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0. Introduction.

Since the appearance of the pioneer work of Eymard [4], the Fourier
algebra A(G) of a locally compact group G has been studied by many
authors in connection with the theory of unitary representations and the
theory of operator algebras. As related algebras, the algebras A_{p}(G) and
the algebras B_{p}(G) of Herz-Schur multipliers for 1<p<\infty have been
investigated by Eymard [5] and Herz [8-10] together with the algebras
PF_{p}(G) of pseudofunctions and PM_{p}(G) of pseudomeasures. Remark here
that A(G)=A_{2}(G) . In general the algebra A_{p}(G) is contractively imbed-
ded in B_{p}(G) . When G is amenable, this imbedding is isometric.

It is shown in [8, 11] that if the group G is amenable, then A_{p}(G) is
contractively included in A_{p}(G) whenever 1<p<p’\leq 2 or 2\leq p^{\gamma}<p<\infty . In
particular, A(G) is contractively included in every A_{p}(G) . It is known
that the same relation holds also for B_{p}(G) (see Remark 2.5 (1)). How-
ever, according to Pytlik [18], we know that when F_{r} is a free group with
r generators, 2\leq r\leq\infty , a typical example of non-amenable groups, for
any distinct pair p, p’ there does not exist any inclusion relation between
A_{p}(F_{r}) and A_{p}(F_{r}) (see Remark 2. 5 (2)). In section 2, we will prove that
for every locally compact group G the algebra B_{2}(G) is contractively in-
cluded in B_{p}(G) . As a consequence, we show that when F_{r} is a free
group, for any 1<p<\infty the algebra A_{p}(F_{r}) has an approximate identity
\{u_{n}\} such that \sup_{n}||u_{n}||_{Bp}\leq 1 . This result should be compared with the
well-known result (e . g . [9], [15] ) that A_{p}(G) has a bounded approximate
identity if and only if the group G is amenable.

Nebbia [16] characterized the amenability of G in terms of multipliers
of A(G) into the space M(G) of finite complex Radon measures or L^{1}(G) .
In section 3, for 1<p<\infty and 1\leq p’<\infty , we define multipliers of A_{p}(G)

into M(G) or L^{p}(G) , and those of W_{p}(G) (the dual space of PFP(G)) into
M(G) or L^{p}(G) . For instance, a multiplier of A_{p}(G) into M(G) is a
bounded linear operator \Phi:A_{p}(G)- M(G) such that \Phi(uv)=u\Phi(v) for
all u , v\in A_{p}(G) . Any element of M(G) defines a multiplier in natural
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way. Extending the results of Nebbia, we present several characteriza-
tions of the amenability of G in terms of those newly defined multipliers.
We prove, among others, that G is amenable if and only if every multi-
plier of A_{p}(G) into M(G) is given by some element of M(G) , that is, the
space of multipliers of A_{p}(G) into M(G) is isomorphic with M(G) .

1. Definitions and notations

Throughout this paper, let G be a locally compact group with a fixed
left Haar measure and L^{p}(G) , 1\leq p\leq\infty , the usual Lebesgue spaces on G

with the norm ||\circ||_{p} . Let C(G) be the Banach space of complex bounded
continuous functions on G with the norm ||\circ||_{\infty} , C_{0}(G) the subspace of
C(G) consisting of functions vanishing at infinity, and L(G) the subspace
of C(G) consisting of functions with compact support. Also let M(G) be
the space of finite complex Radon measures on G . In this section, for
later convenience, we recall definitions and basic properties of the alge-
bras A_{p}(G) and several related function algebras on G.

Suppose that 1<p<\infty and 1/p+1/q=1 throughout this section. The
algebra A_{p}(G) introduced by Eymard [5] and Herz [9] is the space of all
functions u on G written as u=\Sigma_{i=1}^{\infty}f_{i}*g_{i}^{\vee} for f_{i}\in L^{p}(G) and g_{i}\in L^{q}(G)

with \Sigma_{i=1}^{\infty}||f_{i}||_{p}||g_{i}||_{q}<+\infty , where g^{v}(x)=g(x^{-1}) . The norm on A_{p}(G) is
given by

||u||_{Ap}= \inf\sum_{i=1}^{\infty}||f_{i}||_{p}||g_{i}||_{q} ,

where the infimum is taken over all such expressions of u . Then A_{p}(G)

