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Abstract

Let G be a finite p-group of order p^{m}=p^{2n+e} , with n a non-negative
integer, p a prime number and e=0 or 1, and let r(G) be the number of
conjugacy classes of elements of G. Then the following equality, due to
P. Hall, holds ([4], p. 549) :

r(G)=(p^{2}-1)n+p^{e}+k(p^{2}-1)(p-1) ,

For some non-negative integer k. In this paper, we obtain new properties
relative to r(G) by the analysis of the number r_{G}(gN) of conjugacy clas-
ses of elements of G that intersect the coset gN , where N is a normal
subgroup of G and g any element of G. It contains a number of equations
and congruences relating r(G) to other invariants of G. In particular,
our results improve the above equality of P. Hall, when G has maximal
nilpotent class or n\leq p+1 . Examples are given, which make our
improvements evident.

Introduction

The standard notation of the theory of groups is used in this paper.
In the following, G will denote a finite non-abelian p-group of order p^{m}=

p^{2n+e} , with n a positive integer, p a prime number, and e=0 or 1, and
r(G) denotes the number of conjugacy classes of elements of G. If S is a
non-empty subset of G, r_{G}(S) denotes the number of conjugacy classes of
elements of G that intersect S. The lower central series of G is the series
G>Y_{2}>\ldots>Y_{c}=1 of normal subgroups Y_{i} of G in which Y_{2}=G’=[G, G]

is the derived subgroup of G and Y_{i} is the subgroup generated by the set
\{[x, y]=x^{-1}y^{-1}xy|x\in G, y\in Y_{i-1}\} for each i=3 , \ldots c ; the number c-1 is
called the nilpotent class of G. G is said to have maximum degree of
commutativity d=d(G) if [ Y_{i}, Y_{j}]\leq Y_{i+j+d} for all i, j=1,2,3 , \ldots and d is
the maximum such integer : obviously d\geq 0 . It is well-known (cf. |4| )
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that G has nilpotent class at most m-1 . In case c=m-1 , and m\geqq 4 , we
consider the subgroup Y_{1}\supseteq Y_{4} of G defined by: Y_{1}/Y_{4} is the centralizer of
Y_{2}/Y_{4} in G/Y_{4} . Then |G:Y_{1}|=p and |Y_{1} : Y_{2}|=p . If Y_{1} is an abelian
group, then we have r(G)=p^{2}-1+p^{m-2} . Therefore we can suppose that

Y_{1} is non-abelian.
Specifically we prove the following results:
A) There exist non-negative integer numbers k_{1} and k_{2} such that
i) p\cdot r(G)=(p^{2}-1)(|Z(G)|+n+e+p-2)+p^{1-e}+k_{1}\cdot(p^{2}-1)(p-1)

ii) p\cdot r(G)=(p^{2}-1)(|G/G’|/p+n+e+p-2)
+p^{1-e}+k_{2}\cdot(p^{2}-1)(p-1) .

In particular if n\leq p+1 , A) yields
B) There exist non-negative integer numbers k_{3} and k_{4} such that
i) r(G)=(p^{2}-1)(|Z(G)|/p+n-1)+p^{e}+k_{3}\cdot (p^{2}-1)(p-1) .
ii) r(G)=(p^{2}-1)(|G/G’|/p^{2}+n-1)+p^{e}+k_{4}\cdot (p^{2}-1)(p-1) .

Since |Z(G)|\geq p and |G/G’|\geq p^{2} , it is evident that B) improves P. Hall’s
equality. On the other hand, if p divides n-2 , then A) also yields

C) There exist non-negative integer numbers k_{5} and k_{6} such that
i) r(G)=(p^{2}-1)(|Z(G)|/p+1+(n-2)/p)

+p^{e}+k_{5}\cdot(p^{2}-1)(p-1) .
ii) r(G)=(p^{2}-1)(|G/G’|/p^{2}+1+(n-2)/p)

+p^{e}+k_{6}\cdot(p^{2}-1)(p-1) .
In case p=2, A) ii ) yields the best bound possible in the case |G|\leq

2^{7} for fixed values of |G/G’| greater than 4.
For each real number x , [x] denotes the integral part of x.

