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1. Introduction and Theorem A.

T denotes the unit circle, i . e . T=\{\zeta:|\zeta|=1\} while Z denotes the set of
all integers. The normalized Lebesgue measure on T is denoted by m , i . e .

dm( \zeta)=\frac{d\theta}{2\pi} for \zeta=e^{i\theta} . Let \chi stand for the identity function on T. i . e . \chi

(\zeta)=\zeta . We shall use also \chi_{k}(\zeta)=\chi(\zeta)^{k}=\zeta^{k} for k\in Z. For p=1,2 , L^{p}=L^{p}

(T) is the Banach space of measurable functions f on T whose p-th power is

m-integrable. The space L^{p} is equipped with the norm ||f||_{p}= \{\int_{T}|f(\zeta)|^{p}dm

(\zeta)\}^{1/p}. L^{\infty}=L^{\infty}(T) is the space of essentially m-bounded functions f with
the norm ||f||_{\infty}=ess sup |f(\zeta)| . C=C(T) is the space of continuous
functions f on T with the norm ||f||_{\infty}= \max_{\zeta\in T}|f(\zeta)| .

Given a f in L^{1} , its k-th Fourier coefficient \hat{f}(k) is defined by \hat{f}(k)=\int_{T}

\chi_{-k}(\zeta)f(\zeta)dm(\zeta) for k\in Z. For p=1,2 , \infty , the Hardy space H^{p} (resp.

the disc algebra A) is the closed subspace of functions f in L^{p} (resp. C )

for which \hat{f}(k)=0 for all k\leq-1 . A function f in H^{1} is called outer if

\log|\int_{T}f(\zeta)dm(\zeta)|=\int_{T}\log|f(\zeta)|dm(\zeta) .

A function f in H^{\infty} is called inner if |f(\zeta)|=1a . e . on T. The subspace
spanned by the functions \chi_{k} , k\in Z which we call trigonometric polynomials
is denoted by \mathscr{P} . The subspace spanned by the functions \chi_{k} , k\geq 0 which we
call analytic polynomials is denoted by \iota \mathscr{P}_{+} . For a natural number n, the
subspace spanned by the functions \chi_{k} , k\leq-n is denoted by \mathscr{P}_{-}^{n} . We shall
use also \mathscr{P}_{-}=\mathscr{P}_{-}^{1} . The analytic projection P_{+} from \mathscr{P} onto \iota \mathscr{P}_{+} is defined by
P_{+}f=\Sigma fk\geq 0(k)\chi_{k} for f\in \mathscr{P} . Let P_{-}=I-P_{+} where I is the identity operator on
\mathscr{P} . For complex valued Borel functions \alpha(\zeta) and \beta(\zeta) , we study the linear
operator \alpha P_{+}+\beta P_{-} which includes the analytic projection P_{+} and the Hilbert
transform H=-iP_{+}+iP_{-} . Let \mu be a finite positive regular Borel measure
on T whose Lebesgue decomposition is d\mu=Wdm+d\mu_{s} . For a constant
M>0 , the set of the finite positive regular Borel measures \nu on T which
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satisfy

\int_{T}|(\alpha P_{+}+\beta P_{-})f|^{2}d\nu\leq M\int_{T}|f|^{2}d\mu

for all f\in \mathscr{P}_{+}+\mathscr{P}_{-}^{n} is denoted by R_{\mu}^{n} (\alpha P_{+}+\beta P_{-} : M) . We should mention
that if \{\zeta;\alpha(\zeta)\neq\beta(\zeta)\}=T and \inf_{\zeta\in T} max \{|\alpha(\zeta)|-|\beta(\zeta)|\}\neq 0 , then it
follows that

\bigcup_{M>0}R_{\mu}^{n} ( \alpha P_{+}+\beta P_{- ^{:} ^{M)=|\alpha-\beta|\bigcup_{M>0}R_{\mu}^{n}(}}-2H : M)

\cap { Udm ; max \{|\alpha|^{2} . |\beta|^{2}\}UW^{-1} is bounded.}.
Therefore, the set \bigcup_{M>0}R_{\mu}^{n} ( \alpha P_{+}+\beta P_{-}: M) and the set \bigcup_{M>0}R_{\mu}^{n}(H:M) are essen-
tially the same in this sense. In particular, \bigcup_{M>0}R_{\mu}^{n}(P_{+}: ^{M)}=\bigcup_{M>0}R_{\mu}^{n}(H:M) .

