On the number of conjugacy classes in a finite p-group

Antonio Vera-LOpez

(Received February 23, 1988)

Abstract

Let G be a finite p-group of order $p^{m}=p^{2 n+e}$, with n a non-negative integer, p a prime number and $e=0$ or 1 , and let $r(G)$ be the number of conjugacy classes of elements of G. Then the following equality, due to P. Hall, holds ([4], p. 549) : $$
r(G)=\left(p^{2}-1\right) n+p^{e}+k\left(p^{2}-1\right)(p-1)
$$

For some non-negative integer k. In this paper, we obtain new properties relative to $r(G)$ by the analysis of the number $r_{G}(g N)$ of conjugacy classes of elements of G that intersect the coset $g N$, where N is a normal subgroup of G and g any element of G. It contains a number of equations and congruences relating $r(G)$ to other invariants of G. In particular, our results improve the above equality of P . Hall, when G has maximal nilpotent class or $n \leq p+1$. Examples are given, which make our improvements evident.

Introduction

The standard notation of the theory of groups is used in this paper. In the following, G will denote a finite non-abelian p-group of order $p^{\mathrm{m}}=$ $p^{2 n+e}$, with n a positive integer, p a prime number, and $e=0$ or 1 , and $r(G)$ denotes the number of conjugacy classes of elements of G. If S is a non-empty subset of $G, r_{G}(S)$ denotes the number of conjugacy classes of elements of G that intersect S. The lower central series of G is the series $G>Y_{2}>\ldots>Y_{c}=1$ of normal subgroups Y_{i} of G in which $Y_{2}=G^{\prime}=[G, G]$ is the derived subgroup of G and Y_{i} is the subgroup generated by the set $\left\{[x, y]=x^{-1} y^{-1} x y \quad \mid x \in G, y \in Y_{i-1}\right\}$ for each $i=3, \ldots, c$; the number $c-1$ is called the nilpotent class of $G . \quad G$ is said to have maximum degree of commutativity $d=d(G)$ if $\left[Y_{i}, Y_{j}\right] \leq Y_{i+j+d}$ for all $i, j=1,2,3, \ldots$ and d is the maximum such integer ; obviously $d \geq 0$. It is well-known (cf. $|4|$)

[^0]that G has nilpotent class at most $m-1$. In case $c=m-1$, and $m \geqq 4$, we consider the subgroup $Y_{1} \supseteq Y_{4}$ of G defined by: Y_{1} / Y_{4} is the centralizer of Y_{2} / Y_{4} in G / Y_{4}. Then $\left|G: Y_{1}\right|=p$ and $\left|Y_{1}: Y_{2}\right|=p$. If Y_{1} is an abelian group, then we have $r(G)=p^{2}-1+p^{m-2}$. Therefore we can suppose that Y_{1} is non-abelian.

Specifically we prove the following results :
A) There exist non-negative integer numbers k_{1} and k_{2} such that
i) $p \cdot r(G)=\left(p^{2}-1\right)(|Z(G)|+n+e+p-2)+p^{1-e}+k_{1} \cdot\left(p^{2}-1\right)(p-1)$
ii) $p \cdot r(G)=\left(p^{2}-1\right)\left(\left|G / G^{\prime}\right| / p+n+e+p-2\right)$

$$
+p^{1-e}+k_{2} \cdot\left(p^{2}-1\right)(p-1)
$$

In particular if $n \leq p+1, A$) yields
B) There exist non-negative integer numbers k_{3} and k_{4} such that
i) $r(G)=\left(p^{2}-1\right)(|Z(G)| / p+n-1)+p^{e}+k_{3} \cdot\left(p^{2}-1\right)(p-1)$.
ii) $r(G)=\left(p^{2}-1\right)\left(\left|G / G^{\prime}\right| / p^{2}+n-1\right)+p^{e}+k_{4} \cdot\left(p^{2}-1\right)(p-1)$.
Since $|Z(G)| \geq p$ and $\left|G / G^{\prime}\right| \geq p^{2}$, it is evident that B) improves P. Hall's equality. On the other hand, if p divides $n-2$, then A) also yields
C) There exist non-negative integer numbers k_{5} and k_{6} such that
i) $r(G)=\left(p^{2}-1\right)(|Z(G)| / p+1+(n-2) / p)$

