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Kakutani’s example on product spectral measures

Werner J. RICKER
(Received August 20, 1990)

Spectral operators of scalar-type, briefly scalar operators, were
introduced by N. Dunford. They are natural analogues in Banach spaces
of normal operators in Hilbert space and are precisely those operators

which have an integral representation of the form \int fdP for some spectral

measure P and some P-integrable function f. The question of whether
the sum and product of commuting scalar operators are again scalar oper-
ators was affirmatively answered in the Hilbert space setting by J. Wer-
mer [10]. The answer is negative for Banach spaces: the first example
was due to S. Kakutani [4]. A further example, in a “nicer ” Banach
space, was provided by C. A. McCarthy [7]. This example is usually con-
sidered as a modification of Katutani’s example (which it is in some
sense) and is usually quoted to show that “ the same things can go
wrong ” in a nice separable, reflexive Banach space.

The fact is that these two examples actually illustrate somewhat
different (though related) phenomena and are not simply two versions of
the same point. The example of Kakutani is based on the interpretation
that a spectral measure P is a uniformly bounded, multiplicative, projec-
tion-valued set function which is finitely additive and whose domain is an
algebra of sets. The example of McCarthy is based on countably additive
spectral measures whose domains are \sigma-algebras of sets. The point is
that the spectral measures exhibited by Kakutani cannot be extended to
spectral measures on the generated \sigma-algebras of sets. In particular (un-

like McCarthy’s example), the ranges of his spectral measures do not
form a \sigma-complete Boolean algebra of projections in the sense of W. Bade
[1] nor can they be imbedded in such a Boolean algebra of projections.
These differences appear to get confused in the literature and, consequent-
ly, Kakutani’s example is often misquoted; see [2; p. 192], [3; p. 2099], [6;
p. 253], [7; p. 295], [8; p. 359] and [9; p. 657], for example. The purpose
of this note is to draw explicit attention to this difference with the hope of
clarifying it somewhat.

We begin by recalling Kakutani’s construction. Let S=S’ be the
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Cantor set in [0, 1] . LetC(S) and C(S’) be the Banach spaces of all
continuous C-valued functions on S and S’ , respectively, equipped with the
\sup^{-}norm . Then C(S) and C(S’) are closed subalgebras of C(S\cross S’) .
Let simCS,S’) be the dense subalgebra of C(S\cross S’) consisting of all func-
tions \varphi of the form

(1) \varphi(s, s’)=\sum_{i=1}^{n}f_{j}(s)gj(s’) , s\in S , s’\in S’ .

with n a positive integer and f_{j}\in C(S) , g_{j}\in C(S’) for 1\leq i\leq n . The norm
of \varphi\in sim(S, S’) is defined by

(2) ||| \varphi|||=\inf\sum_{j=1}^{n}||f_{j}||_{\infty}||g_{j}||_{\infty}

where the infimum is taken over all possible representations of \varphi in the
form (1). It follows that

(3) ||\varphi||_{\infty}\leq|||\varphi||| , \varphi\in sim(S, S’) .

Let C(S)\otimes {}_{\pi}C(S’)\wedge be the completion of simCS,S’) with respect to the
norm |||\circ||| . Then C(S)\otimes {}_{\pi}C(S’)\wedge may be considered as a linear subspace
of C(S\cross S’) .

Let \mathscr{B} and \mathscr{B}’ be the algebras of subsets of S and S’, respectively,
consisting of all subsets which are simultaneously open and closed. For
each A\in \mathscr{B} , let \chi_{A} be the characteristic function of A. Define

P(A)\varphi:(s, s’)|arrow\chi_{A}(s)\varphi(s, s’) , s\in S , s’\in S ,

and
P’(A)\varphi:(s, s’)|arrow\chi_{A}(s’)\varphi(s, s’) , s\in S , s’\in S’ ,

for every \varphi\in C(S)\otimes {}_{\pi}C(S’)\wedge . Then P is a uniformly bounded spectral
measure on \mathscr{B} whose values are continuous projections in C(S)\otimes {}_{\pi}C(S’)\wedge .
This means that P(A\cap B)=P(A)P(B) for every A, B\in \mathscr{B}, that P is
finitely additive with P(S)=I Cthe identity operator in C(S)\otimes {}_{\pi}C(S’))\wedge

and that \sup\{||P(A)|| ; A\in \mathscr{B}\}<\infty . The analogous properties are true of
P’ on \mathscr{B}’ In addition, P and P’ commute, that is, P(A)P’(A’)=
P’(A’)P(A) for every A\in \mathscr{B} and A’\in \mathscr{B}’ . It was shown by Kakutani that
the product spectral measure P\otimes P’ is not uniformly bounded, that is,