But for each constant M>0 , the set R_{\mu}^{n}(H:M) does not seem to be able to
describe the set R_{\mu}^{n} (\alpha P_{+}+\beta P_{-} : M) . This is the reason why we are
interested in parametrizing the set R_{\mu}^{n} (\alpha P_{+}+\beta P_{-} : M) . Since M^{-1}R_{\mu}^{n}(\alpha P_{+}+

\beta P_{-:}M)=R_{\mu}^{n}(\alpha P_{+}+\beta P_{-} : 1) , it is enough to parametrize the set R_{\mu}^{n}(\alpha P_{+}+

\beta P_{-:}1) which is also denoted by R_{\mu}^{n}(\alpha P_{+}+\beta P_{-}) or R_{\mu}^{n}(\alpha, \beta) . The setR_{\mu}^{1}

(H) is parametrized by R. Arocena, M. Cotlar and C. Sadosky. We
should mention that their method works also to parametrize the set R_{\mu}^{n}(H) .
They parametrized the set R_{\mu}^{1}(H) as the application of the following
theorem which has a lot of applications (see [1], [2], [3]).

THEOREM A. Let \mu_{1} and \mu_{2} be fifinite positive regular Borel measures on
T and \nu be a fifinite complex regular Borel measure on T The following three
conditions are then equivalent.

(i) | \int_{T}f\overline{f_{2}}d\nu|\leq\{\int_{T}|f_{1}|2d\mu_{1}\}^{1/2}\{\int_{T}|f_{2}|^{2}d\mu_{2}\}^{1/2}

for all f_{1}\in \mathscr{P}_{+} and f_{2}\in \mathscr{P}_{-} .
(ii) There is a k\in H^{1} such that

| \nu(E)-\int_{E}kdm|\leq(\mu_{1}(E)\mu_{2}(E))^{1/2}

for all Borel sets E\subseteq T-

(iii) There is a k\in H^{1} such that
| \int_{T}F_{1}\overline{F}_{2}(d\nu-kdm)|\leq\{\int_{T}|F_{1}|^{2}d\mu_{1}\}^{1/2}\{\int_{T}|F_{2}|^{2}d\mu_{2}\}^{1/2}

for all F_{1} . F_{2}\in \mathscr{P}

On the other hand, it is well known that H. Helson and G. Szeg\"o
characterized the celebrated positive measure \mu which satisfies the condition

(a) \int_{T}|Hf|^{2}d\mu\leq C\int_{T}|f|^{2}d\mu

for all f\in \mathscr{P} and some constant C. This condition is equivalent to
(b) | \int_{T}f_{1}\overline{f}_{2}d\mu|\leq\rho\{\int_{T}|f_{1}|^{2}d\mu\}^{1/2}\{\int_{T}|f_{2}|^{2}d\mu\}^{1/2}
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for all f_{1}\in \mathscr{P}_{+} , f_{2}\in \mathscr{P}_{-} and some constant \rho<1 .
R. Arocena, M. Cotlar and C. Sadosky proved Theorem A by the

interesting method which does not use the Hardy space theory. Since the
condition (i) of Theorem A is similar to the above condition (b), it seems
natural to show that we can prove Theorem A by the method which is similar
to the method of H. Helson and G. Szeg\"o who used the Hardy space theory.
The first purpose of this paper is to give the another proof of Theorem A
which we describe in section 2. The second purpose is to apply Theorem A
to parametrize the set R_{\mu}^{n}(\alpha, \beta) which we describe in section 3. In section
4, we show that the results in the preceding sections imply the theorem of P.
Koosis and the theorem of H. Helson, G. Szeg\"o and D. E. Sarason. All the
results obtained in this paper have the analogies to the case of the real line
R instead of the unit circle T The proofs work also in this case with a slight
modification.

The author wishes to thank Prof. T. Ando, Prof. T Nakazi and Dr.
Y. Nakamura for many helpful conversations.

2. The another proof of Theorem A.

We prove that (i) implies (ii). Let the Lebesgue decompositions of
measures \mu_{1} , \mu_{2} and \nu be d\mu_{j}=W_{j}dm+d\mu_{j}((S)j=1,2) and d\nu=\phi dm+d\nu_{s} .
Let K_{1} be the L^{2}(\mu_{1}+|\nu|) closure of \mathscr{P}_{+} and K_{2} be the L^{2}(\mu_{2}+|\nu|) closure
of \mathscr{P}_{-} . By (i),

| \int_{T}f\overline{f_{2}}d\nu|\leq\{\int_{T}|f_{1}|^{2}d\mu_{1}\}^{1/2}\{\int_{T}|f_{2}|^{2}d\mu_{2}\}^{1/2}