$$
+p^{e}+k_{5} \cdot\left(p^{2}-1\right)(p-1)
$$

ii) $r(G)=\left(p^{2}-1\right)\left(\left|G / G^{\prime}\right| / p^{2}+1+(n-2) / p\right)$

$$
+p^{e}+k_{6} \cdot\left(p^{2}-1\right)(p-1)
$$

In case $p=2, \mathrm{~A}$) ii) yields the best bound possible in the case $|G| \leq$ 2^{7} for fixed values of $\left|G / G^{\prime}\right|$ greater than 4.

For each real number $x,[x]$ denotes the integral part of x. Then $Y_{[(c-d+1) / 2]}$ is an abelian group and for each natural number $j \leq$ $(c-d+1) / 2$ such that Y_{j} is abelian, there exists a non-negative integer k such that

$$
\begin{aligned}
|G| r(G) & =(k+1) \sum_{i=3}^{j}\left|Y_{i}\right|\left|Y_{c-(i-1)-d}\right|\left(\left|Y_{i-1} / Y_{i}\right|-1\right) \\
& +p^{2 m_{j}}+p^{m_{2}}\left(p^{2\left(m-m_{2}\right)}-1\right)+k \cdot p^{\min \left(m_{2}, m_{j}\right)} \cdot\left(p^{2}-1\right)(p-1),
\end{aligned}
$$

in which $c-1$ is the nilpotent class of G, d the degree of commutativity of G and $p^{m_{i}}$ the order of the ith term Y_{i} of the lower central series of G.

In particular, if G has maximum nilpotent class $(m-1)$ and $j \leq$ n is a natural number such that Y_{j} is abelian, then the following equalities hold:
D) i) $p \cdot r(G)=\left(p^{2}-1\right)(j+p-1)+p^{m-2 j+1}+k \cdot\left(p^{2}-1\right)(p-1)$ for some $k \geq 0$.
ii) If $d \geq 1$ or $j \leq p$, then we have

$$
r(G)=\left(p^{2}-1\right) j+p^{m-2 j}+k^{\prime} \cdot\left(p^{2}-1\right)(p-1)
$$

for some $k^{\prime} \geq 0$
(notice that $d \geq 1$, whenever m is odd or $m \geq p+2$ (cf. $|1|)$).
In general, if $d \geq 1$, there exists $k^{\prime \prime} \geq 0$ such that
iii) $\quad r(G)=\left(p^{2}-1\right)\left(p^{d-1}(j-2)+2\right)+p^{m-2 j}+k^{\prime \prime} \cdot\left(p^{2}-1\right)(p-1)$. (putting $j=n$ in D) ii) we get P. Hall's equality). In addition, by using results of N. Blackbum, C. R. Leedham-Green and Susan MoKay, and R. Shepherd (cf. |1|, $|5|,|8|$), we get:
iv) 1) If $p=3$ and $m \geq 5$, then we have $r(G)=16+3^{m-4}+$ $k_{1} \cdot 16$ for some $k_{1} \geq 0$.
2) If $p=5$ and $m \geq 6$, then D) iii) is satisfied substituting d for $[(m-5) / 2]$ and putting $j=[(m-[(m-5) / 2]) / 2]$.
3) If $p=7$ and $m \geq 9$, then D) iii) is satisfied substituting d for $[(m-8) / 2]$ and putting $j=[(m-[(m-8) / 2]) / 2]$.
4) If $p \geq 11$ and $m>3 p-7$, then D) iii) is satisfied substituting d for $[(m-3 p+7) / 2]$ and putting $j=[(m-[(m-3 p+7) /$ 2])/2].