\sup\{||\sum_{j=1}^{n}P(A_{j})P’(A_{j}’)||\}=\sup\{||P\otimes P’(\bigcup_{j=1}^{n}A_{j}XA_{j}’)||\}=\infty

where the supremum in taken over all finite collections of pairwise disjoint
“ rectangles ”

A_{j}\cross A_{j}’ , 1\leq j\leq n , in S\cross S’ with A_{j}\in \mathscr{B} and A_{j}’\in \mathscr{B}’
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Every s\in S has a unique representation of the form

(4) s=2 \sum_{n=1}^{\infty}\epsilon_{n}(s)3^{-n}

where \epsilon_{n}(s)\in\{0,1\} , for every n=1,2,\cdots . Let f\in C(S) be the function
defined by

(5) f(s)=3 \sum_{n=1}^{\infty}\epsilon_{n}(s)4^{-n} . s\in S .

Then bounded linear operators T and T’ can be defined in C(S)\otimes {}_{\pi}C(S’)\wedge

by

T\varphi:(s, s’)|arrow f(s)\varphi(s, s’) , s\in S , s’\in S’-

and
T’\varphi:(s, s’)|arrow f(s’)\varphi(s, s’) , s\in S , s’\in S’

for every \varphi\in C(S)\otimes_{\pi}C(S’)\wedge . The operators T and T’ are considered
“ scalar ” operators because T= \int_{S}f(s)dP(s) and T’= \int_{S}

, f(s’)dP’(s’) in

a certain sense.
The interpretation of these “ integrals ” is an important point. If

\phi=\sum_{j=1}^{n}\alpha_{j}\chi_{A_{j}} , A_{j}\in \mathscr{B} , 1\leq j\leq n ,

is any \mathscr{B}-simple function, then we can define the operator \int_{S}\phi dP (unam-

biguously) by \int_{S}\psi dP=\sum_{j=1}^{n}\alpha_{j}P(A_{j}) : it satisfies the estimate

|| \int_{S}\phi dP||\leq 4||\phi||_{\infty}\sup\{||P(A)||:A\in \mathscr{B}\}=4||\phi||_{\infty} .

Of course, \int_{S}\phi dP is a bounded linear operator in C(S)\otimes_{\pi}C(S’)\wedge . We note

that the only P-null set (i . e . a set A\in \mathscr{B} such that P(A)=0) is the
empty set. It follows, by a continuous extension argument, that a bounded
ed linear operator \int_{S}\varphi dP can be defined in C(S)\hat{C}\cross_{\pi}C(S’) for every func-
tion \varphi:Sarrow C which can be approximated in the \sup-norm ||\cdot ||_{\infty} by \mathscr{B}-sim-
ple functions. Of course, we then have the estimate

|| \int_{S}\varphi dP||\leq 4||\varphi||_{\infty} .

Since the compact metric space S is totally disconnected the sets in \mathscr{B}
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form a base for the topology in S and it follows that the collection of all
such functions \varphi is precisely C(S) . It is in this sense that the integral

T= \int_{S}fdP is to be interpreted as a “ scalar ” operator. The same is true

of T’= \int_{S} ,
f(s^{r})dP’(s^{r}) . It is these two commuting “ scalar ” operators T

and T’ which Kakutani used to show that the operators TT’ and T+T’
are not scalar.

According to the monographs [2] and [3] a scalar operator means
something more restrictive than that stated above. Namely, it is again a
bounded operator T in a Banach space X which has an integral represen-

tation of the form T= \int hdQ for some spectral measure Q and some
bounded measurable function h. The difference is that a spectral measure
means a set function Q:\Sigmaarrow L(X) , whose domain \Sigma is \sigma- algebra of sub-
sets of some set \Omega , which satisfies Q(\Omega)=I and Q(A\cap B)=Q(A)Q(B) ,

for every A, B\in\Sigma , and which is \sigma- additive with respect to the strong
operator topology in L(X) : here L(X) denotes the space of all bounded
linear operators of X into itself. In this case T can also be expressed in

the form T= \int_{c}\lambda dQ_{T}(\lambda) where Q_{T} is a (unique) spectral measure defined

on the \sigma-algebra of all Borel subsets of C and is supported by the spec-
true \sigma(T) , of T Usually Q_{T} is called the resolution of the identity for
T For the purpose of this note let us call scalar operators in this more
restricted sense, \sigma-scalar.