is a Banach algebra with pointwise operations. Clearly A_{p}(G)\subset C_{0}(G)

and ||u||_{\infty}\leq||u||_{Ap} for u\in A_{p}(G) . we denote by MA_{p}(G) the space of multi-
pliers of A_{p}(G) which consists of all functions \varphi on G such that the
pointwise product \varphi u belongs to A_{p}(G) for every u\in A_{p}(G) . The norm
on MA_{p}(G) is the operator norm on A_{p}(G) . The elements of MA_{p}(G) are
continuous on G and ||u||_{\infty}\leq||u||_{MAp} for u\in MA_{p}(G) .

Let V_{p}(G) be the space of pointwise multipliers of the projective ten-
sor product space L^{p}(G)\otimes_{\gamma}L^{q}(G) , that is, the space of all complex func-
tions \emptyset on G\cross G such that for every F\in L^{p}(G)\otimes_{\gamma}L^{q}(G) the pointwise
product \phi F belongs to L^{p}(G)\otimes_{\gamma}L^{q}(G) (the elements of L^{p}(G)\otimes_{\gamma}L^{q}(G) can
be regarded as locally integrable functions on G\cross G ). The norm on
V_{p}(G) is the operator norm on L^{p}(G)\otimes_{\gamma}L^{q}(G) . Then the space B_{p}(G) of
Herz-Schur multipliers is the space of all functions \varphi on G such that the
function K_{\varphi} on G\cross G defined by K_{\varphi}(x, y)=\varphi(xy^{-1}) belongs to V_{p}(G) . The
norm ||\varphi||_{Bp} is given by ||\varphi||_{Bp}=||K_{\varphi}||_{Vp} .
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Let B(L^{p}(G)) be the Banach space of all bounded linear operators on
L^{p}(G) . An operator T in B(L^{p}(G)) is called a convolution operator if
(Tf)*g=T(f*g) for all f, g\in L(G) where the symbol*denotes the con-
volution. We denote by CV_{p}(G) the space of all convolution operators in
B(L^{p}(G)) , which becomes a Banach algebra with the operator norm on
L^{p}(G) . For each \mu\in M(G) , the operator \lambda(\mu):f\mapsto\mu*f belongs to
CVp(G) with ||\lambda(\mu)||_{CVp}\leq||\mu|| . We consider that (L^{1}(G)\subset)M(G)\subset CV_{p}(G)

in this sense. As is well-known, B(L^{p}(G)) is identified with the dual
Banach space of L^{p}(G)\otimes_{\gamma}L^{q}(G) , so that the w^{*}- topology from
L^{p}(G)\otimes_{\gamma}L^{q}(G) can be considered on B(L^{p}(G)) . The space CV_{p}(G) is
closed in this topology. We denote by PF_{p}(G) and PM_{p}(G) the norm c10-
sure and the w^{*}-closure of L^{1}(G) in CV_{p}(G) , respectively, which are
Banach algebras with the operator norm. Then PF_{p}(G)\subset PM_{p}(G)\subset

CV_{p}(G) , and moreover M(G)\subset PM_{p}(G) in the sense stated above. Herz
[9] called the elements of PF_{p}(G) pseudofunctions and those of PM_{p}(G)

pseudomeasures. In particular when p=2 , PF_{2}(G) is the reduced C^{*}-alge-
bra of G and PM_{2}(G) is the group von Neumann algebra of G .

Finally let W_{p}(G) be the dual Banach space of PF_{q}(G) with the dual
norm. The elements of W_{p}(G) can be regarded as functions in L^{\infty}(G) .
The spaces MA_{p}(G) , B_{p}(G) and W_{p}(G) are Banach algebras with respect
to respective norms and pointwise operations.

We always have A_{p}(G)\subset W_{p}(G)\subset B_{p}(G)\subset MA_{p}(G) , where each imbed-
ding is contractive. Moreover MA_{p}(G) is isometrically isomorphic with
W_{p}(G) when G is amenable. In this case we have W_{p}(G)=B_{p}(G)=

MA_{p}(G) and the three corresponding norms coincide. The dual Banach
space of A_{p}(G) is isometrically isomorphic with PM_{q}(G) , where the dual-
ity is given by

\langle Tu\rangle=\sum_{i=1}^{\infty}\langle Tg_{i}, f_{i}\rangle , PMQ(G) , u= \sum_{i=1}^{\infty}f_{i}*g_{i^{\vee}}\in A_{p}(G) .

