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\S 1. Introduction

Let E, F and G be real Banach spaces. Let \lambda be a cylindrical measure
on E of type p([4]) , and w : Earrow G a continuous linear operator. Then,
for 1<p<\infty , w is p-Radonifying (i. e . w(\lambda) is a Radon probability on G of
order p) if and only if it is p-summing (cf. [10], Theorem 1. 1). It is well
known that p -left-nuclear operators w : Earrow G are p-Radonifying even in the
case 0<p\leq 1 (cf. [10], Proposition 2. 6).

Let \alpha be a norm on E\otimes F. Denote by E\otimes_{a}F the normed space (E\otimes F,
\alpha) and by E\otimes_{a}F\wedge its completion. The Radonification problem for the class
of F-cylindrical probabilities on the tensor product E\otimes F was considered by
B. Maurey in [5]. He introduced (p, F) -Radonifying operators, which
map every F-cylindrical probability on E\otimes F of type (p, F) into a Radon
probability of order p on some completion G\otimes_{a}F\wedge. It is shown that (p, F)
-summing operators of the form w\otimes 1_{F} : E\otimes F-arrow G\otimes\wedge aF are (p, F)
-Radonifying, for reflexive F, 1<p<\infty and under certain natural assump-
tions on the norm \alpha (the conditions (1) and (2) in \S 2). As an example,
the operator w\otimes 1_{F} : E\otimes F- G\otimes_{\epsilon}F\wedge is (p, F) -summing, whenever w : Earrow

G is p -summing Here \epsilon denotes the least reasonable norm. We refer to
[7] for definitions and properties of all tensor norms used here.

In this paper it is proved that \overline{r}_{p}-nuclear operators W : E\otimes F-arrow G are
(p, F) -Radonifying, for reflexive F, 1\leq p<\infty and the same assumptions on
the norm \alpha as in [5]. \overline{r}_{p}-nuclear operators generalise classical p-left-nuclear
operators, in a natural way, to operators which are defined on the tensor
product of two Banach spaces (without any prescribed topology on this
space) and such that an operator of the form w\otimes 1_{F} may belong to this class.
See \S 3 for definition and [2] for more details. Furthermore, \overline{r}_{p}-nuclear
operators are (p, F) -Radonifying from E\otimes F into a third Banach space G
which is not necessarily the completion of some tensor product. In the case
when this space is actually the completion of some tensor product, we give
some examples of (p, F) -Radonifying operators into the completion under a
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stronger norm than the \epsilon norm. Namely, every \overline{r}_{p}|ynuc1ear operator is (p,

F) -summing. Thus, starting from p-left-nuclear operator w : Earrow G we
obtain an \overline{r}_{p}-nuclear operator w\otimes 1_{F} : E\otimes F-arrow G\otimes_{d_{\rho}}F\wedge (cf. [2], Theorem 4),

hence also a (p, F) -summing operator. The case p=1 is not covered in
Maurey’s theorem and represents one of the main aims of this paper. The
importance of this case lies in the fact that the space L_{1}\otimes_{d_{1}}F\wedge can be identified
with the space L_{1}(F) , a result which is no longer true for the space L_{p}\otimes_{d_{\rho}}F\wedge,

p>1 .

\S 2. F-cylindrical probabilities on E\otimes F

L(E, G) denotes the space of all continuous linear operators from E into
G. For w\in L(E, G),\tilde{w} : E\otimes F-arrow G\otimes F denotes the operator w\otimes 1_{F} ,

defined by (w\otimes 1_{F})(x\otimes y) :=wx\otimes y.
Let us recall that F-cylindrical probability \lambda on the tensor product E\otimes

F is a projective system \{\lambda_{N},\tilde{\pi}_{N}\} of Radon probabilities on (E/N)\otimes F,

where N runs over the family FC(E) of all closed subspaces of E of the
finite codimension, and \pi_{N} : Earrow E/N is the natural projection. M_{F}^{C}(E\otimes F)

denotes the space of all F-cylindrical probabilities.
A topology \tau on M_{F}^{C}(E\otimes F) is defined as the coarsest topology for

which the mappings \lambda\vdasharrow\tilde{\pi}_{N}(\lambda)=\lambda_{N} from M_{F}^{C}(E\otimes F) into M(E/N\otimes F) are
continuous. The second space of all Radon probabilities on E/N\otimes F is
equipped with the topology of the weak convergence of measures. This
topology \tau is called the topology of F-cylindrical convergence.