After these remarks we wish to indicate some special features of Ka-
kutani’s example which seem not to have been observed in the literature.

PROPOSITION 1. The domain \mathscr{B} of PPC resp. \mathscr{B}’ of P’) is an algebra
of subsets of S(resp. S’) , but is not a \sigma- algebra

PROOF. That \mathscr{B} is an algebra of sets is clear. For each n=1,2 ,
\ldots , equip X_{n}=\{0,1\} with the discrete topology and let the infinite product
space X=\Pi_{n=1}^{\infty}X_{n} have its usual product topology. Elements x\in X will be
denoted by (x_{n})_{n=1}^{\infty} . The map \Lambda:Xarrow S defined by

\Lambda(x)=2\sum_{n=1}^{\infty}x_{n}3^{-n} , x=(x_{n})_{n=1}^{\infty}\in X ,

is a homeoI\Gamma-0rphism of X onto S. Each set U_{k}=\Pi_{n=1}^{\infty}Y_{n} , k=1,2,\cdots ,

where Y_{k}=\{1\} and Y_{n}=X_{n} , for n\neq k , is both open and closed. Since
\bigcap_{k=1}^{\infty}U_{k} is the singleton set consisting of the element x\in X given by x_{n}=1 ,
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n=1,2,\cdots , it is not an open set in X. Accordingly, the intersection of the
sets \Lambda(U_{k})\in \mathscr{B} , k=1,2,\cdots , is not open in S and so cannot belong to \mathscr{B}. \square

PROPOSITION 2. Let Y=C(S)\otimes {}_{\pi}C\wedge(S’) . The finitely additive spec-
tral measures P:\mathscr{B}arrow L ( Y) and P’:\mathscr{B}’-L ( Y) are actually \sigma- additive

PROOF. Let \{A_{n}\}_{n=1}^{\infty} be a sequence of pairwise disjoint elements from
\mathscr{B} whose union belongs to \mathscr{B}_{1} It is to be shown that P( \bigcup_{n=1}^{\infty}A_{n})=

\sum^{\infty}{}_{n=1}P(A_{n}) where the series converges in the strong operator topology of
L(Y) . Since \bigcup_{n=1}^{\infty}A_{n} belongs to \mathscr{B} it is a closed subset of S and hence, is
compact. Accordingly, the open cover \{A_{n}\}_{n=1}^{\infty} has a finite subcover, say
A_{n_{1}},\ldots,A_{n_{k}} . By disjointness it follows that A_{r}=\phi if r\not\in\{n_{1},\ldots,n_{k}\} . Then

P( \bigcup_{n=1}^{\infty}A_{n})=P(\bigcup_{j=1}^{k}A_{n_{j}})=\sum_{j=1}^{k}P(A_{n_{j}})=\sum_{n=1}^{\infty}P(A_{n}) . \square

In view of Propositions 1 and 2 and the fact that the range P(\mathscr{B})=

\{P(A);A\in \mathscr{B}\} , of P, is uniformly bounded in L(Y) , it may be anticipated
ed that P has an extension to a spectral measure on the \sigma-algebra \mathscr{B}_{\sigma} , of
sets generated by \mathscr{B} . On the other hand, the space Y=C(S)\otimes_{\pi}C(S’)\wedge is
not weakly sequentially complete and so it is not clear that such an exten-
sion from \mathscr{B} to \mathscr{B}\sigma is possible.

PROPOSITION 3. The \sigma- additive set function P:\mathscr{B}arrow L ( Y) cannot be
extended to any \sigma- additive measure \tilde{P} : \mathscr{B}_{\sigma}arrow L(Y) . An analogous state-
ment is true for P’ : \mathscr{B}’arrow L( Y) .

PROOF. Let \{ U_{k}\}_{k=1}^{\infty} be the sequence of sets in the proof of Proposi-
tion 1. Then V_{n}= \Lambda(\bigcup_{k=1}^{n}U_{k}) , n=1,2,\cdots , in an increasing sequence of
sets in \mathscr{B} such that \{P(V_{n})1\}_{n=1}^{\infty} is not convergent in Y. where 1 denotes
the constant function 1. Accordingly, P has no \sigma-additive extension to
\mathscr{B}_{\sigma} . \square

Let Z be a Banach space. A Boolean algebra of projections \mathscr{M}\subseteq

L(Z) is \sigma-complete (complete) in the sense of W. Bade [1] if it is
\sigma-complete (complete) as an abstract Boolean algebra (where the partial
order\leq is range inclusion) and, whenever \{A_{a}\}_{a} is a sequence (family)
of elements from \mathscr{M} it follows that