for all f_{j}\in K_{j}(j=1,2) . It is well known that there is a Borel set E_{0}\subseteq T with
m(fi)=0 on which \mu_{1}^{ts)},\mu_{2}^{(s)} and \nu_{s} are concentrated, and that for all Borel
sets E\subseteq fi , its characteritsic function is in K_{1}\cap K_{2} . Therefore,

|\nu_{s}(E)|\leq(\mu_{1}^{(S)}(E)\mu\xi^{s\rangle}(E))^{1/2}

for all Borel sets E\subseteq T On the other hand, since the characteristic function
of T-E is in K_{1}\cap\chi K_{2} , it follows that

| \int_{T}f\overline{f_{2}}\phi dm|\leq\{\int_{T}|f_{1}|^{2}W_{1}dm\}^{1/2}\{\int_{T}|f_{2}|^{2}W_{2}dm\}^{1/2}

for all f_{1}\in \mathscr{P}_{+} and f_{2}\in \mathscr{P}_{-} . Since \phi\in L^{1} , there is a h_{J}\in H^{1} such that log
|\phi-h|\in L^{1} . Let N be a natural number. There are outer functions h_{1}^{(N)} .

h^{(N)}\in H^{2} such that for j=1,2 , | h_{j}^{(N)}|^{2}=W_{j}+\frac{1}{N}|\phi-h|a . e . . Therefore,

| \int_{T}f\overline{J_{2}}(\phi-h)dm|\leq\{\int_{T}|f_{1}|^{2}|h_{1}^{(N)}|^{2}dm\}^{1/2}\{\int_{T}|f_{2}|^{2}|h_{2}^{(N)}|^{2}dm\}^{1/2}

for all f_{1} in the L^{2}(|h_{1}^{(N)}|^{2}) closure of \mathscr{P}_{+} and all f_{2} in the L^{2}(|h^{(N)}|^{2})

closure of \mathscr{P}_{-} . By the inner-0uter factorization theorem, for all G\in\chi H^{1} ,
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||G||1\leq 1 , there are functions G_{1}\in H^{2} , G_{2}\in\chi H^{2} such that G=G_{1}G_{2}a . e . and
||G_{j}||_{2}\leq 1(j=1,2) . By the Beurling’s theorem, G_{1}(h_{1}^{(N)})^{-1} is in the L^{2}

(|h_{1}^{(N)}|^{2}) closure of \mathscr{P}_{+} and \overline{G_{2}(h_{2}^{(N)})^{-1}} is in the L^{2}(|h_{2}^{(N)}|^{2}) closure of \mathscr{P}_{-}

Substitute these into the previous inequality, it follows that
| \int_{T}(h_{1}^{(N)}h_{2}^{(N)})^{-1}(\phi-k_{1})Gdm|\leq 1 .

Since ||(h_{1}^{(N)}h^{(N)})^{-1}(\phi-k_{)})||_{\infty}\leq N<\infty and (\chi H^{1})^{*}\cong L^{\infty}/H^{\infty}, it follows
that

||(h_{1}^{(N)}h^{(N)})^{-1}(\phi-h)+H^{\infty}||\leq 1 .
Since the closed unit ball of H^{\infty} is weak-*compact in the topology of \sigma(H^{\infty}-

L^{1}/\chi H^{1}) , there is a g_{N}\in H^{\infty} such that
||(h_{1}^{(N)}h^{(N)})^{-1}(\phi-h)-g_{N}||_{\infty}\leq 1 .

Let k_{N}=h+h_{1}^{(N)}h_{2}^{(N)}g_{N}, then k_{N}\in H^{1} and
|\phi-k_{N}|\leq|h_{1}^{(N)}h^{(N)}|a.e .

Since |k_{N}|\leq|\phi|+|h_{1}^{(N)}h^{(N)}|\leq|\phi|+|\phi-h|+W_{1}+W_{2}a . e. , {_{k_{N}\}}N\infty=1 is a
L^{1} -norm bounded sequence in H^{1} . Since the closed unit ball of H^{1} is weak-*
compact in the topology of \sigma(H^{1}, C/\chi A) , there is a subsequence \{ k_{N_{j}}\}_{j=1}^{\infty}

which converges to some k\in H^{1} in this topology. That is,

\lim_{jarrow\infty}\int_{T}Fk_{N_{j}}dm=\int_{T}Fkdm

for all F\in C. Since |\phi-k_{N}|\leq|h_{1}^{(N)}h_{2}^{(N)}|a . e. ,

| \int_{T}F(\emptyset)-k_{N_{j}})dm|\leq\int_{T}|F||h_{1}^{(N_{j})}h_{2}^{(N_{j})}|dm

for all F\in C. Since \{ h_{1}^{(N)}h_{2}^{(N)}\}N=1\infty is L^{1} -norm bounded and |h_{1}^{(N)}h^{(N)}|

\vec{Narrow\infty} ( W_{1}W_{2})^{1/2}a . e. , by the Lebesgue’s dominated convergence theorem,
let jarrow\infty ,

| \int_{T}F(\phi-k)dm|\leq\int_{T}|F|(W_{1}W_{2})^{1/2}dm

for all F\in C. We can obtain in the usual way,
|\phi-k|\leq(W_{1}W_{2})^{1/2}a . e .