Let \psi : E\otimes aF-arrow L(E_{3}’F) be the canonical embedding. We suppose

that \alpha satisfies the condition

\psi : E\otimes_{a}F-L(E’. F) is continuous and ||\psi||\leq 1 (1)

Then there exists the extension \hat{\psi} of this mapping to the completion E\otimes_{a}F\wedge.
Let \mu be a Radon probability on E\otimes_{a}F\wedge. Then \lambda_{N} :=\tilde{\pi}_{N}(\mu) defines a

cylindrical probability \lambda on E\otimes F (cf [5]). We denote this connection by
\lambda=\check{\mu} .

We say that a cylindrical probability \lambda on E\otimes F is Radon on E\otimes_{a}F\wedge if
there exists a Radon probability \mu on E\otimes_{a}F\wedge for which it holds \lambda=\check{\mu} . Such
measure need not be unique. However, if \alpha satisfies

\hat{\psi} : E\otimes_{a}F-\wedge L(E’-F) is one to one (2)

then \mu , if it exists, is unique ([5]).
It is well known that every reasonable crossnorm \alpha satisfies (1). If E

or F has the metric approximation property, then such norm satisfies (2).
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The F-cylindrical topology on M_{F}^{c}(E\otimes F) induces on the space M(E\otimes\wedge

aF) the notion of convergence as follows: \check{\mu}_{\gamma}arrow\check{\mu} if and only if \mu_{\gamma}arrow\mu

F-cylindrically. Such topology on M(E\otimes_{a}F)\wedge is weaker than the topology
of the weak convergence of measures.

Let \lambda\in M_{F}^{C}(E\otimes F) . For w\in L(E, G) and M\in FC(G) the following
diagram commutes:

\tilde{w}

E\otimes F G\otimes F

\downarrow\tilde{\pi}_{w(M)}1
\downarrow\tilde{\pi}_{M}

(E/w^{-1}(M))\otimes F (G/M)\otimes F

w_{M}\otimes 1_{F}

Since w_{M} is continuous and w^{-1}(M)\in FC(E) , we can define the F-
cylindrical probability \tilde{w}(\lambda) on G\otimes F by

\tilde{w}(\lambda)_{M} : =(w_{M}\otimes 1_{F})(\lambda_{w(M)}1)

For a linear mapping W : E\otimes F- G, W(\lambda) cannot be defined to be a
cylindrical measure on G. Namely, for M\in FC(G) , (E\otimes F)/W^{-1}(M)

need not be of the form (E/N)\otimes F, so \lambda_{W}1(M) may not have a sense.
However, the notion “

W(\lambda) is a Radon probability on G ” has a sense
through the following:

DEFINITION. W(\lambda) is a Radon probability on G if W has a factoriza-
tion of the form

W
E\otimes F G

for some Banach space E_{1} and a norm \alpha which satisfies (1), (2) ; where w,
v are continuous and \tilde{w}(\lambda) is a Radon probability on E_{1}\otimes_{a}F\wedge.

A Radon probability \mu on a Banach space G is of order p([4]) if

|| \mu||_{p}:=\{\int_{G}||z||^{p}d\mu(z)\}^{1/p}<\infty
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Let \lambda be a F-cylindrical probability on E\otimes F. For each x’\in E’ the image
\lambda_{x’}:=\tilde{x}’(\lambda) represents a Radon probability on R\otimes F\simeq F. We say that \lambda is
of type (p, F) , p>0 , if \lambda_{x’} is of order p for all x’\in E’ and

||\lambda||_{p,F}^{*}
:= \sup_{||x’||\leq 1}||\lambda_{x’}||_{p}<\infty

W : E\otimes F- G is said to be (p, F) -Radonifying if it maps every F-
cylindrical probability on E\otimes F of type (p, F) into a Radon probability on
G of order p.

