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1. Introduction In their paper [1], Aschbacher and Guralnick proved
that any finite group G is generated by a pair of conjugate solvable
subgroups. The purpose of this note is to show that we can impose some
conditions on how the generating subgroups are embedded in G . More
precisely, we will prove the following theorem.

THEOREM Let G be any finite group. Then, there is solvable
subgroup S such that

(1) G=<S, S^{g}>for some element g of G,

(2) the conjugacy class of the subgroup S is stable under the group
Aut G of automorphisms of G, and

(3) N_{G}(S)=S.

In this note, a subgroup which satisfies the second condition will be
called a (^{*}) -subgroup of G . Thus, a subgroup H is a (^{*}) -subgroup of G if,
for any automorphism \sigma of G , there is an element x , depending on \sigma , such
that

\sigma(H)=x^{-1}Hx .

The conditions (2) and (3) impose some restrictions on the way the
subgroup S is embedded in G . Since every maximal solvable subgroup of
any finite group is self-normalizing, to impose the condition (3) alone is
trivial, but to put the two conditions (2) and (3) together on S seems to be
not so trivial. It may be possible to impose further conditions on the
embedding of S or on the properties of the element g.

We add the following remarks. Let G be any finite group. Then, a
conjugacy class of solvable subgroups which satisfies the conditions (1), (2),

and (3) is not necessarily unique. It follows from elementary group theory
([2] , p. 99) that the normalizer of an S_{p}-subgroup is a self-normalizing (^{*})

-subgroup. In particular, let H be the normalizer of an S_{2} subgroup of G .
(If the order |G| is odd, we have H=G.) By the Feit-Thompson
Theorem, H is solvable. It is fairly obvious that the group G is
generated by all the conjugates of H , and that there are groups G in
which any pair of conjugates of H generates a proper subgroup of G .
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2. Preliminaries We can partition the set of nonabelian finite
simple groups into mutually disjoint subsets \mathscr{L} (p) where p runs over all
prime numbers. If p >2 , then \mathscr{L} (p) is the totality of simple groups of
Lie type which are derived from the Chevalley groups defined over fields
of characteristic p, while \mathscr{L}(2) consists of all the remaining nonabelian
simple groups of finite order not contained in any \mathscr{L} (p) (p >2) . Thus,
\mathscr{L}(2) consists of all the sporadic simple groups and the alternating
groups A_{n} for n \geqq 7 , as well as most of the simple groups of Lie type of
characteristic two.

Aschbacher and Guralnick have proved the following result ([1],
Lemmas 2. 1, 2. 5, and 2. 9).

LEMMA 1. Let G be a simple group in \mathscr{L}(p) . Then, G is generated by
two S_{p}-subgroups.

We will prove the following lemma.

LEMMA 2. Let G be a direct product of nonabelian simple groups.
Then, there exists a solvable self-normalizing (^{*}) -subgroup H such that

G=<H, H^{\chi}>

for some element x of G.

PROOF. By assumption, we have
G=S_{1}\cross S\cross \cross S_{t}

where the S_{i} are simple groups. Then, the set F=\{S_{1}, S_{2}, . . S_{t}\} is
uniquely determined, and F is stable under the group Aut G. (Cf. [2],
p. 131; or Chap. VI , \S 6.) Set

G(p)=\Pi_{p}S_{i}

where the product II p is taken over those S_{i} which are contained in F\cap \mathscr{L}(p) .
Then, each G(p) is a characteristic subgroup of G , and we have

G=\Pi G(p)

where the product is over all prime numbers. By lemma 1, each group S_{i} in
F\cap \mathscr{L}(p) is generated by two S_{p}-subgroups. So, there exist an S_{p}-subgroup
P_{i} of S_{i} and an element g_{i} of S_{i} such that

S_{i}=<P_{i} , g_{i}^{-1}P_{i}g_{i}> .

Put P=\Pi_{p}P_{i} and g(p)=\Pi_{p}g_{i} . Then, P is an S_{p}-subgroup of G(p) . Let
H(p) be the normalizer of P in G(p) . Then, H(p) is a self-normalizing
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(^{*}) subgroup of G(p) . We remark that H(p) is solvable. This is clear if
p=2 . On the other hand, if p>2 , then H(p) corresponds to the Borel
subgroup of the Chevalley group, and so H(p) is solvable. Since

g(p)^{-1}Pg(p)=\Pi_{p}g_{i}-1P_{i}g_{i} ,

we get that <H(p) , H(p)^{g(p)}>=G(p) .
Set H=\Pi H(p) and g=\Pi g(p) . Then, H is a solvable subgroup of G

such that

<H, H^{g}>=\Pi<H(p) , H(p)^{g(p)}>=\Pi G(p)=G.

It is easy to verify that H is a self-normalizing (^{*}) -subgroup of G . Indeed,
if \sigma\in AutG , then \sigma leaves every G(p) invariant. So, \sigma induces an
automorphism of G(p) . Since H(p) is a (^{*}) subgroup of G(p) , we can
find an element x(p) of G(p) such that

H(p)^{\sigma}=H(p)^{X(p)} .

Then, H^{\sigma}=H^{x} for x=\Pi x(p) . Thus, H is a (^{*}) -subgroup of G . Clearly,
H is self-normalizing because each H(p) is.