Theorems and Proofs

Theorem 1. Suppose that G is a non-abelian p-group of order $p^{m}=$ $p^{2 n+e}$ with n a positive integer, p a prime number and $e=0$ or 1 . Then there exist non-negative integer numbers k_{1} and k_{2} such that
i) $p \cdot r(G)=\left(p^{2}-1\right)(|Z(G)|+n+e+p-2)+p^{1-e}+k_{1} \cdot\left(p^{2}-1\right)(p-1)$.
ii) $p \cdot r(G)=\left(p^{2}-1\right)\left(\left|G / G^{\prime}\right| / p+n+e+p-2\right)$ $+p^{1-e}+k_{2} \cdot\left(p^{2}-1\right)(p-1)$,
where $r(G)$ denotes the number of conjugacy classes of elements of G.
Proof. We claim that there exists $M \unlhd G$ satisfying the following conditions: $G / M \simeq C_{p}, Z(G) \leq M$, and $|Z(M)| \geq p^{2}$. In fact, we consider $N \unlhd G$ such that $|N|=p^{2}$. Then $\operatorname{Aut}(N) \simeq C_{p(p-1)}$ or $G L(2, p)$ and consequently $G / C_{G}(N) \leq C_{p}$. If N is contained in $Z(G)$ and M is a maximal subgroup of G such that $Z(G) \leq M$ then the above conditions are satisfied. Otherwise, we have $G / C_{G}(N) \simeq C_{p}$ and we take $M=C_{G}(N)$. Thus, in the following we can assume the existence of M. Set $G / M=\langle\bar{g}\rangle \simeq C_{p}$. Then arguing as in Note E of $|2|$ we have $p \cdot r(G)=\left(p^{2}-1\right) s_{g}+r(M)$, where s_{g} is the number of conjugacy M-clases of M fixed by the conjugationautomorphism induced by g. Evidently, we have $s_{g}=|Z(G)|+k_{1}^{\prime} .(p-1)$ for some $k_{1}^{\prime} \geq 0$, since M contains $Z(G)$, and also by using a result of J .

Poland (cf. |6| Th. (4.2)) we have

$$
\begin{aligned}
r(M)=(n+e-1)\left(p^{2}-1\right) & +p^{1-e}+\left(p^{2}-1\right)(p-1) \\
& +k_{2}^{\prime}\left(p^{2}-1\right)(p-1) \text { for some } k_{2}^{\prime} \geq 0,
\end{aligned}
$$

because $|M|=p^{2(n+e-1)+1-e}$ and M is not of maximal class (for example, $\left.Z(M) \neq C_{p}\right)$. Now we conclude

$$
\begin{aligned}
p \cdot r(G)=\left(p^{2}-1\right)(|Z(G)| & +n+e+p-2)+p^{1-e} \\
& +k_{1} \cdot\left(p^{2}-1\right)(p-1) \text { for some } k_{1} \geq 0
\end{aligned}
$$

On the other hand, we have $s_{g}=r_{G}(g M) \geq r_{G / G^{\prime}}\left(g M / G^{\prime}\right)=\left|M / G^{\prime}\right|=\mid G /$ $G^{\prime} \mid / p$, hence $s_{g}=\left|G / G^{\prime}\right| / p+k_{3}^{\prime}(p-1)$ for some $k_{3}^{\prime} \geq 0$, and arguing as above we get the second equality.

Corollary 2. Suppose that $n \leq p+1$. Then there exist non-negative integers k_{3} and k_{4} such that
i) $r(G)=\left(p^{2}-1\right)(|Z(G)| / p+n-1)+p^{e}+k_{3} \cdot\left(p^{2}-1\right)(p-1)$.
ii) $r(G)=\left(p^{2}-1\right)\left(\left|G / G^{\prime}\right| / p^{2}+n-1\right)+p^{e}+k_{4} \cdot\left(p^{2}-1\right)(p-1)$.
Proof. From Theorem 1 we get $k_{i} \equiv n-2$ (mod. p) and the conditions $k_{i} \geq 0$ and $n-2<p$ imply $k_{i}=n-2+k_{i+2} \cdot p$ for some $k_{i+2} \geq 0$. Now substituting these values into the equalities of Theorem 1 we get

$$
\begin{aligned}
r(G) & =\left(p^{2}-1\right)(|Z(G)| / p+n-1) \\
& +\left(\left(p^{2}-1\right) e+p^{1-e}\right) / p+k_{3}\left(p^{2}-1\right)(p-1) \\
& =\left(p^{2}-1\right)\left(\left|G / G^{\prime}\right| / p^{2}+n-1\right) \\
& +\left(\left(p^{2}-1\right) e+p^{1-e}\right) / p+k_{4}\left(p^{2}-1\right)(p-1) .
\end{aligned}
$$