\S 3. (p, F) -summing and \overline{r}_{p}-nuclear operators

W : E\otimes F-arrow G is (p, F) -summing ([5]) if there exists C\geq 0 such that
for every finite \{ u_{j}\}\subset E\otimes F one has

\{\sum||W(u_{j})||^{p}\}^{1/p}\leq C\sup_{||x’||\leq 1}\{\sum||[u_{j}, x’]||^{p}\}^{1/p}
(3)

where [ u, x’] denotes the canonical action of an element u\in E\otimes F on the
vectors in E’ The norm of W is defined by \tilde{\pi}_{p,F}(W) : = inf { C : C

satisfies (3) \} .
The following theorem is due by B. Maurey in [5] :

THEOREM 1. Let F be reflexive, 1<p<\infty , w\in L(E, G) and \lambda\in M_{F}^{C}

(E\otimes F) of type (p, F) . If \alpha satisfies (1) and (2), and if \tilde{w} : E\otimes F-

G\otimes_{\alpha}F\wedge is (p, F) -summing, then \tilde{w}(\lambda) is a Radon probability on G\otimes_{a}F\wedge and

||\tilde{w}(\lambda)||_{p}\leq\tilde{\pi}_{p,F}(\tilde{w})||\lambda||_{p,F}^{*}

We shall prove a strengthening of this result for a smaller class of \overline{r}_{p^{-}}

nuclear operators. Let us recall that W : E\otimes F- G is \overline{r}_{p}-nuclear if it has a
representation

W= \sum_{j=1}^{\infty}x_{j}’\otimes v_{j} (4)

such that for \{x_{j}’\}\subset E’ and \{ v_{j}\}\subset L(F, G) it holds

\overline{r}_{\beta}(W) := inf \{(\Sigma||x_{j}’||^{p})^{1/p}

\sup_{||z’||\leq 1}(\Sigma||{}^{t}v_{j}z’||^{p})^{1/p}\}\prime\prime<\infty(1<p<\infty)

or

\overline{r}_{1}(W) := \inf\{\Sigma||x_{j}’||\cdot\sup_{j}||{}^{t}v_{j}||\}<\infty ,
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where the infimum is taken over all representations of the form (4), {}^{t}v : G’

arrow F’ is the adjoint operator, and p’ is defined by \frac{1}{p}+\frac{1}{p’}=1 . For u\in E\otimes F,

W(u) is defined by

W(u)= \sum_{j=1}^{\infty}v_{j}([u, x_{j}’]) (5)

Every \overline{r}_{p}-nuclear operator W : E\otimes F-arrow G is (p, F) -summing, with \tilde{\pi}_{p,F}

(W)\leq\overline{r}_{p}(W) (see [3], Prop. 5). Further, if w : Earrow G is \overline{p}-left-nuclear,
then \tilde{w} : E\otimes F- G\otimes\wedge d_{\rho}F is \overline{r}_{p}-nuclear and \overline{r}_{p}(\tilde{w})\leq g_{p}(w) holds (cf. [2],
Theorem 4). By Proposition 2 of [5] (Expose II) it follows

PROPOSITION 1. Let w : Earrow G be p-left-nuclear, 1\leq p<\infty , and let \mu be
a Radon probability on E\otimes_{\epsilon}F\wedge of type (p, F) . Then

||\tilde{w}(\mu)||_{p}\leq g_{p}(w)||\mu||_{p,F}^{*} (6)

We are ready now to prove the main result:

THEOREM 2. Let F be reflexive and 1\leq p<\infty . If W : E\otimes F-arrow G is
\overline{r}_{p}-nuclear and \lambda F-cylindrical probability on E\otimes F of type (p, F) , then
W(\lambda) is a Radon probability on G of order p and

||W(\lambda)||_{p}\leq\overline{r}_{p}(W)||\lambda||_{p,F}^{*} (7)

PROOF. The operator W has a factorization of the form

W
E\otimes F G

l_{\infty}\otimes F\downarrow (v (8)

l_{p}(F)
\tilde{d}

where w, v are continuous and d : l_{\infty}arrow l_{p} is the diagonal operator of the
multiplication by an element \{ d_{j}\}\in l_{p} . Denote by e_{\acute{j}}= (0, \ldots, 0, 1, 0, \ldots) (1 is
on the j-th place). The linear mapping \tilde{d} is defined by

