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1. The aim of this paper is to give an improvement of Theorem 2 in the
author’s previous paper [8]. Let A be a two sided simple ring with its
center C, B a two sided simple subring of A such that B=V_{A}(V_{A}(B)) and
V_{A}(B) is a finite dimensional simple C -algebra. This condition is equiva-
lent to the condition that B is a two sided simple ring and A is an H-sepa-
rable extension of B and left B -finitely generated projective (See Theorem 1
[8] ) . Denote the class of simple C -subalgebras of V_{A}(B) by \mathfrak{T} , and the
class of two sided simple subrings of A which are left relatively separable
extensions of B in A by \mathfrak{S}_{l} (See [8] for the definition of relatively separable
extension). Theorem 2 [8] shows that we can obtain mutually inverse one
to one correspondences between \mathfrak{T} and \mathfrak{S}_{l} by letting each member of \mathfrak{T} or \mathfrak{S}_{l}

correspond with its centralizer in A . In this paper we will show that a two
sided simple subring S of A which contains B belongs to \mathfrak{S}_{l} if and only if A
is left S-finitely generated projective.

All notations and symbols in this paper are same as those in [8] and [10].

2. Throughout this paper A will be a ring with 1, B a subring of A
containing 1. We will denote the center of A by C , and V_{A}(B) , the
centralizer of B in A , by D .

THEOREM 1. Let B be a two sided simple ring, and A an H-separable
extension of B such that A is left B -finitely generated projective. Denote the
class of simple C-subalgebras of D by \mathfrak{T} , and the class of two sided simple
subrings S of A containing B such that A is left S-finitely generated projective
by S_{l} , respectively. Then for each S in \mathfrak{S}_{l} , we have V_{A}(S)\in \mathfrak{T} and V_{A}(V_{A}

(S))=S, while for each T in \mathfrak{T} , we have V_{A}(T)\in \mathfrak{S}_{l} and V_{A}(V_{A}(T))=T.

PROOF Since A is an H-separable extension of B , there exists a ring
isomorphism \eta_{l} of D\otimes_{c}A^{o} to Hom(_{B}A, A) such that \eta_{l}(d\otimes a^{o})(x)=dxa, for
each a, x\in A , d\in D. Here A^{o} is the opposite ring of A . Now let S\in \mathfrak{S}_{l} .
Since A^{o} is central two sided simple over C and \eta_{l}^{-1}(Hom(sA,A)s)\supseteq A^{o} we
have \eta_{l}^{-1} (Hom( A, SA))= M\otimes c

)
A^{o} for some C -subspace M of D by
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Noether-Krosch Theorem (See e . g. , Lemma 4. 1 [10]). Then since A is
left S-finitely generated projective, we have the following isomorphisms as
A-A-module;

A\otimes_{s}A Hom(A5, A_{A})\otimes_{s}A\cong Hom(Hom(_{S}A, sA)_{A} , A_{A})

\cong Hom(M\otimes_{C}A_{A}, A_{A})

\cong Hom((A\oplus A\oplus\cdots\oplus A)_{A}, A_{A})\cong A\oplus A\oplus\cdots\oplus A

Thus A is an H -separable extension of S. Then by Theorem 1 [8] we have
that V_{A}(S) is simple and S=V_{A}(V_{A}(S)) . The rest of the proof has been
shown in Proposition 2 [8]. That T=V_{A}(V_{A}(T)) for each T in q-\sim is due to
Theorem 3. 7 [2].

Of course \mathfrak{S}_{l} coincides with the class of two sided simple subrings S of A
containing B such that A is right S-finitely generated projective. Further-
more combining Theorem 2 [8] and Theorem 1, we have

PROPOSITION 1 (Proposition 2 (3) [9]) Under the same assumption as
Theorem 1, if we assume furthermore that A contains a minimal A-B-
submodule, then a two sided simple subring S of A which contains B belongs
to \mathfrak{S}_{l} if and only if A is A-S-completely reducible..

PROOF. See Proposition 2 [9].