Finally we notice that $\left(\left(p^{2}-1\right) e+p^{1-e}\right) / p=p^{e}$ and therefore we obtain the desired equalities.

Evidently, the equalities given in Corollary 2 improve the following congruence of P . Hall

$$
\begin{array}{ll}
r(G)=\left(p^{2}-1\right) n+p^{e}+k \cdot\left(p^{2}-1\right)(p-1) & \text { for } \\
& \text { some } k \geq 0(\text { cf. }|4| \mathrm{V} .15 .2),
\end{array}
$$

whenever $m \leq 2(p+1)+e$.
For example, let us suppose that $p=2$. A theorem of O . Taussky (cf. $|4|$ III. 11.9. a)) asserts that the only non-abelian 2 -groups for which $\mid G$: $G^{\prime} \mid=4$ are the dihedral, semidihedral and generalized quaternion groups. In each of these groups, the number of conjugacy classes is $r(G)=3+2^{m-2}$. Thus we can assume that $\left|G / G^{\prime}\right| \geq 8$ and Corollary 2 yields $r(G)=3(n+$ $1)+2^{e}+k .3$, for some $k \geq 0$, improving the information given in the above equality of P. Hall. Furthermore, in case $|G| \leq 2^{6}$ and by using Hall-

Senior's notation (cf. $|3|$) we obtain best possible bounds. Indeed,
For $|G|=32$ and $\left|G^{\prime}\right|=2$, Corollary 2 yields $r(G)=17+3 . k$ and the lower bound $r(G)=17$ is attained for the stem groups of the family Γ_{5}.

For $|G|=32$ and $\left|G^{\prime}\right|=4$, Corollary 2 yields $r(G)=11+3 . k$ and the lower bound $r(G)=11$ is attained for the stem groups of the family Γ_{6}, Γ_{7}.

For $|G|=64$ and $\left|G^{\prime}\right|=4$, Corollary 2 yields $r(G)=19+3 . k$ and the lower bound $r(G)=19$ is attained for the stem groups of the family Γ_{13}.

For $|G|=64$ and $\left|G^{\prime}\right|=8$, Corollary 2 yields $r(G)=13+3 . k$ and the lower bound $r(G)=13$ is attained for the stem groups of the family Γ_{22} and Γ_{23}.
Thus our results are best posible, in case $n \leq p+1$. Suppose now that $|G|=2^{7}$ (and $\left.\left|G / G^{\prime}\right| \geq 8\right)$, then Theorem 1 yields 2. $r(G)=3\left(\left|G / G^{\prime}\right| / 2+3+\right.$ 1) $+1+k$. 3, with $k \geq 0$; necessarily k is an odd number, that is, $k=1+2 k^{\prime}$ with $k^{\prime} \geq 0$ and consequently $r(G)=3\left(\left|G / G^{\prime}\right| / 4+2\right)+2+3$. k^{\prime}. For $\mid G /$ $G^{\prime} \mid=8$ we have $r(G)=14+3$. k^{\prime} and the lower bound $r(G)=14$ is attained for the stem groups of the family Γ_{106} (cf. $\left.|7|\right)$. In general, if $|G|=2^{4 t+3}$ for some $t \geq 0$, then Theorem 1 yields

$$
r(G)=3 .\left(\left|G / G^{\prime}\right| / 4+t+1\right)+2+3 . k \text { for some } k \geq 0 .
$$

Corollary 3. Suppose that p divides $n-2$. Then there exist nonnegative integers k_{5} and k_{6} such that
i) $r(G)=\left(p^{2}-1\right)(|Z(G)| / p+1+(n-2) / p)+p^{e}+k_{5} \cdot\left(p^{2}-1\right)(p-1)$.
ii) $\quad r(G)=\left(p^{2}-1\right)\left(\left|G / G^{\prime}\right| / p^{2}+1+(n-2) / p\right)+p^{e}+k_{6} \cdot\left(p^{2}-1\right)(p-1)$.

