=\frac{r+s\rho}{p+q\rho}

Hence we have an equation

(*) q\rho^{2}+(p-s)\rho-r=0 .
When q=0, the irrationality of \rho implies that p=s and r=0. Since

ps-qr=1 , it follows that p=s=\pm 1 , that is, H_{1}(\overline{\psi})=\pm id .
When q\neq 0 , the equation (^{*}) is quadratic with respect to \rho . Since \rho is

irrational, the descriminant of (^{*}) must be positive. Hence we have
0<(p-s)^{2}+4qr=(p-s)^{2}+4(ps-1)=(p+s)^{2}-4 .

Therefore | Trace H_{1}(\overline{\psi})|=|p+s|>2 .
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Now suppose that Trace H_{1}(\overline{\psi})\leqq 0 , from which we will bring out a
contradiction. First we give a useful algebraic lemma. The simple proof
given below is due to T. Tanisaki.

Lemma 9. 7. Consider the canonical action of SL(2, Z) on Z\oplus Z. Let
A\in SL(2, Z) satisfy Trace A\leqq 0 . Let S be a subsemigroup of Z\oplus Z satisfy
ing the following conditions.

(1) If s\in S, then As\in S.
(2) S\neq\emptyset .

Then O\in S.
PROOF. Take an element s\in S. Since

A^{2}-(TraceA)\cdot A+E=0 ,

it follows that 0= ( A^{2}- Trace A) \cdot A+E) s\in S, where E is the identity matrix.
Now take a non-proper leaf G_{0} of \mathscr{G}|F and a point x_{0} in G_{0} . We fix

a transverse orientation of \mathscr{G}|F. Let S be the set of elements s in \pi_{1}(T^{2}, x_{0})

having, as representatives, closed paths transverse to \mathscr{G}|F oriented in the
same direction as the transverse orientation of \mathscr{G}|F. In other words, S=
\iota_{*}(\Pi S(x_{0}, \mathscr{G}|F)) , where \Pi S(x_{0}, \mathscr{G}|F)(\subset\pi_{1}(F, x_{0})) is the homotopy secant of
\mathscr{G}|F at x_{0} (see Lamoureux [3], Inaba [2]) and \iota is the inclusion map of F
into T^{2} . Then S is a subsemigroup of \pi_{1}(T^{2}, x_{0})\cong Z\oplus Z. Clearly S\neq\emptyset . Let
A\in SL(2, Z) be the matrix corresponding to H_{1}(\overline{\psi}) . Then we have AS=S.
Since Trace A=TraceH_{1}(\overline{\psi})\leqq 0 by the assumption, it follows that O\in S by
Lemma 9. 7. Therefore there is a closed path C\ni x_{0} transverse to \mathscr{G}|F

such that [C]=0 in \pi_{1}(T^{2}, x_{0})\equiv H_{1}(T^{2} ; Z) . By the general position argu-
ments, we may suppose that C is of class C^{\infty} and has only a finite number
of self intersections, which are all double. Let C be a lift of C. Since C is
null homotopic, the curve C is closed. We may suppose that G_{0}=\pi(G_{y}) for
some y\in\Omega and CnG_{y}\neq\emptyset . Now we have the following lemma.

Lemma 9. 8. In the above situation, there is a simple closed curve P
in \pi^{-1}(F)\subset R^{2} such that

(1) P is transverse to \pi^{*}(\mathscr{G}|F) ,
(2) PnG_{y}\neq 0’ .
PROOF. When C has no self intersection, we can take C as P and we

are done. Suppose that C has a self intersection point p. Then C is divided
by p into two closed curves P_{1} and P_{1}’ . We may suppose that P_{1}nG_{y}\neq 0’ .
Clearly P_{1} has less self intersection points than C. In this way, we have a
finite sequence P_{1} , \cdots , P_{n} of closed curves in \pi^{-1}(F) such that

(1) P_{i} is transverse to \pi^{*}(\mathscr{G}|F) for all i,
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(2) P_{i}\cap\tilde{G}_{y}\neq\emptyset for all i ,

(3) P_{n} is simple.
Then P=P_{n} is the desired curve.

Let P be the simple closed curve in \pi^{-1}(F)\subset R^{2} obtained in Lemma 9. 8.
Since P bounds a disk in R^{2} and P is transverset 0\pi^{*}(\mathscr{G}|F) , each leaf G
of \pi^{*}(\mathscr{G}|F) can intersect P at most once and if G\cap P\neq\emptyset , then an end of
G is captured in the domain of R^{2} surrounded by P. On the other hand,
G_{y}\cap\tilde{L}_{n}\neq\emptyset for all n\in Z, a contradiction. Therefore Trace H_{1}(\overline{\psi})>0 . We
conclude that H_{1}(\overline{\phi^{y}})=id or Trace H_{1}(\overline{\sqrt{f}})>2 . This completes the proof of
Theorem 9.

\S 10. The construction of transverse foliations (the completion
of the proof of Theorem 6)

Suppose that Trace H_{1}(\phi)\geqq 2 . The purpose of this section is to con-
struct a foliation \mathscr{G} transverse to \mathscr{F}=\mathscr{F}(T^{2}(1);\phi)^{\sigma} . The construction comes
from a construction in Franks-Williams [1] and an observation of K. Yano.