( \bigwedge_{a}A_{a})(Z)=\bigcap_{a}A_{a}(Z) and ( \bigvee_{a}A_{a})(Z)=\overline{sp}(\bigcup_{a}A_{a}(Z)) ,

the closed subspace of Z spanned by \bigcup_{a}A_{a}(Z) .
In [7: p. 295] it is claimed that the Boolean algebras of projections

constructed by Kakutani (i . e . the ranges of P and P’ in L(Y) ) are Bade
complete. This is actually false as seen by the following.
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PROPOSITION 4. The Boolean algebra of projections P(\mathscr{B})\subseteq L(Y) is
not Bade \sigma- complete nor can it be imbedded in a \sigma- complete Boolean alge-
bra of projections in L(Y) . The same is true of P’(\mathscr{B}’) .

PROOF. Suppose that \mathscr{M}\subseteq L(Y) is a \sigma-complete Boolean algebra of
projections containing P(\mathscr{B}_{arrow}) . Let \{E_{n}\}_{n=1}^{\infty}\subseteq \mathscr{B} be an increasing sequence
of sets, in which case P(E_{n})\leq P(E_{n+1}) , for every n=1,2 , \ldots . Then
\lim_{narrow\infty}P(E_{n})=_{n=1}^{\infty}P(E_{n}) in the strong operator topology [1: Lemma 2.
3]. In view of Proposition 2 it follows from the Theorem of Extension
(v) for vector measures in [5] that there is a \sigma- additive measure

\tilde{P} : \mathscr{B}_{\sigma}arrow L(Y) agreeing with P on \mathscr{B}. This contradicts Proposition 3. \square

In view of Proposition 3 and earlier remarks the “ integrals ” T=
\int_{S}fdP and T’= \int_{S} , fdP

’ are not with respect to spectral meausures on
\sigma^{-}a1gebras of sets. Now, the function \Phi:Xarrow[0,1] defined by

\Phi(x)=3\sum_{n=1}^{\infty}x_{n}4^{-n}- x=(x_{n})_{n=1}^{\infty}\in X ,

is injective and continuous with range the compact set f(S) . It follows
that \Phi^{-1} is also continuous and hence \Phi is a homeomorphism of X onto
f(S) . So, f=\Phi 0\Lambda^{-1} (see (5)) is a homeomorphism of S onto its range
f(S) , where \Lambda:Xarrow S is defined in the proof of Proposition 1. Accord-
ingly, f(S) is a totally disconnected, compact Hausdorff space. Let \mathscr{B}_{T}

denote the algebra of all simultaneously open and closed subsets of
\sigma(T)=f(S) . Then f induces a Boolean algebra isomorphism between \mathscr{B}

and \mathscr{B}_{T} . It follows from Proposition 2 that the set function
(6) Q:Earrow P(f^{-1}(E)) , E\in \mathscr{B}_{T} ,

is a \sigma-additive spectral measure on the algebra of sets \mathscr{B}_{T} and that

T= \int_{S}f(s)dP(s)=\int_{\sigma(T)}\lambda dQ(\lambda) .

Now, the sets \mathscr{B}\tau form a base for the topology in \sigma(T)=f(S) . If T
were a \sigma-scalar operator, with resolution of the identity Q_{T} defined on the
(7-algebra, \mathscr{B}(\sigma(T)) , of all Borel subsets of \sigma(T) , then it ought to follow
that Q_{T} agrees with Q on \mathscr{B}_{T} . From the definition (6) and the
identification of \mathscr{B}_{T} with \mathscr{B} this would imply that P:\mathscr{B}arrow L(Y) has a
\sigma^{-}additive extension to a measure on \mathscr{B}_{\sigma} , thereby contradicting Proposi-
tion 3. This suggests the following result (which we prove formally).

PROPOSITION 5. The “ scalar ” operators T and T’ are not \sigma-scalar
operators in Y.
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PROOF. If \delta\in \mathscr{B}_{T} , then Q(\delta)-given by (6) - is the spectral projec-
tion for T (defined via the usual Cauchy integral formula) corresponding
to the open-closed subset \delta\subseteq\sigma(T) and satisfies Q(\delta)T=TQ(\delta) . In
addition, Q(\mathscr{B}_{T}) is uniformly bounded in L(Y) . Let Y^{*} be the dual
space of Y It follows [2 ; Theorem 5. 36] that there is a spectral mea-
sure R:\mathscr{B}(\sigma(T))-arrow L(Y^{*}) of class Y (see [2: p. 119] for the definition)

such that the adjoint operator T^{*}= \int_{\sigma(T)}\lambda dR(\lambda) is a prescalar operator

of class Y and

Q(\delta)^{*}=R(\delta) , \delta\in \mathscr{B}_{T} .