On the other hand, as we noted before,
|\nu_{s}(E)|\leq(\mu_{1}^{ts)}(E)\mu_{2}^{(s)}(E))

for all Borel set E\subseteq T. Therefore, we get (ii).
The proof that (ii) implies (iii) is as follows. By (ii), it follows that

| \int_{T}\phi_{1}\overline{\phi}_{2}(d\nu-kdm)|\leq\{\int_{T}|\phi_{1}|^{2}d\mu_{1}\}^{1/2}\{\int_{T}|\phi_{2}|^{2}d\mu_{2}\}^{1/2}

for all step functions \phi_{1} and \phi_{2} . Since for all F\in \mathscr{P} there is a sequence of
step functions \{\psi_{N}\}N=1\infty such that \Psi_{N\overline{Narrow\infty}}F bounded and a . e. , by the
Lebesgue’s dominated convergence theorem, we get (iii). The proof that



On the generalization of the theorem of Helson and Szegff

(iii) implies (i) is clear, since \int_{T}f_{1}\overline{f_{2}}kdm=0 for all f_{1}\in \mathscr{P}_{+} and f_{2}\in \mathscr{P}_{-} .

This completes the proof of Theorem A.

3. Parametrization of the set R_{\mu}^{n}(\alpha, \beta) .

Let \alpha(\zeta) and \beta(\zeta) be bounded complex Borel functions on T Let d\mu

(\zeta)=W(\zeta)dm(\zeta)+d\mu_{s}(\zeta) be a finite positive regular Borel measure on T.
Let n be a natural number. In this section, we apply Theorem A to
parametrize the set R_{\mu}^{n}(\alpha, \beta) which has already been defined in section 1.
We are interested in the problem of how large \nu\in R_{\mu}^{n}(\alpha, \beta) can be taken.

DEFINITION. For a k\in\chi_{1}{}_{-n}H^{1} we defifine
\Phi(k)=WRe k-|k|^{2} and \Psi(k)=|\frac{\alpha-\beta}{2}|^{2}W+{\rm Re}\overline{\alpha}\beta k

LEMMA 1. If k\in\chi_{1-}{}_{n}H^{1} satisfifies |W-2k|\leq Wa. e. , then it follows
that (1) \Phi(k)\geq 0a. e. (2) \Psi(k)W\geq\max\{|\alpha|^{2}, |\beta|^{2}\}\Phi(k)a . e . (3) \Psi

(k)\geq 0a . e .
PROOF. It is clear that (1) is equivalent to |W-2k|\leq Wa.e . (2) is

shown by the following equalities.

\Psi(k)W-|\alpha|^{2}\Phi(k)=|\frac{\alpha-\beta}{2}W-\alpha\overline{k}|^{2}a.e .

\Psi(k)W-|\beta|^{2}\Phi(k)=|\frac{\alpha-\beta}{2}W+\beta k|^{2}a.e .

If k=0 , then \Psi(k)=\Psi(0)=|\frac{\alpha-\beta}{2}|^{2}W\geq 0a.e . If k\neq 0 , then |W-2k|\leq

Wa. e. implies log W\in L^{1} since \log|k|\in L^{1} and |k|\leq Wa . e .
Therefore (3) holds. This completes the proof.

Lemma 2. Let d\nu=Udm+d\nu_{s}, then \nu\in R^{n}\mu(\alpha, \beta) if and only if there
is a k\in\chi_{1}{}_{-n}H^{1} with |W-2k|\leq Wa. e . such that