Define a linear map \tilde{\Phi} : R^{2}-\succ R^{2} by \Phi\sim(x, y)=(px+qy, rx+sy) , x, y\in R,
where (\begin{array}{ll}p qr s\end{array}) is the matrix corresponding to H_{1}(\phi) with respect to the basis
[S^{1}\cross\{^{*}\}] , [\{^{*}\}\cross S^{1}] of H_{1}(T^{2}(1);Z) . Then we have a diffeomorphism \Phi :
T^{2}arrow T^{2} making the diagram

\tilde{\Phi}

R^{2_{-}}R^{2}

\pi\downarrow \downarrow\pi

T^{2}T^{2}\overline{\Phi}

commute, where \pi : R^{2}arrow T^{2}=R^{2}/Z^{2} is the projection.
Case I. Suppose that Trace H_{1}(\phi)>2 .
Let \mu, \nu be the eigenvalues of \tilde{\Phi} . Since \mu+\nu=TraceH_{1}(\phi)>2 and

\mu\nu=1 , we may suppose that 0<\mu<1<\nu . Let V be the unit eigenvector
corresponding to \mu . Denote by \tilde{\mathscr{C}} the foliation of R^{2} whose leaves are lines
parrallel to V. Then \tilde{\Phi} preserves \tilde{\mathscr{C}} , that is \tilde{\Phi}^{*}\tilde{\mathscr{L}}=\tilde{\mathscr{L}} . We can construct
a diffeomorphism \theta:R^{2}arrow R^{2} satisfying the following conditions (1)-(4) .

(1) \theta^{*}\tilde{-\mathscr{L}}=\tilde{\mathscr{L}} .
(2) Support \theta=Cl(\{x\in R^{2}|\theta(x)\neq x\}) is contained in U_{3\nu\epsilon}(0) for suffi-

ciently small \epsilon>0 , where we denote by U_{r}(x) the open disk in R^{2} of radius
r and with center at x.

(3) \theta is connected to id by an isotopy fixing all the points in R^{2}-

Support \theta .
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(4) \theta\cdot\tilde{\Phi}(x)=x for all x\in U_{2\epsilon}(0) .
In order to construct E(T^{2}(1);\phi) , consider K=J\cross J\cross I, where J=

[-1/2,1/2] and I=[0,1] . Let Z=\{(x, y, z)\in K|x^{2}+y^{2}\leqq\epsilon^{2}\cdot\exp 2\alpha z\} , where
\alpha=\log\nu>0 . Identifying (-1/2, y, z) with (1/2, y, z) and (x, -1/2, z) with
(x, 1/2, z) for all x, y\in J and z\in I, we have T^{2}\cross I. Furthermore we identify
(x, y, O)\in K with (\nu x, \nu y, 1) if x^{2}+y^{2}\leqq 4\epsilon^{2} , and otherwise with (x’, y’, 1) where
(x’, y’) is determined by \pi\circ\theta\circ\tilde{\Phi}(x, y)=\pi(x’, y’) . Denote by E the quotient
space obtained as above. Let \Pi:Karrow E be the projection. Then \Pi(Z) is
diffeomorphic to D^{2}\cross S^{1} . The foliation (\tilde{\mathscr{L}}\cross I)|K induces a foliation \mathscr{G} of E
with \Pi^{*}\mathscr{G}=(\tilde{\mathscr{L}}\cross I)|K . Clearly \prime \mathscr{L} is transverse to \partial\Pi(Z) . See Figure 10. 1.

Figure 1O. 1.

On the other hand, we have a foliation \mathscr{F} of E_{0}=E- Int \Pi(Z) by turbulizing
the trivial foliation

\{\Pi(J\cross J\cross\{z\})\cap E_{0}\}_{z\in[0,1]} ,

as indicated in Figure 10. 1. Then we see that \mathscr{G}_{0}=\mathscr{G}|E_{0} is transverse to
\mathscr{F}_{\Gamma} Since there exists a diffeomorphism f:E(T^{2}(1);\phi)arrow E_{0} with f^{*}\mathscr{F}=

\mathscr{F}(T^{2}(1);\phi)^{\sigma} , the induced foliation f^{*}\mathscr{G}_{0} is the desired one transverse to
\mathscr{F}(T^{2}(1) ; \phi)^{\sigma} .

Case II . Suppose that Trace H_{1}(\phi)=2 .
With respect to an appropriate basis of H_{1}(T^{2}(1);Z) , the automorphism

H_{1}(\psi) corresponds to a matrix (\begin{array}{ll}1 q0 1\end{array}) for some q\in Z. Then \tilde{\Phi} constructed

by ( q1) preserves the foliation \tilde{\mathscr{L}}=\{R\cross\{y\}\}_{y\in R} of R^{2} . We can construct
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a diffeomorphism \theta : R^{2}arrow R^{2} satisfying the following conditions (1)-(4) . Let
\nu={\rm Max}\{2, |q|\} .

(1) \theta^{*}\tilde{\mathscr{L}}=\tilde{\mathscr{L}} .
(2) There is a diffeomorphism \eta:Rarrow R with Support \eta\subset V_{4\nu e}(0) for

sufficiently small \epsilon>0 such that \theta\cdot\tilde{\Phi}(x, y)=\tilde{\Phi}(x, \eta(y)) for all (x, y)\in R^{2}-U_{3e}(0) ,
where we denote by V_{r}(y) the open interval in R of radius r and with
center at y.

(3) \theta is connected to id by an isotopy fixing all the points in R^{2}-

Support \theta .
(4) \theta\circ\tilde{\Phi}(x)=\nu x for all x\in U_{2e}(0) .

By the similar construction as in Case I, we have a transverse foliation of
\mathscr{F}(T^{2}(1);\phi)^{\sigma} . This completes the proof of Theorem 6.
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