3. A subring S of A is said to be a left relatively separable extension of
B in A if B\subset S\subset A and the map \pi of S\otimes_{B}A to A such that \pi(s\otimes a)=sa, for
s\in S, a\in A , splits as S-A-map. This is the case if and only if there exists
\sum s_{i}\otimes a_{i} in S\otimes_{B}A such that \sum ss_{i}\otimes a_{i}=\sum s_{i}\otimes a_{i}s for each s\in S and \sum s_{i}a_{i}=

1 . We will denote { \Sigma s_{i}\otimes a_{i}\in S\otimes_{B}A|\Sigma ss_{i}\otimes a_{i}=\Sigma s_{i}\otimes a_{i}s for each s\in S } =

(S\otimes_{B}A)^{S}. Right realtively separable extensions are similarly defined.
On the other hand, A is said to be a Frobenius extension of B if A is

right B -finitely generated projective and A is B-A- isomorphic to Hom(A5 ,
B_{B}) . This is the case if and only if there exist h\in Hom(_{B}A_{B’ B}B_{B}) and finite
x_{i} , y_{i}\in A such that x=\Sigma h(xx_{i})y_{i}=\Sigma x_{i}h(y_{i}x) holds for each x\in A . We will
call \{ h, x_{i}, y_{i}\} a Frobenius system of A over B . In this case the map \theta of A
to Hom(A_{B}, B_{B}) such that \theta(x)=h\circ x , for each x\in A , gives the B-A-
isomorphism (See [6]). Concerning with the relation between relatively
separable extensions and Frobenius extensions we have an extension of
Proposition 2. 18 [3] as follows.

PROPOSITION 2. Assume that a subring S of A is a Frobenius extension
of B, and let \{ h, s_{i}, t_{i}\} be a Frobenius systcm of S over B. Then the fol-

lowing conditions are equivalent-.
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(i) S is a left relatively separable extension of B in A
(ii) S is a right relatively separable extension of B in A
(iii) \Sigma s_{i}Dt_{i}=V_{A}(S) (See Proposition 2. 4 [4])

PROOF. Since S is right B -finitely generated projective, there exists an
S-A-isomorphism \psi of S\otimes_{B}A to Hom(_{B}Hom(S_{B}, B_{B}) , BA) such that \psi(s\otimes

a)\propto)=f(s)a , for a\in A , s\in S and f Hom(SB, B_{B}) . On the other hand the
isomorphism \theta of S to Hom(S_{B}, B_{B}) such that \theta(t)=h\cdot t , for each t\in S ,

yields an S-A-isomorphism \theta^{*}=Hom(\theta, A) of Hom(_{BHom}(S_{B}, B_{B}), BA) to
Hom(SB, BA) . Then the inverse map of \theta^{*}\circ\psi is given by (\theta^{*}\circ\psi)^{-1}(g)

=\Sigma s_{i}\otimes g(t_{i}) , for g\in Hom(_{B}S, BA) . \theta^{*}\circ\psi induces an isomorphism of (S\otimes

A)^{S} to Hom(SB,A)BS\cong V_{A}(B) . Therefore, there exists \Sigma r_{i}\otimes s_{i}\in(S\otimes_{B}A)^{S}

such that \Sigma r_{i}s_{i}=1 if and only if there exists d\in D such that \Sigma s_{i}dt_{i}=1 . It
is already known that \Sigma s_{i}\otimes t_{2}\cdot\in(S\otimes_{B}S)^{s_{\wedge}} In fact, in S\otimes_{B}S we have \Sigma ss_{i}\otimes

t_{i}=\Sigma_{i}\Sigma_{j}s_{j}h(t_{j}ss_{i})\otimes t_{i}=\Sigma_{j}s_{j}\otimes\Sigma_{i}h(t_{j}ss_{i})t_{l}\cdot=\Sigma s_{j}\otimes t_{j}s for each s\in S (See [6]).
Then we see that \sum s_{i}Dt_{i} is an ideal of V_{A}(S) . Thus we have shown (i)

=(iii) . Similarly we can show ( ii)\Leftrightarrow(iii) .