Proof. This result follows immediately from Theorem 1, arguing as in Corollary 2.

In the following, let d be the degree of commutativity of G and let $c-$ 1 be the nilpotent class of G. If $(c-d) / 2$ is an integer, we have

$$
\left[Y_{(c-d) / 2}, Y_{(c-d) / 2}\right] \leq Y_{2(c-d) / 2+d}=Y_{c}=1,
$$

On the other hand, if $(c-d+1) / 2$ is an integer, then we have

$$
\left[Y_{(c-d+1) / 2}, \quad Y_{(c-d+1) / 2}\right] \leq Y_{c-d+1+d}=Y_{c+1}=1,
$$

Thus, Y_{j} is an abelian group, in case $j=[(c-d+1) / 2]$ (and evidently, Y_{v} is abelian for each $v \geq(c-d+1) / 2)$.

In the following we assume that j is any natural number satisfying $j \leq$ $(c-d+1) / 2$ and Y_{j} is abelian. For each $i \leq j$ we have $i \leq(c-d+1) / 2$, hence $c-(i-1)-d \geq i$ and consequently $Y_{c-(i-1)-d} \leq Y_{i}$. Moreover

$$
\left[Y_{c-(i-1)-d}, Y_{i-1}\right] \leq Y_{c-(i-1)+i-1+d-d}=Y_{c}=1
$$

whence

$$
\begin{equation*}
Y_{c-(i-1)-d} \leq Z\left(Y_{i-1}\right) \cap Y_{i} \text { for each } i \leq j \tag{1}
\end{equation*}
$$

Next, let us consider a series

$$
1=N_{m}<N_{m-1}<\ldots<N_{1}<N_{0}=G
$$

of normal subgroups N_{i} of G such that $N_{i-1} / N_{i}=\left\langle\bar{x}_{i}\right\rangle \simeq C_{p}$ and $Y_{t}=N_{m-m_{t}}$ for each $t=2, \ldots, c$. Then we have

$$
r(G)=s_{1}\left(p^{2}-1\right) / p+s_{2}\left(p^{2}-1\right) / p^{2}+\ldots+s_{m}\left(p^{2}-1\right) / p^{m}+1 /|G|
$$

where $s_{i}=r_{N_{i-1}}\left(x_{i} N_{i}\right)$ is the number of conjugacy N_{i}-classes of N_{i} fixed by the automorphism $f_{i}: N_{i} \longrightarrow N_{i}$ defined by $f_{i}(z)=z^{x_{i}}$ for all $z \in N_{i}$ (cf. Note E of $|2|$) We have $N_{i} \leq Y_{j}$ if and only if $\left|N_{i}\right|=p^{m-i} \leq\left|Y_{j}\right|=p^{m_{j}}$, i.e., $m-i \leq m_{j}$, and N_{i} is abelian in this case. Furthermore, $s_{i}=r_{N_{i-1}}\left(x_{i} N_{i}\right)=$ $\left|N_{i}\right|$ if N_{i-1} is abelian, that is, in case $i \geq m-m_{j}+1$. Therefore we have $s_{i}=p^{m-i}$ for each $i=m-m_{j}+1, \ldots, m$ and consequently

$$
\begin{equation*}
\sum_{i=m-m_{j}+1}^{m} s_{i} / p^{i}=\sum_{i=m-m_{j}+1}^{m} p^{m-i} / p^{i}=\left(p^{2 m_{j}}-1\right) /\left(p^{m}\left(p^{2}-1\right)\right) \tag{2}
\end{equation*}
$$

Thus we have the following decomposition of the number $|G| r(G)$:

$$
\begin{equation*}
|G| r(G)=\sum_{i=1}^{m} s_{i} p^{m-i}\left(p^{2}-1\right)+1=\sum_{i=1}^{m-m_{j}} s_{i} p^{m-i}\left(p^{2}-1\right)+p^{2 m_{j}} \tag{3}
\end{equation*}
$$