Then Y_{[(c-d+1)/2]} is an abelian group and for each natural number j\leq

(c-d+1)/2 such that Y_{j} is abelian, there exists a non-negative inte-
ger k such that

|G|r(G)=(k+1) \sum_{i=3}^{j}|Y_{i}||Y_{C-(i-1\rangle-d}|(|Y_{i-1}/Y_{i}|-1)

+p^{2m_{j}}+p^{m_{2}}(p^{2(m-mz)}-1)+k\cdot p^{m\ln(m_{2},m_{j})}\cdot(p^{2}-1)(p-1) ,

in which c-1 is the nilpotent class of G, d the degree of com-
mutativity of G and p^{m_{i}} the order of the ith term Y_{i} of the lower
central series of G.

In particular, if G has maximum nilpotent class (m-1) and j\leq

n is a natural number such that Y_{j} is abelian, then the following
equalities hold:

D) i ) p\cdot r(G)=(p^{2}-1)(j+p-1)+p^{m-2j+1}+k\cdot (p^{2}-1)(p-1)

for some k\geq 0 .
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ii) If d\geq 1 or j\leq p , then we have
r(G)–(p^{2}-1)j+p^{m-2j}+k’\cdot(p^{2}-1)(p-1)

for some k’\geq 0

(notice that d\geq 1 , whenever m is odd or m\geq p+2 (cf. |1| )).

In general, if d\geq 1 , there exists k’\geq 0 such that
iii) r(G)–(p^{2}-1)(p^{d-1}(j-2)+2)+p^{m-2j}+k’\cdot(p^{2}-1)(p-1) .

putting j_{-}^{-}n in D) ii ) we get P. Hall’s equality). In addition, by
using results of N. Blackbum, C. R. Leedham-Green and Susan
MoKay, and R. Shepherd (cf. |1| , |5| , |8| ), we get:

iv)1) If p=3 and m\geq 5 , then we have r(G)=16+3^{m-4}+
k_{1}\cdot 16 for some k_{1}\geq 0 .

2) If p–5 and m\geq 6 , then D) iii ) is satisfied substitut-
ing d for [(m-5)/2] and putting j=[(m-[(m-5)/2])/2] .

3) If p–7 and m\geq 9 , then D) iii ) is satisfied substitut-
ing d for [(m-8)/2] and putting j=[(m-[(m-8)/2])/2] .

4) If p\geq 11 and m>3p-7 , then D) iii ) is satisfied sub-
stituting d for [(m-3p+7)/2] and putting j=[(m-[(m-3p+7)/
2])/2] .

Theorems and Proofs

THEOREM 1. Suppose that G is a non-abelian p-group of order p^{m}=

p^{2n+e} with n a positive integer, p a prime number and e=0 or 1. Then
there exist non-negative integer numbers k_{1} and k_{2} such that

i) p\cdot r(G)=(p^{2}-1)(|Z(G)|+n+e+p-2)+p^{1-e}+k_{1}\cdot(p^{2}-1)(p-1) .
ii) p\cdot r(G)=(p^{2}-1)(|G/G’|/p+n+e+p-2)

+p^{1-e}+k_{2}\cdot(p^{2}-1)(p-1) ,

where r(G) denotes the number of conjugacy classes of elements of G.

PROOF. We claim that there exists M\underline{\triangleleft}G satisfying the following
conditions: G/M\simeq C_{p} , Z(G)\leq M , and |Z(M)|\geq p^{2} . In fact, we consider
N\underline{\triangleleft}G such that |N|=p^{2} . Then Aut (N)\simeq C_{p(p-1)} or GL(2, p) and conse-
quently G/Cg(N)\leq C_{p} . If N is contained in Z(G) and M is a maximal
subgroup of G such that Z(G)\leq M then the above conditions are satisfied.
Otherwise, we have G/C_{G}(N)\simeq C_{p} and we take M=C_{G}(N) . Thus, in the
following we can assume the existence of M. Set G/M=\langle\overline{g}\rangle\simeq C_{p} . Then
arguing as in Note E of |2| we have p\cdot r(G)=(p^{2}-1)s_{g}+r(M) , where s_{g}

is the number of conjugacy M-clases of M fixed by the conjugation-
automorphism induced by g. Evidently, we have s_{g}=|Z(G)|+k_{1}’ . (p-1)
for some k_{1}’\geq 0 , since M contains Z(G) , and also by using a result of J.
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Poland (cf. |6| Th. (4. 2)) we have