3. Proof of Theorem We proceed by induction on |G|. Let S(G) be
the solvable normal subgroup of maximal order in G. Clearly, S(G) is a
characteristic subgroup of G. We will prove the existence of a subgroup S
satisfying the given requirements as well as the further condition that

S(G)\subset S.

We will divide the proof into two cases depending on whether or not S(G)=
{1}.

Case 1. First, we assume that S(G)\neq\{1\} and consider the factor
group \overline{G}=G/S(G) . Since |\overline{G}|<|G| , the inductive hypothesis gives us a
self-normalizing solvable (^{*},) subgroup \overline{S} of \overline{G} such that

\overline{G}=<\overline{S},\overline{g}^{-1}\overline{S}\overline{g}>

for some element \overline{g} of \overline{G}. Let S be the subgroup of G such that

\overline{S}=S/S(G) ,

and let g be an element of G which corresponds to \overline{g} by the canonical map of
G onto \overline{G}. Since S(G) is solvable, S is a solvable subgroup of G such that

G=<S, S^{g}>
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It is clear from the correspondence Theorem that S is self-normalizing. It
remains to show that S is a (^{*}) -subgroup of G . Let \sigma be an automorphism
of G . Since S(G) is a characteristic subgroup of G , \sigma leaves S(G)
invariant. Thus, \sigma induces an automorphism \tau of \overline{G}. By the inductive
hypothesis, \overline{S} is a (^{*}) subgroup of \overline{G}. Hence, \tau(\overline{S})=\overline{x}^{-1}\overline{S}\overline{x} for some
element x of G . It follows that \sigma(S)=x^{-1}Sx . Thus, S is a (^{*}) subgroup of
G . This completes the proof in this case.

Case 2. We assume that S(G)=\{1\} . Let F^{*}(G) be the generalized
Fitting subgroup of G (cf. [2], Chap. VI , \S 6). Then, F^{*}(G) is a charac-
teristic subgroup of G . Under the assumption that S(G)=\{1\} , F^{*}(G)

coincides with the maximal semisimple normal subgroup E , and it is a direct
product of nonabelian simple groups.

By Lemma 2, E contains a self-normalizing solvable (^{*}) subgroup H
such that

(1) E=<H, H^{x}>

for some element x of E . Since H is a (^{*}) subgroup of E\triangleleft G , we get

(2) G=EN_{G}(H) .

We have N_{G}(H)\cap E=N_{E}(H)=H. Set N=N_{G}(H) . Then, we have

(3) \{1\}\neq H\subset S(N) .

It follows that N is a proper subgroup of G . We may apply the inductive
hypothesis to N and conclude that there is a solvable self-normalizing
(^{*}) subgroup S of N such that

(4) S(N)\subset S and N=<S, S^{y}>

for some element y of N We will prove that S satisfies all the requirements.
Let g=yx and set G_{0}=<S, S^{g}> . We will prove that G_{0}=G . By (3)

and (4), we have

H\subset S .

Since y\in N=N_{G}(H) , G_{0} contains H^{g}=(H^{y})^{x}=H^{x} as well as H . So, by
(1), we get

E=<H, H^{\chi}>\subset G_{0} .

Since x\in E, G_{0} contains S^{y}=x(S^{g})x^{-1} . Hence, G_{0} contains <S, S^{y}>=N ,
so by (2), we have
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G_{0}=EN=G.

(This is the proof of Theorem A in [1].) Thus, Condition (1) is satisfied.
Next, we will show that S is a (^{*}) -subgroup of G . Let \sigma\in AutG .

Then, \sigma leaves E invariant because E char G . Since H is a (^{*}) subgroup
of E , there is an element u of E such that

H^{\sigma}=H^{u} .

Let i(u) be the inner automorphism of G induced by the element u , and let
\tau=\sigma i(u)^{-1} . Then, \tau is an automorphism of G which leaves the subgroup
H invariant. Clearly, the automorphism \tau leaves the subgroup N=N_{G}(H)

invariant and induces an automorphism of N Since S is a (^{*}) subgroup of
N. we have

S^{\tau}=S^{v}

for some element v of N . Thus, we get

S^{\sigma}=S^{\tau i(u)}=S^{vu} .

This proves that S is a (^{*}) subgroup of G .
Finally, we will show that S is self-normalizing in G . Clearly, N_{G}(S)

normalizes E\cap S. On the other hand,

H\subset E\cap S\subset E\cap N_{G}(H)=H.

This proves that E\cap S=H. Thus, N_{G}(S) normalizes H . It follows that

N_{G}(S)=N_{N}(S)=S

because S is self-normalizing in N . This completes the proof.

References

[1] M. ASCHBACHER and R. GURALNICK, Solvable Generation of Groups and Sylow Sub-
groups of Lower Central Series. J. Algebra 77 (1982), 189-201

[2] M. SUZUKI, Group Theory I (1982), II (1985) Springer-Verlag Berlin-Heidelberg-New
York

Department of Mathematics
University of Illinois


	1. Introduction
	THEOREM Let ...

	2. Preliminaries
	3. Proof of Theorem
	Case 1.
	Case 2.

	References