Consider the abelian group $G / G^{\prime}=G / Y_{2}$ of order $p^{m-m_{2}}$. For each i such that $1 \leq i \leq m-m_{2}$ it is $N_{m-m_{2}}=Y_{2} \leq N_{i}<N_{i-1}$ and

$$
s_{i}=r_{N_{i-1}}\left(x_{i} N_{i}\right) \geq r_{N_{i-1} G^{\prime}}\left(\tilde{x}_{i} N_{i} / G^{\prime}\right)=\left|N_{i} / G^{\prime}\right|=p^{m-i} / p^{m_{2}}=p^{m-m_{2}-i}
$$

hence $s_{i}=p^{m-m_{2}-i}+k_{i} \cdot(p-1)$ for some $k_{i} \geq 0$ and consequently

$$
\begin{align*}
\sum_{i=1}^{m-m_{2}} s_{i} p^{m-i}\left(p^{2}-1\right) & =p^{m_{2}}\left(p^{2\left(m-m_{2}\right)}-1\right) \\
& +k^{\prime} p^{m_{2}}\left(p^{2}-1\right)(p-1) \text { for some } k^{\prime} \geq 0 \tag{4}
\end{align*}
$$

We now analyse the numbers s_{i} for $i=m-m_{2}+1, \ldots, m-m_{j}$, these corresponding to groups $N_{i}<N_{i-1}$ situated into the following chain

$$
N_{m-m_{j}}=Y_{j}<Y_{j-1}<\ldots<Y_{3}<Y_{2}=N_{m-m_{2}} .
$$

We define $I_{i}=\left\{u \mid Y_{i} \leq N_{u}<N_{u-1} \leq Y_{i-1}\right\}$ for each $i=2, \ldots, j$. From (1) we get $s_{u}=\left|Y_{c-(i-1)-d}\right|+k_{i u}(p-1)$ for some $k_{i u} \geq 0$ and for all $u \in I_{i}$, consequently

$$
\sum_{u \in I_{i}} s_{u} p^{m-u}\left(p^{2}-1\right)=\left|Y_{c-(i-1)^{-}-d}\right| \sum_{u=m-m_{i-1}+1}^{m-m_{i}} p^{m-u}\left(p^{2}-1\right)
$$

$$
+k_{i} p^{m_{i}}\left(p^{2}-1\right)(p-1)
$$

for some $k_{i} \geq 0$ (since $\left|Y_{i-1} / Y_{i}\right|=p^{m_{i-1}-m_{i}}$ implies $\left|I_{i}\right|=m_{i-1}-m_{i}$).
Finally, inasmuch as

$$
\left\{m-m_{2}+1, \ldots, m-m_{j}\right\}=\bigcup_{i=3}^{j} I_{i}
$$

and

$$
\begin{aligned}
\sum_{u=m-m_{i-1}+1}^{m-m_{i}} p^{m-u} & =p^{m_{i}}\left(\left(p^{m_{i-1}-m_{i}}-1\right) /(p-1)\right) \\
& =\left|Y_{i}\right|\left(\left(\left|Y_{i-1} / Y_{i}\right|-1\right) /(p-1)\right)
\end{aligned}
$$

the following theorem holds :
THEOREM 4. Let j be a natural number such that $j \leq(c-d+1) / 2$ and Y_{j} is an abelian group. Then there exists a non-negative integer number k such that

$$
\begin{aligned}
|G| r(G) & =\sum_{i=3}^{j}\left|Y_{i}\right|\left|Y_{c-(i-1)-d}\right|\left(p^{2}-1\right)\left(\left(\left|Y_{i-1} / Y_{i}\right|-1\right) /(p-1)\right) \\
& +p^{2 m_{j}}+p^{m_{2}}\left(p^{2\left(m-m_{2}\right)}-1\right)+k \cdot p^{\min \cdot\left\{m_{2}, m_{j}\right\}}\left(p^{2}-1\right)(p-1)
\end{aligned}
$$

in which, $c-1$ is the nilpotent class of G, d is the degree of commutativity of G and $p^{m_{u}}$ is the order of u-th term Y_{u} of the lower central series of G.