r(M)=(n+e-1)(p^{2}-1)+p^{1-e}+(p^{2}-1)(p-1)
+k_{2}’(p^{2}-1)(p-1) for some k_{2}’\geq 0 ,

because |M|=p^{2(n+e-1)+1-e} and M is not of maximal class (for example,
Z(M)\neq C_{p}) . Now we conclude

p\cdot r(G)=(p^{2}-1)(|Z(G)|+n+e+p-2)+p^{1-e}
+k_{1}\cdot(p^{2}-1)(p-1) for some k_{1}\geq 0 .

On the other hand, we have s_{g}=r_{G}(gM)\geq r_{G/G’}(gM/G’)=|M/G’|=|G/

G’|/p , hence s_{g}=|G/G’|/p+k_{3}’(p-1) for some k_{3}’\geq 0 , and arguing as above
we get the second equality.

COROLLARY 2. Suppose that n\leq p+1 . Then there exist non-negative
integers k_{3} and k_{4} such that

i) r(G)=(p^{2}-1)(|Z(G)|/p+n-1)+p^{e}+k_{3}\cdot (p^{2}-1)(p-1) .
ii) r(G)=(p^{2}-1)(|G/G’|/p^{2}+n-1)+p^{e}+k_{4}\cdot (p^{2}-1)(p-1) .

PROOF. From Theorem 1 we get k_{i}\equiv n-2(mod. p) and the condi-
tions k_{i}\geq 0 and n-2<p imply k_{i}=n-2+k_{i+2}\cdot p for some k_{i+2}\geq 0 . Now
substituting these values into the equalities of Theorem 1 we get

r(G)=(p^{2}-1)(|Z(G)|/p+n-1)
+((p^{2}-1)e+p^{1-e})/p+k_{3}(p^{2}-1)(p-1)

=(p^{2}-1)(|G/G’|/p^{2}+n-1)

+((p^{2}-1)e+p^{1-e})/p+k_{4}(p^{2}-1)(p-1) .

Finally we notice that ((p^{2}-1)e+p^{1-e})/p=p^{e} and therefore we obtain the
desired equalities.

Evidently, the equalities given in Corollary 2 improve the following
congruence of P. Hall

r(G)=(p^{2}-1)n+p^{e}+k\cdot (p^{2}-1)(p-1) for
some k\geq 0 (cf. |4|V . 15.2),

whenever m\leq 2(p+1)+e .
For example, let us suppose that p=2 . A theorem of 0. Taussky (cf.

|4| III. 11. 9. a)) asserts that the only non-abelian 2-groups for which |G :
G’|=4 are the dihedral, semidihedral and generalized quaternion groups.
In each of these groups, the number of conjugacy classes is r(G)=3+2^{m-2} .
Thus we can assume that |G/G’|\geq 8 and Corollary 2 yields r(G)=3(n+
1)+2^{e}+k. 3, for some k\geq 0 , improving the information given in the above
equality of P. Hall. Furthermore, in case |G|\leq 2^{6} and by using Hall-
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Senior’s notation (cf. |3| ) we obtain best possible bounds. Indeed,
For |G|=32 and |G’|=2 , Corollary 2 yields r(G)=17+3. k and the

lower bound r(G)=17 is attained for the stem groups of the family \Gamma_{5} .
For |G|=32 and |G’|=4 , Corollary 2 yields r(G)=11+3. k and the

lower bound r(G)=11 is attained for the stem groups of the family \Gamma_{6} ,
\Gamma_{7} .

For |G|=64 and |G’|=4 , Corollary 2 yields r(G)=19+3. k and the
lower bound r(G)=19 is attained for the stem groups of the family \Gamma_{13} .