In particular, A_{2}(G) is the s0-called Fourier algebra A(G) of G which
becomes the predual of the group von Neumann algebra of G .

For details on these algebras see [17].

2. Inclusion relation of B_{p}(G)

The main aim of this section is to show that B_{2}(G) is included in
B_{p}(G) for any 1<p<\infty . For the convenience of reference, we first men-
tion two known results.

The following was given by Herz [10, Lemmes 1, 2].

PROPOSITION 2. 1. Let G_{d} denote the group G with the discrete topol-
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ogy. Suppose 1<p<\infty . If \emptyset is a continuous function on G\cross G, then \psi\in

V_{p}(G) if and only if \psi\in V_{p}(G_{d}) . Moreover ||\psi||_{Vp(G)}=||\phi||_{Vp(G_{\epsilon l})} in this case.

The following fact is found in Cowling and Haagerup [2, \S 0] (without
proof).

PROPOSITION 2. 2. Let \varphi be a complex-valued function on G. Then
\varphi belongs to B_{2}(G) if and only if there exist a Hilbert space \mathscr{H} and \mathscr{H}

-valued bounded continuous functions \xi, \eta on G such that
\varphi(xy^{-1})=\langle\xi_{x}, \eta_{y}\rangle , x, y\in G .

Moreover the norm ||\varphi||_{Bz} is the minimum of \sup_{x,y\in G}||\xi_{x}||||\eta_{y}|| for all such
expressions.

For an arbitrary set X. the space V_{p}(X) of multipliers of
\swarrow^{p}(X)\otimes_{\gamma}\swarrow q(X)(1/p+1/q=1) is defined in the same way as V_{p}(G) . Then

we have:

PROPOSITION 2. 3. Let X be a set and \mathscr{H} a Hilbert space. Let \xi and
\eta be \mathscr{H}- valued bounded functions on X, and define a function K on X\cross

X by

K(x, y)=\langle\xi_{x}, \eta_{y}\rangle , x, y\in X.

Then for any 1<p<\infty , K belongs to V_{p}(X) and
||K||_{Vp(X\rangle} \leq\sup_{x.y\in X}||\xi_{x}||||\eta_{y}|| .

PROOF: Let 1<p<\infty . Suppose first that \mathscr{H} is separable. Then it is
known ([8], [6, Lemma 8. 4. 4]) that \mathscr{H} is isometrically isomorphic with a
closed subspace \mathfrak{M} of the Lebesgue space L^{p}(0,1) (with respect to the
Lebesgue measure). Let T denote the isometry from \mathscr{H} onto \mathfrak{M} . For
each v\in \mathscr{H}. define \Phi_{v}(Tu)=\langle u, v\rangle , Tu\in \mathfrak{M}(u\in \mathscr{H}) . Then \Phi_{v} is a found
ed linear functional on \mathfrak{M} with ||\Phi_{v}||=||v|| . By the Hahn-Banach theorem,
there exists \tilde{v}\in L^{q}(0,1)(1/p+1/q=1) such that ||\tilde{v}||_{q}=||v|| and \langle Tu, \overline{v}\rangle =
\langle u, v\rangle , u\in \mathscr{H} . Hence there exists an L^{q}(0,1)-valued bounded function \overline{\eta}

on X with ||\tilde{\eta}_{y}||_{q}=||\eta_{y}|| , y\in X , such that
\langle T\xi_{x},\tilde{\eta}_{y}\rangle=\langle\xi_{x}, \eta_{y}\rangle , x , y\in X .

Therefore by replacing \xi and \eta with T\xi and \tilde{\eta} respectively, we can sup-
pose that \xi and \eta are L^{p}(0,1)-valued and L^{q}(0,1)-valued functions on X
respectively.

Now let us prove that if f and g are finitely supported functions on X,
then
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||K \cdot f\otimes g||_{\swarrow pq}\otimes_{\gamma}\swarrow\leq(\sup_{x,y\in X}||\xi_{x}||||\eta_{y}||)||f||_{p}||g||_{q} .