Next, we analyse the case $c=m$, i.e., G has maximal class $m-1$. In this case, we have $G / Y_{2} \simeq C_{p} \times C_{p}$ and $Y_{i-1} / Y_{i} \simeq C_{p}$ for each $i=1, \ldots, c$. Therefore $m_{i}=m-i$ and we have

$$
\sum_{i=3}^{j}\left|Y_{i} \| Y_{m-(i-1)-d}\right|((p-1) /(p-1))=\sum_{i=3}^{j} p^{m-i} p^{i-1+d}=p^{m-1+d}(j-2)
$$

and Theorem 4 yields $|G| r(G)=\left(p^{2}-1\right) p^{m-1+d}(j-2)+p^{2(m-j)}+p^{m-2}\left(p^{4}-\right.$ $1)+k . p^{m-j}\left(p^{2}-1\right)(p-1)$ for some $k \geq 0$ and we have

$$
\begin{align*}
p^{2} r(G) & =\left(p^{2}-1\right) p^{1+d}(j-2)+p^{m-2 j+2} \\
& +p^{4}-1+k^{\prime}\left(p^{2}-1\right)(p-1) \text { for some } k^{\prime} \geq 0 \tag{5}
\end{align*}
$$

From the above equality we deduce that p divides $-1+k^{\prime}\left(p^{2}-1\right)(p-1)$, hence $k^{\prime}=1+k^{\prime \prime} p$ for some $k^{\prime \prime} \geq 0$ and $-1+k^{\prime}\left(p^{2}-1\right)(p-1)=p^{3}-p^{2}-p+$ $k^{\prime \prime}\left(p^{2}-1\right)(p-1)$. By substituting this latter number in (5) we get

$$
\text { p. } \begin{aligned}
r(G) & =\left(p^{2}-1\right) p^{d}(j-2)+p^{m-2 j+1}+p^{3}+p^{2}-p-1 \\
& +k^{\prime \prime}\left(p^{2}-1\right)(p-1) \\
& =\left(p^{2}-1\right)\left(p^{d}(j-2)+p+1\right)+p^{m-2 j+1}
\end{aligned}
$$

$$
\begin{equation*}
+k^{\prime \prime}\left(p^{2}-1\right)(p-1) \tag{6}
\end{equation*}
$$

Suppose that $d=0$. In this case, (6) implies that p divides $-(j-1)+k^{\prime \prime}$, so, if $j-1 \leqq p$, necessarily we have $k^{\prime \prime}=j-1+k^{\prime \prime \prime}\left(p^{2}-1\right)(p-1)$ for some $k^{\prime \prime \prime} \geq 0$ and (6) yields

$$
r(G)=\left(p^{2}-1\right) j+p^{m-2 j}+k^{\prime \prime \prime}\left(p^{2}-1\right)(p-1) .
$$

Suppose that $d \geq 1$. In this case, $k^{\prime \prime}=1+k_{1}^{\prime \prime} p$ for some $k_{1}^{\prime \prime} \geq 0$ and (6) yields

$$
r(G)=\left(p^{2}-1\right)\left(p^{d-1}(j-2)+2\right)+p^{m-2 j}+k_{1}\left(p^{2}-1\right)(p-1)
$$

for some $k_{1} \geq 0$.
Thus we have showed
Corollary 5. Let G be a p-group of maximal class $m-1$ and let j be a natural number smaller than or equal to $(m-d) / 2$ such that Y_{j} is an abelian group. Then there exists a non-negative integer k such that

$$
\text { p. } r(G)=\left(p^{2}-1\right)\left(p^{d}(j-2)+p+1\right)+p^{m-2 j+1}+k .\left(p^{2}-1\right)(p-1) .
$$