For |G|=64 and |G’|=8 , Corollary 2 yields r(G)=13+3. k and the
lower bound r(G)=13 is attained for the stem groups of the family \Gamma_{22}

and \Gamma_{23} .
Thus our results are best posible, in case n\leq p+1 . Suppose now that
|G|=2^{7} (and |G/G’|\geq 8), then Theorem 1 yields 2. r(G)=3(|G/G’|/2+3+
1)+1+k. 3, with k\geq 0 : necessarily k is an odd number, that is, k=1+2k’
with k’\geq 0 and consequently r(G)=3(|G/G’|/4+2)+2+3 . k’ For |G/

G’|=8 we have r(G)=14+3 . k’ and the lower bound r(G)=14 is attained
for the stem groups of the family \Gamma_{106} (cf. |7| ). In general, if |G|=2^{4t+3}

for some t\geq 0 , then Theorem 1 yields

r(G)=3.(|G/G’|/4+t+1)+2+3 . k for some k\geq 0 .

COROLLARY 3. Suppose that p divides n-2. Then there exist non-
negative integers k_{5} and k_{6} such that

i) r(G)=(p^{2}-1)(|Z(G)|/p+1+(n-2)/p)+p^{e}+k_{5}\cdot (p^{2}-1)(p-1) .
ii) r(G)=(p^{2}-1)(|G/G’|/p^{2}+1+(n-2)/p)+p^{e}+k_{6}\cdot (p^{2}-1)(p-1) .

PROOF. This result follows immediately from Theorem 1, arguing as
in Corollary 2.

In the following, let d be the degree of commutativity of G and let c-
1 be the nilpotent class of G. If (c-d)/2 is an integer, we have

[Y_{(c-d)/2}, Y_{tc-d)/2}]\leq Y_{2(c-d)/2+d}=Y_{c}=1 ,

On the other hand, if (c-d+1)/2 is an integer, then we have

[Y_{(C-d+1)/2}, Y_{(C-d+1)/2}]\leq Y_{c-d+1+d}=Y_{c+1}=1 ,

Thus, Y_{j} is an abelian group, in case j=[(c-d+1)/2] (and evidently, Y_{v}

is abelian for each v\geq(c-d+1)/2) .
In the following we assume that j is any natural number satisfying j\leq

(c-d+1)/2 and Y_{j} is abelian. For each i\leq j we have i\leq(c-d+1)/2 ,
hence c-(i-1)-d\geq i and consequently Y_{c-(i-1)-d}\leq Y_{i} . Moreover

[Y_{c-(i-1)-d}, Y_{i-1}]\leq Y_{c-(i-1)+i-1+d-d}=Y_{c}=1
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whence

Y_{c-(i-1)-d}\leq Z(Y_{i-1})\cap Y_{i} for each i\leq j (1)

Next, let us consider a series

1=N_{m}<N_{m-1}<\ldots<N_{1}<N_{0}=G

of normal subgroups N_{i} of G such that N_{i-1}/N_{i}=\langle\overline{\chi}_{i}\rangle\simeq C_{p} and Y_{t}=N_{m-mt}

for each t=2 , \ldots . c. Then we have

r(G)=s_{1}(p^{2}-1)/p+s_{2}(p^{2}-1)/p^{2}+\ldots+s_{m}(p^{2}-1)/p^{m}+1/|G|

where s_{i}=r_{N_{i-1}}(x_{i}N_{i}) is the number of conjugacy N_{i} -classes of N_{i} fixed by
the automorphism f_{i} : N_{i}arrow N_{i} defined by fXz ) =z^{x_{i}} for all z\in N_{i} (cf.

Note E of |2| ) We have N_{i}\leq Y_{j} if and only if |N_{i}|=p^{m-i}\leq|Y_{j}|=p^{m_{j}} , i.e.,
m-i\leq m_{j} , and N_{i} is abelian in this case. Furthermore, s_{i}=r_{N_{i-1}}(x_{i}N_{i})=

|N_{i}| if N_{i-1} is abelian, that is, in case i\geq m-m_{j}+1 . Therefore we have
s_{i}=p^{m-i} for each i=m-m_{j}+1 , \ldots m and consequently

\sum_{i=m-m_{j}+1}^{m}s_{i}/p^{i}=\sum_{i=m-m_{j}+1}^{m}p^{m-i}/p^{i}=(p^{2m_{J}}-1)/(p^{m}(p^{2}-1)) (2)

Thus we have the following decomposition of the number |G|r(G) :

|G|r(G)= \sum_{i=1}^{m}s_{i}p^{m-i}(p^{2}-1)+1=\sum_{i=1}^{m-m_{j}}s_{i}p^{m-i}(p^{2}-1)+p^{2m_{j}} (3)