\tilde{d}(x\otimes y) :=\{d_{j}\xi_{j}y\} , x=(\xi_{j})\in l_{\infty} , y\in F

i . e.\tilde{d}(u)=\{d_{j}[u, e_{j}’]\} , u\in l_{\infty}\otimes F (cf. [2], Theorem 8). Further, \tilde{d} is \overline{r}_{p}-

nuclear, hence also (p, F) -summing.
Denote by \Delta_{p} the norm on l_{p}\otimes F induced from the space l_{p}(F) . Then

l_{p}\otimes_{\Delta_{p}}F\wedge\simeq l_{p}(F) . On l_{p}\otimes F the following relation holds: d_{p}\leq\Delta_{p}\leq g_{p} (see [1],
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Th\’eor\‘eme 5 or [8], Theoreme 2). Since l_{p} has the metric approximation
property, the norms d_{p} and g_{p} satisfy (1) and (2) on the space l_{p}\otimes F.
Hence, \Delta_{p} has the properties (1) and (2) on l_{p}\otimes F.

Suppose now p>1.\tilde{w}(\lambda) is a F -cylindrical probability on l_{\infty}\otimes F of type

(p, F) , since it holds

||\tilde{w}(\lambda)||_{p,F}.\leq||w||||\lambda||_{p,F}
. (9)

By Theorem 1, (\tilde{d}\tilde{w})(\lambda) is a Radon probability on l_{p}\otimes\wedge\Delta_{\rho}F\simeq l_{p}(F) . Thus,
W(\lambda)=(v\tilde{d}\tilde{w})(\lambda) is Radon on G and

||W(\lambda)||_{p}\leq||v||||(\tilde{d}\tilde{w})(\lambda)||_{p}

\leq||v||\tilde{\pi}_{p,F}(\tilde{d})||\tilde{w}(\lambda)||_{p,F}^{*}

\leq||v||g_{p}(d)||w||||\lambda||_{p,F}^{*}

\leq(\overline{r}_{p}(W)+\eta)||\lambda||_{p,F}^{*}

since \overline{r}_{p}(W)=\inf\{||v||g_{p}(d)||w||\} , the infimum is taken over all factoriza-
tions of the form (8), and \eta>0 being given in advance (cf. [2], Theorem 8)

Thus, (7) follows.
Suppose now p=1 . Take the representation (4) of W for which it

holds ||w||=1 , ||v||= \sup_{j}||{}^{t}v_{j}||=1 , ||d||=\Sigma|d_{j}|=\Sigma||x_{j}’||\leq\overline{r}_{1} (^{W)}+\eta . We can

write the sequence \{ d_{j}\}\in l_{1} in the form d_{j}=b_{j}\cdot c_{j} , where \{ b_{j}\}\in l_{1} and \{ c_{j}\}\in c_{0}

are chosen such that it holds

\sum|b_{j}|\leq\sum|d_{j}|+\eta\leq\overline{r}_{1}(W)+2\eta , |c_{j}|\leq 1 (10)

The diagonal operators b : l_{\infty}arrow l_{1} and c : l_{1}arrow l_{1} defined by these sequences
are nuclear and compact, respectively, with the norms ||c||\leq 1 and g_{1}(b)=

\Sigma|b_{j}| (cf. [6], Satz 7).

Since (l_{\infty})’ has the metric approximation property, \tilde{w}(\lambda) is the F-
cylindrical limit of a net \{\lambda_{\gamma}, \gamma\in\Gamma\} of Radon probabilities on l_{\infty}\otimes F (each

\lambda_{\gamma} is concentrated on some spaces of the form (l_{\infty}/N)\otimes F, where N\in FC

(l_{\infty})) , of order 1, see [5], Expose II , Theoreme 1. Further,

||\lambda_{\gamma}||_{1,F}^{*}\leq||\tilde{w}(\lambda)||i
,

F\leq||\lambda||_{1,F}^{*}

The mapping b : l_{\infty}arrow l_{1} is nuclear and so \tilde{b} : l_{\infty}\otimes F-arrow l_{1}\otimes_{d_{1}}F\wedge is \overline{r}_{1} nuclear It
is well known that l_{1}\otimes_{d_{1}}F\wedge is isometrically isomorphic to l_{1}(F) (the norm d_{1}

coincides with the projective norm \pi ). Let \{ e_{j}’\} be defined as before.
Define a linear mapping i : l_{1}\otimes\wedge d_{1}Farrow l_{1}(F) by i(u):=\{[u, e_{j}’]\} and \tilde{c} :
l_{1}(F)arrow l_{1}(F) by c\sim(\{y_{j}\})=\{c_{j}y_{j}\} . Then it holds ||i||\leq 1 , ||c||\leq 1 and \tilde{d}=\tilde{c}i\tilde{b}.