(1) \Psi(k)U\leq\Phi(k)a . e. ,

(2) \max\{|\alpha|^{2}, |\beta|^{2}\}U\leq Wa . e. ,

(3) |\alpha|^{2}\nu_{s}\leq\mu_{s} and |\beta|^{2}\nu_{s}\leq\mu_{s},

(4) |(\mu_{s}-\alpha\overline{\beta}\nu_{s})(E)|\leq\{(\mu_{s}-|\alpha|^{2}\nu_{s})(E)\}^{1/2}\{(\mu_{s}-|\beta|^{2}\nu_{s})(E)\}^{1/2}

for all Borel sets E\subseteq T .
PROOF. \nu\in R^{n}\mu(\alpha, \beta) implies (2), (3) and that

| \int_{T}\chi_{n-}f\overline{J_{2}}(d\mu-\alpha\overline{\beta}d\nu)|\leq\{\int_{T}|f_{1}|^{2}(d\mu-|\alpha|^{2}d\nu)\}^{1/2}\{\int_{T}|f_{2}|^{2}(d\mu-|\beta|^{2}d\nu)\}^{1/2}

for all f_{1}\in \mathscr{P}_{+} and f_{2}\in \mathscr{P}_{-} . By Theorem A, there is a k\in\chi_{1-}{}_{n}H^{1} such that
| \int_{E}(d\mu-\alpha\overline{\beta}d\nu-2kdm)|\leq\{\int_{E}(d\mu-|\alpha|^{2}d\nu)\}^{1/2}\{\int_{E}(d\mu-|\beta|^{2}d\nu)\}^{1/2}

for all Borel sets E\subseteq T. It is clear that this implies (4). By the Lebesgue’s
differentiation theorem, it follows that
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|W-\alpha\overline{\beta}U-2k|\leq(W-|\alpha|^{2}U)^{1/2}( W-|\beta|^{2}U)^{1/2}a.e .
This is equivalent to (1). On the other hand,

|W-2k|\leq|W-\alpha\overline{\beta}U-2k|+|\alpha\overline{\beta}U|

\leq(W-|\alpha|^{2}U)^{1/2}( W-|\beta|^{2}U)^{1/2}+|\alpha\overline{\beta}U|\leq Wa . e .
The converse is also true by Theorem A. This completes the proof.

Lemma 3. \nu\in R_{\mu}^{n}(\alpha, \beta) implies that \nu_{s}=0 on \{\zeta:\alpha(\zeta)\neq\beta(\zeta)\} .
PROOF. Let \nu\in R_{u}^{n},(\alpha, \beta) , then by the direct estimation, we have

| \frac{\alpha-\beta}{4}|^{2}\nu\in R_{\mu}^{n(H)} since

\alpha P_{+}+\beta P_{-}=\frac{\alpha+\beta}{2}I+i\frac{\alpha-\beta}{2}H.

Therefore by Lemma 2,

( \mu_{s}+|\frac{\alpha-\beta}{4}|^{2}\nu_{s})(E)\leq(\mu_{s}-|\frac{\alpha-\beta}{4}|2\nu_{s})(E)

for all Borel sets E\subseteq T . This implies that | \frac{\alpha-\beta}{4}|^{2}\nu_{s}(E)=0 . Therefore,

\nu_{s}(E)=0 for all Borel sets E\subseteq\{\zeta;\alpha(\zeta)\neq\beta(\zeta)\} . This completes the
proof.

DEFINITION. For the bounded complex Borel functiom \alpha(\zeta) and \beta(\zeta) ,

let
I_{1}=\{\zeta;\alpha(\zeta)\neq\beta(\zeta)\}

I_{2}=\{\zeta;\alpha(\zeta)=\beta(\zeta)\neq 0\}

I_{3}=\{\zeta:\alpha(\zeta)=\beta(\zeta)=0\} .
THEOREM 1. Let n be a natural number. Let \alpha(\zeta) and \beta(\zeta) be

bounded complex Borel functions on T. Let d\mu=Wdm+d\mu_{S} be a fifinite
positive regular Borel measure on T Then the fifinite positive regular Borel
measure d\nu=Udm+d\nu_{s} belongs to the set R_{\mu}^{n}(\alpha, \beta) if and only if there is a
k\in\chi_{1}{}_{-n}H^{1} with |W-2k|\leq Wa. e. such that the following holds.

U\leq\{

\frac{\Phi(k)}{\Psi(k)} a. e. on (I_{1}\cup I_{2})\cap\{\Psi(k)\neq 0\}

\frac{W}{\max\{|\alpha|^{2},|\beta|^{2}\}} a. e. on (I_{1}\cup I_{2})\cap\{\Psi(k)=0\}

\nu_{s}=0 on I_{1} and |\alpha|^{2}\nu_{s}(=|\beta|^{2}\nu_{s})\leq\mu_{s} on I_{2} . \nu has no restriction on I_{3} .
PROOF. If \nu\in R_{\mu}^{n}(\alpha, \beta) , then by Lemma 2, there is a k\in\chi_{1-}{}_{n}H^{1} with

|W-2k|\leq Wa.e . such that \Psi(k)U\leq\Phi(k)a . e . By Lemma 1,

U \leq\frac{\Phi(k)}{\Psi(k)}\leq\frac{W}{\max\{|\alpha|^{2},|\beta|^{2}\}}a.e . on (I_{1}\cup I_{2})\cap\{\Psi(k)\neq 0\} .