In particular, if $d \geq 1$ or $j \leq p$ then there exists $k^{\prime} \geq 0$ such that

$$
\begin{equation*}
r(G)=\left(p^{2}-1\right) j+p^{m-2 j}+k^{\prime}\left(p^{2}-1\right)(p-1) . \tag{7}
\end{equation*}
$$

Furthermore, in case $d \geq 1$ we have

$$
r(G)=\left(p^{2}-1\right)\left(p^{d-1}(j-2)+2\right)+p^{m-2 j}+k^{\prime \prime}\left(p^{2}-1\right)(p-1)
$$

for some $k^{\prime \prime} \geq 0$.
It is well-known that $d \geq 1$ whenever m is an odd number or $m \geq p+2$ (cf. $|1|$), thus (7) improves P. Hall's result (obtained putting $j=n$ in (7)), indeed if j is smaller than n, then (7) can be written in the following way

$$
\begin{aligned}
r(G) & =\left(p^{2}-1\right)\left(j+p^{e}\left(p^{n-j-1}+p^{n-j-2}+\ldots+p+1\right)\right) \\
& +p^{e}+k^{\prime}\left(p^{2}-1\right)(p-1) .
\end{aligned}
$$

In addition, we have
Corollary 6. Let G be a finite p-group of maximal class $m-1$. Then the following equalities hold:

1) If $p=3$ and $m \geq 5$, then $\mathrm{r}(\mathrm{G})=16+3^{m-4}+k_{1} .16$ for some $k_{1} \geq 0$.
2) If $p=5$ and $m \geq 6$, then we have
$r(G)=\left(5^{2}-1\right)\left(5^{[(m-5) / 2]-1}([(m-[(m-5) / 2]) / 2]-2)+2\right)+5^{m-2[(m-5) / 2]}+$ $k_{2}\left(5^{2}-1\right)(5-1)$
for some $k_{2} \geq 0$.
```
    3) If \(p=7\) and \(m \geq 9\), then we have
    \(r(G)=\left(7^{2}-1\right)\left(7^{[(m-8) / 2]-1}([(m-[(m-8) / 2]) / 2]-2)+2\right)+7^{m-2[(m-8) / 2]}+\)
\(k_{3}\left(7^{2}-1\right)(7-1)\)
for some \(k_{3} \geq 0\).
```

 4) If \(p \geq 11\) and \(m \geq 3 p-6\) we have
 \(r(G)=\left(p^{2}-1\right)\left(p^{[(m-3 p+7) / 2]-1}([(m-[(m-3 p+7) / 2]-2)+2)+\right.\)
 $p^{m-2[(m-3 p+7) / 2]}+k_{4}\left(p^{2}-1\right) .(p-1)$
for some $k_{4} \geq 0$.

Proof. This result follows directly from the following inequalities (cf. $|1|,|5|,|8|$) $d \geq m-4$ if $p=3 ; d \geq[(m-5) / 2]$ if $p=5 ; d \geq[(m-8) / 2]$ if $p=7$ and $d \geq[(m-3 p+7) / 2]$ for any prime number p.

References

[1] N. Blackburn, On a special class of p-groups, Acta Math. 100, (1958), 45-92.
[2] W. Burnside, Theory of Groups of Finite Order, 2nd edn., Dover, 1955.
[3] M. Hall and J. SEnior, The groups of order $2^{m}, m \leq 6$, MacMillan Co., New York, 1964.
[4] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[5] C. R. LeEdham-Green and S. Mckay, On p-groups of maximal class I, Quart, J. Math. Oxford (2), 27 (1976), 297-311.
[6] J. Poland, Two problems of finite groups with k conjugate classes, J. Austral. Math. Soc. 8 (1968), 49-55.
[7] E. Rodemich, The groups of order 128, J. Algebra, 67 (1980), 129-142.
[8] R. Shepherd, Ph D. Thesis, University of Chicago, 1971.
[9] A. VERA-LOPEZ, The number of conjugacy classes in a finite nilpotent group, Rend. Sem. Mat. Univ. Padova 73 (1985), 209-216.

Departamento de Matemáticas
Facultad de Ciencias
Universidad del País Vasco

[^0]: (*) This work has been supported by the University of the Basque Country