Denote \mu_{\gamma}

:=(i\tilde{b})(\lambda_{\gamma}) . \mu_{\gamma} are Radon probabilities on l_{1}(F) for which
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it holds, by Proposition 1 and (10)

||\mu_{\gamma}||_{1}\leq||i||||\tilde{b}(\lambda_{\gamma})||_{1}

\leq g_{1}(b)||\lambda_{\gamma}||_{1,F}^{*}

=(\Sigma|b_{j}|)||\lambda_{\gamma}||i,F

\leq(\overline{r}_{1}(W)+2\eta)||\lambda||i,F

Let j be the canonical embedding of l_{1}(F) into l_{1}(F)
\prime\prime Then ||j||\leq 1 . The

measures \mu_{\gamma} are Radon on \sigma(l_{1}(F), l_{1}(F)9 , so, j(\mu_{\gamma}) are Radon probabili-
lies on l_{1}(F)_{\sigma}^{rr} :=\sigma(l_{1}(F)’ l_{1}(F)0 for which it holds

||j(\mu_{\gamma})||_{1}\leq||j||||\mu_{\gamma}||_{1}\leq\overline{r}_{1}(W)||\lambda||_{1,F}^{*}

Hence, \overline{\{j(\mu_{\gamma})\}} is compact in the topology of the weak convergence of
measures ([4], Prop. 4), and hence F-cylindrically compact. There exists
a Radon probability \mu on l_{1}(F)_{\sigma}^{rr} which lies in the closure of \{j(\mu_{\gamma})\} . We
may suppose that \mu=\lim j(\mu_{\gamma}) . Since \{\lambda_{\gamma}\} converges F-cylindrically to
\tilde{w}(\lambda) and F-cylindrical convergence is preserved by continuous mappings,
it follows \mu=\lim_{\gamma}(ji\tilde{b})(\lambda_{\gamma})=(ji\tilde{b}\tilde{w})(\lambda) .

Since the space F is reflexive and c : l_{1}arrow l_{1} is compact, it follows from
Eberlein- \check{S}mulian theorem (with the help of the usual diagonal procedure)

that \tilde{c} : l_{1}(F)arrow l_{1}(F) is weakly compact. Hence, tt\tilde{c}(l_{1}(F)’)\subset l_{1}(F) and
it holds tt\tilde{c}j=\tilde{c}. Thus, the following diagram is commutative:

l_{\infty}\otimes F

(\tilde{b}

l_{1}\otimes_{d_{1}}F\wedge

i

We conclude that tt\tilde{c}(\mu)=^{tt}\tilde{c}(ji\tilde{b}\tilde{w})(\lambda)=(\tilde{c}i\tilde{b}\tilde{w})(\lambda)=(\tilde{d}\tilde{w})(\lambda) is
concentrated on sets which are relatively compact in \sigma(l_{1}(F), l_{1}(F)9 , and
represents, by Phillips theorem ([9], Theorem 3, p. 162) a Radon probability
ty on l_{1}(F) . Thus, W(\lambda) is a Radon probability on G and

||W(\lambda)||_{1}\leq||v||||(\tilde{d}\tilde{w})(\lambda)||_{1}\leq\overline{r}_{1}(W)||\lambda||_{1,F}^{*}

which proves the theorem.

COROLLARY 1. Let F be reflexive, 1\leq p<\infty and \alpha\leq d_{p} a reasonable
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norm on G\otimes F. If w : Earrow G is p-left-nuclear and \lambda a F-cylindrical
probability on E\otimes F of type (p, F) , then \tilde{w}(\lambda) is a Radon probability on
G\otimes_{a}F\wedge of order p and

||\tilde{w}(\lambda)||_{p}\leq g_{p}(w)||\lambda||_{p,F}^{*}

Finally the author wishes to express his thanks to the referee for his
valuable remarks.
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