By Lemma 2,

U \leq\frac{W}{\max\{|\alpha|^{2},|\beta|^{2}\}}a . e . on I_{1}\cup I_{2} .
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On the other hand, by Lemma 2, |\alpha|^{2}\nu_{s}\leq\mu_{s} , |\beta|^{2}\nu_{s}\leq\mu_{s} on T. By Lemma 3,
\nu_{s}=0 on I_{1} . By Lemmas 1 and 2, it follows that \nu has no restriction on I_{3} .
We can show that the converse is also true by Lemmas 1 and 2. This
completes the proof.

It follows from Theorem 1 that the all elements of R_{\mu}^{n}(\alpha, \beta) are
absolutely continuous with respect to m for all finite positive regular Borel
measures \mu if and only if \{\zeta:\alpha(\zeta)\neq\beta(\zeta)\}=T . So, we are interested in
parametrizing the set R_{\mu}^{n}(\alpha, \beta) on that assumption.

THEOREM 2. Let n be a natural number. Let \alpha(\zeta) and \beta(\zeta) be
bounded complex Borel functions on T which satisty \{\zeta:\alpha(\zeta)\neq\beta(\zeta)\}=T

and inf \max\{|\alpha(\zeta)|, |\beta(\zeta)|\}\neq 0 . Let \mu be a fifinite positive regular Borel
measure on T whose Lebesgue ’s decomposition is d\mu=Wdm+d\mu_{s} . Then the
following holds.

(1) R_{\mu}^{n}(\alpha, \beta)=\{U(\rho,k)dm|k\in\chi_{1-}{}_{n}H^{1},|W-2k|\leq W\rho\in L^{\infty},||\rho||_{\infty}\leq 1a

. e.
\}

(2) R_{\mu}^{n}(\alpha, \beta)\cap { Udm ; log U\in L^{1} }

= \{U(\rho, k)dm|\int_{\{\Psi(k)\neq 0\}}0\neq k\in\chi_{1},|W-2k|\leq W1og\frac{H^{\infty},||\rho\Phi(k){}_{-n}H^{1}}{\Psi(k)}dm>-\infty 0\neq\rho\in||_{\infty}\leq 1a

. e.
\}

where U(\rho, k)=\{

| \rho|\frac{\Phi(k)}{\Psi(k)} a. e. on \{\Psi(k)\neq 0\}

| \rho|\frac{W}{\max\{|\alpha|^{2},|\beta|^{2}\}} a. e. on \{\Psi(k)=0\}

PROOF. Since inf \max\{|\alpha(\zeta)|, |\beta(\zeta)|\}\neq 0 , it follows that U(\rho, k)\in L^{1}

by Lemma 1. Therefore, (1) follows from Theorem 1. Next we prove (2).

Let Udm\in R^{n}\mu(\alpha, \beta) which satisfies \log U\in L^{1} . By (1) and Lemma 1, it
follows that there is a k\in\chi_{1-}{}_{n}H^{1} with |W-2k|\leq Wa.e . and a \rho\in L^{\infty} with
||\rho||_{\infty}\leq 1 such that

U=| \rho|\frac{\Phi(k)}{\Psi(k)}\leq|\rho|\frac{W}{\max\{|\alpha|^{2},|\beta|^{2}\}}

a . e . on \{\Psi(k)\neq 0\} and
U=| \rho|\frac{W}{\max\{|\alpha|^{2},|\beta|^{2}\}}

a . e . on \{\Psi(k)=0\} . Therefore, it follows that \log|\rho|\in L^{1} since log max
\{|\alpha|, |\beta|\}\in L^{1} , log U\in L^{1} and W\in L^{1} . Furthermore,

\int_{\{\Psi(k)\neq 0\}}\log\frac{\Phi(k)}{\Psi(k)}dm\geq\int_{\{\Psi(k)\neq 0\}}\log Udm>-\infty .

We show that k\neq 0 in the following. If k=0, then \Phi(k)=\Phi(0)=0a.e . \Psi
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(k)= \Psi(0)=0a . e . follows from Lemma 2 since log U\in L^{1} . It follows that
W=0 a . e . since \Psi(0)=|\frac{\alpha-\beta}{2}|^{2}W=0a . e . and \{\zeta:\alpha(\zeta)\neq\beta(\zeta)\}=T .