Suppose that T= \int_{\sigma(T)}\lambda dQ_{T}(\lambda) was a \sigma-scalar operator in Y with
resolution of the identity Q_{T} : \mathscr{B}(\sigma(T))- L(Y) . Then the adjoint opera-

tor T^{*}\in L (^{Y^{*})} satisfies T^{*}= \int_{\sigma(T)}\lambda dQ_{T}^{*}(\lambda) where Q_{T}^{*} : \mathscr{B}(\sigma ( T))arrow

L(Y^{*}) is the spectral measure of class Y given by Q_{T}^{*}(E)=Q_{T}(E)^{*} . E\in
\mathscr{B}(\sigma(T)) . Since T^{*} has a unique resolution of the identity of class Y
[2 ; Theorem 5.13] it follows that R and Q_{T}^{*} coincide on \mathscr{B}(\sigma(T)) . In
particular,

Q(\delta)^{*}=Q_{T}^{*}(\delta)=Q_{T}(\delta)^{*} , \delta\in \mathscr{B}_{T} ,

and hence, Q and Q_{T} agree on \mathscr{B}_{T} . Accordingly, Q has a \sigma-additive
extension from \mathscr{B}_{T} to (\mathscr{B}_{T})_{\sigma}\subseteq \mathscr{B}(\sigma(T)) and it follows that P:\mathscr{B}arrow L(Y)

has a \sigma-additive extension to \mathscr{B}_{\sigma} (which is isomorphic to the \sigma-algebra
(\mathscr{B}_{T})_{\sigma}) . This contradicts Proposition 3 thereby showing that T cannot
be \sigma-scalar. \square

In conclusion, we point out that McCarthy produced in [7] two com-
muting \sigma-scalar operators T and T’ whose sum and product are not
tf-scalar. This can be seen, for example, from the fact that the under-
lying Banach space constructed there is separable and reflexive and hence,
in particular, is weakly sequentially complete. Furthermore, the Boolean
algebras of projections exhibited there, say \mathscr{M} and \mathscr{M}’ . are uniformly
bounded and contain T and T’ respectively, in the weak operator closed
algebras that they generate. It follows that T and T’ are necessarily
\sigma-scalar [3: XVII Theorem 3.19]. In contrast to Kakutani’s example, the
Boolean algebras \mathscr{M} and \mathscr{M}^{r} can be imbedded in \sigma-complete Boolean alge-
bras of projections [1; Lemma 2.9] which, by separability, are even com-
plete [3 ; XVII Lemma 3. 21].

REMARK. Let \mathscr{B}\cross \mathscr{B}’=\{E\cross E’ : E\in \mathscr{B}, E’\in \mathscr{B}’\} and 1et\mathscr{B}\otimes \mathscr{B}’ denote
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the algebra of sets in S\cross S’ generated by \mathscr{B}\cross \mathscr{B}’ Then the set function
P\otimes P^{r} : \mathscr{D}\cross \mathscr{B}’arrow L(Y) defined by

(P\otimes P’)(E\cross E’)=P(E)P’(E’)=P’(E’)P(E) ,

for every E\cross E’\in \mathscr{B}\cross \mathscr{B}’ has a unique extension to a finitely additive
spectral measure, again denoted by P\otimes P’ . on the algebra \mathscr{B}\otimes \mathscr{B}’ : it is
called the product spectral measure. Since the range of P\otimes P’ on \mathscr{B}\otimes \mathscr{B}

’

is not a uniformly bounded subset of L(Y)-see [4] -the following observa-
tion is of some interest. Its proof follows the lines of that of Proposition
2, after noting that elements of \mathscr{B}\otimes \mathscr{B}’ are finite disjoint unions of ele-
se ts from \mathscr{B}\cross \mathscr{B}’ and hence, are subsets of the compact space S\cross S’

which are simultaneously open and closed.

PROPOSITION 6. The product spectral measure P\otimes P’ : \mathscr{B}\otimes \mathscr{B}’arrow L( Y)

is \sigma- additive on the algebra \mathscr{B}\otimes \mathscr{B}’
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