Consider the abelian group G/G’=G/Y_{2} of order p^{m-m_{2}} . For each i such
that 1\leq i\leq m-m_{2} it is N_{m}

-
mz=Y_{2}\leq N_{i}<N_{i-1} and

s_{i}=r_{N_{i-1}}(x_{i}N_{i})\geq r_{N_{i-1},G’}(\overline{x}_{i}N_{i}/G’)=|N_{i}/G’|=p^{m-i}/p^{m_{2}}=p^{m-m_{2}-i} .
hence s_{i}=p^{m-m_{2}-i}+k_{i}\cdot(p-1) for some k_{i}\geq 0 and consequently

\sum_{i=1}^{m-m_{2}}s_{i}p^{m-i}(p^{2}-1)=p^{m_{2}}(p^{2(m-m_{2})}-1)

+k’p^{m_{2}}(p^{2}-1)(p-1) for some k’\geq 0 (4)

We now analyse the numbers s_{i} for i=m-m_{2}+1 , \ldots . m-m_{j} , these corre-
sponding to groups N_{i}<N_{i-1} situated into the following chain

N_{m-m_{J}}=Y_{j}<Y_{j-1}<\ldots<Y_{3}<Y_{2}=N_{m-m_{2}} .

We define I_{i}=\{u|Y_{i}\leq N_{u}<N_{u-1}\leq Y_{i-1}\} for each i=2 , \ldots , j. From (1) we
get s_{u}=|Y_{c-(i-1)-d}|+k_{iu}(p-1) for some k_{iu}\geq 0 and for all u\in I_{i} , consequent-
ly

\sum_{u\in I_{i}}s_{u}p^{m}-u(p^{2}-1)=|Y_{c-(i-1)-d}.|\sum_{-u=mm_{i-1}+1}^{-}p^{m-u}(p^{2}-1)mm_{i}
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+k_{i}p^{m_{i}}(p^{2}-1)(p-1)

for some k_{i}\geq 0 (since |Y_{i-1}/Y_{i}|=p^{m_{i-1}-m_{i}} implies |I_{i}|=m_{i-1}-m_{i}).
Finally, inasmuch as

\{m-m_{2}+1, \ldots.m-m_{j}\}=\bigcup_{i=3}^{j}I_{i}

and

u=mm_{i-1}+1mm_{i} \sum_{-}^{-}p^{m-u}=p^{m_{i}}((p^{m_{i-1}-m_{i}}-1)/(p-1))

=|Y_{i}|((|Y_{i-1}/Y_{i}|-1)/(p-1))

the following theorem holds:

THEOREM 4. Let j be a natural number such that j\leq(c-d+1)/2
and Y_{j} is an abelian group. Then there exists a non-negative integer num-
berk such that

|G|r(G)= \sum_{i=3}^{j}|Y_{i}||Y_{c-(i-1)-d}|(p^{2}-1)((|Y_{i-1}/Y_{i}|-1)/(p-1))

+p^{2m_{j}}+p^{mz}(p^{2(m-m_{2}\rangle}-1)+k . p^{mln.\{mz,m_{j}\}}(p^{2}-1)(p-1) ,

in which, c-1 is the nilpotent class of G, d is the degree of commutativity
of G and p^{m_{\mathcal{U}}} is the order of u-th term Y_{u} of the lower central series of
G.

Next, we analyse the case c=m , i.e., G has maximal class m-1 . In
this case, we have G/Y_{2}\simeq C_{p}\cross C_{p} and Y_{i-1}/Y_{i}\simeq C_{p} for each i=1 , ... 7 c.
Therefore m_{i}=m-i and we have

\sum_{i=3}^{j}|Y_{i}||Y_{m-(i-1)-d}|((p-1)/(p-1))=\sum_{i=3}^{j}p^{m-i}p^{i-1+d}=p^{m-1+d}(j-2) ,

and Theorem 4 yields |G|r(G)=(p^{2}-1)p^{m-1+d}(j-2)+p^{2(m-j\rangle}+p^{m-2}(p^{4}-