Therefore U=0a. e. which is a contradiciton.
Next we show that the converse is also true. By (1), the U(\rho, k)dm in

the right hand is contained in R_{\mu}^{n}(\alpha, \beta) . So, it is enough to show that \log U

(\rho, k)\in L^{1} . Since 0\neq\rho\in H^{\infty}, it follows that \log|\rho|\in L^{1} . Since 0\neq k\in H^{1}

with |W-2k|\leq Wa . e. , it follows that log W\in L^{1} . Therefore
\int_{T}\log\frac{W}{\max\{|\alpha|^{2},|\beta|^{2}\}}dm>-\infty .

Since
\int_{\{\Psi(k)\neq 0\}}\log U(\rho, k)dm>-\infty

and U(\rho, k)\in L^{1} , it follows that log U(\rho, k)\in L^{1} . This completes the
proof.

We had the parametrizaiton of the set R_{\mu}^{n}(P_{+}) before, by the discussion
with Dr. Y. Nakamura. The parametrization takes the more transparent
form in this case. We will show in section 4 that R_{\mu}^{1}(P_{+})\neq\{0\} if and only if
W^{-1}\in L^{1} where d\mu=Wdm+d\mu_{s} . Therefore, the set

\{k\in H^{1}’\cdot|W-2k|\leq Wa.e.\}

can be parametrized by the Adamyan, Arov and Krein’s theorem (see [5] p
179 , ex. IV-18). If we combine this fact with Theorem 2, then we have the
following parametrization. If R_{\mu}^{1}(P_{+})\neq\{0\} , then it follows that

R_{\mu}^{1}( P_{+})=\{|\rho|\frac{|1-G|^{2}(1-|s|^{2})}{|1-Gs|^{2}}dm|_{s\in H_{f}^{\infty}||s||_{\infty}\leq 1}\rho\in L^{\infty}.||\rho||_{\infty}\leq 1\}

and R_{\mu}^{1}(P_{+})\cap { Udm ; log U\in L^{1} }

= \{|\rho|\frac{|1-G|^{2}(1-|s|^{2})}{|1-Gs|^{2}}dm|0\neq\rho\in H^{\infty}.||\rho||_{\infty}\leq 11\neq s\in H^{\infty}.||s||_{\infty}\leq 11og(1-|s|)\in L^{1}\}

where G is a H^{\infty} function with ||G||_{\infty}\leq 1 defifined by \frac{1+G}{1-G}=W^{-1}+i(W^{-1})^{\sim}

where ( W^{-1})^{-} denotes the harmonic conjugate function of W^{-1} .
4. The corollaries.

In this section, we deduce the Koosis’ theorem (see [10], [11]) as
Corollary 1 and the Helson, Szeg\"o and Sarason’s theorem (see [6], [7]) as
Corollary 2 from the results of the preceding sections in somewhat
generalized form. The essential part of the proof of Corollary 1 is due to
Koosis.
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COROLLARY 1. Let n be a natural number. Let \alpha(\zeta) and \beta(\zeta) be
bounded complex Borel functions which satisfy \{\zeta;\alpha(\zeta)\neq\beta(\zeta)\}=T and inf
\max\{|\alpha(\zeta)|, |\beta(\zeta)|\}\neq 0 . Let \mu be a fifinite positive regular Borel measure on
T whose Lebesgue decomposition is d\mu=Wdm+d\mu_{s} . The following two
conditions are then equivalent.
(i) R_{\mu}^{n}(\alpha, \beta)\neq\{0\} .
(ii) There is a nonzero analytic polynomial p such that W^{-1}|p|^{2}\in L^{1} with
deg p\leq n-1 .

In this case, there is a U\in R_{\mu}^{n}(\alpha, \beta) such that \log U\in L^{1} .
PROOF. We show that (i) implies (ii). Since \{\zeta,\cdot\alpha(\zeta)\neq\beta(\zeta)\}=T . it

follows from Theorem 2 that (i) implies that there is a nonzero k\in\chi_{1}{}_{-n}H^{1}

such that |W-2k|\leq Wa . e . Since 0\neq|k|\leq Wa.e. , it follws that log
W\in L^{1} . So, there is an outer function h\in H^{2} such that W=|h|^{2}a . e . .

Let v=\arg k, then it follows that - \frac{\pi}{2}\leq v\leq\frac{\pi}{2}a . e . and |k|\leq W cos va. e. ,

since |W-2k|\leq Wa . e . Let l=\exp(\theta-iv) where \tilde{v} denotes the

harmonic conjugate function of v. Then Re l\in L^{1} since - \frac{\pi}{2}\leq v\leq\frac{\pi}{2}a . e .