THEOREM 2. Let A be an H-separable extension of B such that A is flat
as left B-module. If a subring S of A is a Frobenius extension of B and V_{A}

(S) is a two sided simple ring, then S is a left and right relatively separable
extension of B.

PROOF. Let \{ h, s_{i}, t_{i}\} be a Frobenius system of S over B . Since A is
an H-separable extension of B , there exists an A-A-isomorphism \eta of
A\otimes_{B}A to Hom(cD,A)c such that \eta(x\otimes y)(d)=xdy, for x, y\in A , d\in D . Now
suppose that \Sigma s_{i}Dt_{i}=0 . Then \Sigma s_{i}\otimes t_{l}\cdot=0 in A\otimes_{B}A . But we have S\otimes_{B}S\subset

A\otimes_{B}A by assumption. Hence we have \sum s_{i}\otimes t_{i}=0 in S\otimes_{B}S. Then we have
\Sigma s_{i}\otimes h(t_{i})=0 , and 1=\Sigma s_{i}h(t_{i})=0 , a contradiction. Thus we see \Sigma s_{i}Dt_{l}. is a
non zore ideal of a two sided simple ring V_{A}(S) , and have \sum s_{i}Dt_{l}\cdot=V_{A}(S) .

Now we can apply the above results to H-separable extensions of two
sided simple rings, and obtain

THEOREM 3. Let A, B, \mathfrak{S}_{l} and \mathfrak{T} be as in Theorem 1. Then all
subrings of A which belong to \mathfrak{S}_{l} are Frobenius extensions of B. Conversely,

if S is a two sided simple subring of A such that S is a Frobenius extension
of B and V_{A}(S) is simple, then S belongs to \mathfrak{S}_{t} .

PROOF. Let S\in\tilde{\mathfrak{G}}_{l} and T=V_{A}(S) . D\otimes ZT^{o} is simple artinian, where
Z is the center of D , and both Hom(_{T}D_{ T},T) and D are direct sum of copies
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of a simple left D\otimes_{c}T^{o}-module I But they are free right T -modules of the
same finite rank, since [D:C]<\infty and T is a simple artinian subring of D .
Hence they are direct sum of the same number of copies of I . This means
that Hom(_{T}D_{ T},T) and D are left D\otimes_{z}T^{o}-isomorphic. Thus D is a Frobe-
nius extension of T Let \{ \tilde{h}, d_{i}, e_{i}\} be a Frobenius system of D over T
Now there exists an A-A-isomorphism \eta of A\otimes_{B}A to Hom(_{C}D_{ C},A) as is
defined in Theorem 2. \eta induces an isomorphism \tilde{\eta} of S\otimes_{B}S to Hom(cD ,
rAr) , since both S_{B} and BA are finitely generated projective (See Proposi-
tion 2. 1 [7] ) . Now we can use the same method as in [5] to show that S
is a Frobenius extension of B . Put \eta-1(\tilde{h})=\sum s_{j}\otimes t_{j} , and h(s)= \sum d_{i}se_{i} , for
each s\in S. Then h is a 5-5-homomorphism of S to B , since \sum d_{2}\cdot\otimes e_{i}\in(D\otimes

\tau D)^{D} and we have \Sigma s_{j}\otimes t_{j}\in(S\otimes_{B}S)^{S} by virtue of \tilde{h}(D)\subset V_{A}(S) . Now we
have \Sigma h(ss_{j})t_{j}=\Sigma d_{i}ss_{j}e_{i}t_{j}=\Sigma d_{i}s_{j}e_{i}t_{j}s=\Sigma d_{i}\tilde{h}(e_{i})s=s , and similarly, \Sigma s_{j}h(t_{j}s)

=s. Thus we see that \{ h, s_{j}, t_{j}\} is a Frobenius system of S over B . The
converse is Theorem 2 [8] and Theorem 2.

After submitting this paper, the author was informed by Professor H.
Tominaga that Proposition 2 is essentially included in Proposition 2. 4 [4].
The author gives him hearty thanks for the kind information.
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