1)+k. p^{m-j}(p^{2}-1)(p-1) for some k\geq 0 and we have

p^{2}r(G)=(p^{2}-1)p^{1+d}(j-2)+p^{m-2j+2}

+p^{4}-1+k’(p^{2}-1)(p-1) for some k’\geq 0 (5)

From the above equality we deduce that p divides -1+k’(p^{2}-1)(p-1) ,
hence k’=1+k’p for some k’\geq 0 and -1+k’(p^{2}-1^{\backslash })(p-1)=p^{3}-p^{2}-p+

k’(p^{2}-1)(p-1) . By substituting this latter number in (5) we get

p. r(G)=(p^{2}-1)p^{d}(j-2)+p^{m-2j+1}+p^{3}+p^{2}-p-1

+k’(p^{2}-1)(p-1)
=(p^{2}-1)(p^{d}(j-2)+p+1)+p^{m-2j+1}
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+k’(p^{2}-1)(p-1) (6)

Suppose that d=0. In this case, (6) implies that p divides -(j-1)+k’
so, if j-1\not\equiv p , necessarily we have k’=j-1+k’(p^{2}-1)(p-1) for some
k’\geq 0 and (6) yields

r(G)=(p^{2}-1)j+p^{m-2j}+k’(p^{2}-1)(p-1) .

Suppose that d\geq 1 . In this case, k’=1+k_{1}’p for some k_{1}’\geq 0 and (6)

yields

r(G)=(p^{2}-1)(p^{d-1}(j-2)+2)+p^{m-2j}+k_{1}(p^{2}-1)(p-1)

for some k_{1}\geq 0 .
Thus we have showed

COROLLARY 5. Let G be a p-group of maximal class m-1 and let j
be a natural number smaller than or equal to (m-d)/2 such that Y_{j} is
an abelian group. Then there exists a non-negative integer k such that

p. r(G)=(p^{2}-1)(p^{d}(j-2)+p+1)+p^{m-2j+1}+k . (p^{2}-1)(p-1) .

In particular, if d\geq 1 or j\leq p then there exists k’\geq 0 such that

r(G)=(p^{2}-1)j+p^{m-2j}+k’(p^{2}-1)(p-1) . (7)

Furthermore, in case d\geq 1 we have

r(G)=(p^{2}-1)(p^{d-1}(j-2)+2)+p^{m-2j}+k^{rr}(p^{2}-1)(p-1)

for some k’\geq 0 .

It is well-known that d\geq 1 whenever m is an odd number or m\geq p+2 (cf.
|1|) , thus (7) improves P. Hall’s result (obtained putting j=n in (7)),
indeed if j is smaller than n , then (7) can be written in the following way

r(G)=(p^{2}-1)(j+p^{e}(p^{n-j-1}+p^{n-j-2}+\ldots+p+1))

+p^{e}+k’(p^{2}-1)(p-1) .

In addition, we have

COROLLARY 6. Let G be a finite p-group of maximal class m-1 .
Then the following equalities hold:

1) If p=3 and m\geq 5 , then r(G)=16+3^{m-4}+k_{1}.16 for some k_{1}\geq 0 .
2) If p=5 and m\geq 6 , then we have

r(G)=(5^{2}-1) (5 [(m-5)/2]-1 ([(m-[(m-5)/2])/2]-2)+2)+5 m-2[(m-5)/2]+

k_{2}(5^{2}-1)(5-1)

for some k_{2}\geq 0 .
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3) If p=7 and m\geq 9 , then we have
r(G)=(7^{2}-1) ( 7 [(m-8)/2]-1 ([(m-[(m-8)/2])/2]-2)+2) +7 m-2[(m-8)/2]+

k_{3}(7^{2}-1)(7-1)

for some k_{3}\geq 0 .
4) If p\geq 11 and m\geq 3p-6 we have

r(G)=(p^{2}-1)(p [(m-3 p+7 ) /2l-1([(m-[(m-3p+7)/2]-2)+2)+
p^{m-2[(m-3p+7)/2]}+k_{4}(p^{2}-1) . (p-1)
for some k_{4}\geq 0 .

PROOF. This result follows directly from the following inequalities
(cf. |1| , |5| , |8| ) d\geq m-4 if p=3:d\geq[(m-5)/2] if p=5;d\geq[(m-8)/2]
if p=7 and d\geq[(m-3p+7)/2] for any prime number p.
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