(see [5] p. 161). Let s=kl, then it follows that s\geq 0a . e . Let F=\chi_{n-1}h^{-2}

s, then it follows from the Smirnov’s theorem that F\in H^{1} since
|F|=W^{-1}s=W^{-1}|k||l|\leq(\cos v) (exp \sigma) ={\rm Re} la.e .

By the inner-0uter factorization theorem, there is an inner funtion Q and an
outer function G\in H^{2} such that F=QG^{2}a . e . Let p=hG, then it follows
that 0\neq p\in H^{1} and

0\leq s=\chi_{1-n}h^{2}F=\chi_{1-n}\oplus^{2}=|p|^{2}a.e .
Therefore, \chi_{1-n}\phi=\overline{p}a . e . If we compare the Fourier coefficient on the
both sides, it follows that p is in \mathscr{P}_{+} with deg p\leq n-1 and W^{-1}|p|^{2}=W^{-1}

s\in L^{1} .
Next we show that (ii) implies (i). By (ii), we can define F=W^{-1}

|p|^{2}+i( W^{-1}|p|^{2})^{\sim} where ( W^{-1}|p|^{2})^{-} denotes the harmonic conjugate
funciton of W^{-1}|p|^{2} . Let k=(2F)^{-1}|p|^{2} , then it follows from the Smirnov’s
theorem that k belongs to \chi_{1-}{}_{n}H^{1} since deg p\leq n-1 . For this k, \Phi(k)=W

Re k-|k|^{2}=|k|^{2}\neq 0a . e . which implies that \log\Phi(k)\in L^{1} . Since \Psi(k)\geq

W^{-1} \max\{|\alpha|^{2}, |\beta|^{2}\}\Phi(k)a.e. , log W\in L^{1} and log \max\{|\alpha|, |\beta|\}\in L^{1} , it
follows that \log\Psi(k)\in L^{1} . By Theorem 2, U=\Psi(k)^{-1}\Phi(k) belongs to R_{\mu}^{n}

(\alpha, \beta) and log U\in L^{1} . This completes the proof.
COROLLARY 2. Let n be a natural number. Let \alpha and \beta be complex

Borel functiom which satisfy \{\zeta;\alpha(\zeta)\neq\beta(\zeta)\}=T_{F}\alpha\overline{\beta}\in H^{\infty} and \max\{|\alpha| ,
|\beta|\}\leq 1 . Let \mu be a fifinite positive regular Borel measure on T whose
Lebesgue decomposition is d\mu=Wdm+d\mu_{s} . The following two conditiom
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are then equivalent.

(i) \int_{T}|(\alpha P_{+}+\beta P_{-})f|2d\mu\leq\int_{T}|f|^{2}d\mu

for all f\in \mathscr{P}_{+}+\mathscr{P}_{-}^{n} .
(ii) \mu is absolutely continuous with respect to m, i. e. \mu_{s}=0 , log W\in L^{1}

and there is a g\in\chi_{1-}{}_{n}H^{\infty} such that

| \exp(-i(\log W)^{\sim})-g|\leq\{1-|\frac{\alpha-\beta}{1-\alpha\overline{\beta}}|^{2}\}1/2a . e .

where (\log W)^{\sim} denotes the harmonic conjugate function of \log W.
PROOF. By Theorem 1, (i) is equivalent to that \mu is absolutely

continuous and
\{|\frac{\alpha-\beta}{2}|^{2}W+{\rm Re}\overline{\alpha}\beta k\}W\leq W{\rm Re} k-|k|^{2}a . e .

It follows that
|(1-\alpha\overline{\beta})W-2k|^{2}\leq(1-|\alpha|^{2})(1-|\beta|^{2})W^{2}a . e . .

Since max \{|\alpha|, |\beta|\}\leq 1 and \alpha\overline{\beta}\in H^{\infty} it follows that {\rm Re}(1-\alpha\overline{\beta})\geq 0a . e .
which implies that 1-\alpha\overline{\beta} is an outer function (see [8] p. 117). Let \phi=\exp

(log W+i(\log W)^{\sim}) and g=2k(1-\alpha\overline{\beta})^{-1}\phi^{-1} then it follows that g\in\chi_{1-}{}_{n}H^{\infty}

and

|_{\frac{|\phi|}{\phi}}-g| \leq\{1-|\frac{\alpha-\beta}{1-_{\alpha\overline{\beta}}}|^{2}\}1/2a . e .

This implies (ii), and the converse is also true. This completes the proof.
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