The assertion then follows from linearity and density. For x , y\in X , we
have

K(x, y)f(x)g(y)= \langle\xi_{x}, \eta_{y}\rangle f(x)g(y)=\int_{0}^{1}F_{t}(x)G_{t}(y)dt ,

where F_{t}(x)=f(x)\xi_{x}(t) and G_{t}(y)=g(y)\eta_{y}(t) . Hence we have

K \cdot f\otimes g=\int_{0}^{1}F_{t}\otimes G_{t}dt .

The integral should be considered as a Bochner integral in
\swarrow p(X)\otimes_{\gamma}\swarrow q(X) . Since f and g are finitely supported, we can easily see

that \{F_{t}\otimes G_{t} : t\in(0,1)\} is separable in \swarrow p(X)\otimes_{\gamma}\swarrow q(X) and the function
t\mapsto F_{t}\otimes G_{t} is weakly measurable. Hence it follows ([12, Theorem 3. 5. 3])
that the function t\mapsto F_{t}\otimes G_{t} is strongly measurable. Moreover by
H\"older’s inequality,

\int_{0}^{1}||F_{t}\otimes G_{t}||,p\otimes_{\gamma}\swarrow dqt=\int_{0}^{1}||F_{t}||_{p}||G_{t}||_{q}dt

\leq(\int_{0}^{1}||F_{t}||_{p}^{p}dt)^{\frac{1}{p}}(\int_{0}^{1}||G_{t}||_{q}^{q}dt)^{\frac{1}{q}}

=( \int_{0}^{1}\sum_{x\in X}|f(x)\xi_{x}(t)|^{p}dt)^{\frac{1}{p}}(\int_{0}^{1}\sum_{y\in X}|g(y)\eta_{y}(t)|^{q}dt)^{\frac{1}{q}}

\leq(\sup_{x,y\in X}||\xi_{x}||||\eta_{y}||)||f||_{p}||g||_{q} .

Therefore we have

||K \cdot f\otimes g||\swarrow^{p}\otimes_{\gamma}\swarrow\leq q(\sup_{x,y\in X}||\xi_{x}||||\eta_{y}||)||f||_{p}||g||_{q} ,

as claimed.
Suppose that \mathscr{H} is arbitrary. Let f and g be functions of finite sup-

port. Put

\xi_{x}’=\{

\xi_{x} , x\in suppf ,
\eta_{\acute{y}}=\{

0, otherwise,
\eta_{y} , y\in suppg ,
0, otherwise,

and
K’(x, y)=\langle\xi_{x}’, \eta_{y}’\rangle , x , y\in X .

Then K’\cdot f\otimes g=K\cdot f\otimes g . Since f and g are finitely supported, the Hilbert
space generated by \{\xi_{x}’, \eta_{y}’ : x, y\in X\} is separable. Hence the above argu-
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merit yields

||K\cdot f\otimes g||\swarrow^{p}\otimes_{\gamma}z=q||K’\cdot f\otimes g||\swarrow p\otimes_{\gamma}\swarrow q

\leq(\sup_{x,y\in X}||\xi_{x}’||||\eta_{y}’||)||f||_{p}||g||_{q}

\leq(\sup_{x,y\in X}||\xi_{x}||||\eta_{y}||)||f||_{p}||g||_{q} ,

from which the assertion follows. \blacksquare

THEOREM 2. 4. For any 1<p<\infty , B_{2}(G) is included in B_{p}(G) and
||\varphi||_{Bp}\leq||\varphi||_{B_{2}} for all \varphi\in B_{2}(G) .

PROOF: Let \varphi\in B_{2}(G) , K_{\varphi}(x, y)=\varphi(xy^{-1}) and 1<p<\infty . By Proposi-
tions 2.2 and 2.3, we see that K_{\varphi}\in V_{p}(G_{d}) and ||K_{\varphi}||_{Vp(G_{d})}\leq||\varphi||_{B_{2}} . Since K_{\varphi}

is continuous on G\cross G , Proposition 2.1 implies that K_{\varphi}\in V_{p}(G) and
||K_{\varphi}||_{Vp(G)}=||K_{\varphi}||_{Vp(G_{\epsilon l})} . Hence \varphi\in B_{p}(G) and ||\varphi||_{Bp}\leq||\varphi||_{B_{2}} . \blacksquare

REMARKS 2. 5. (1) When G is amenable, it holds B_{p}(G)=W_{p}(G)

and there exists the inclusion relation among CV_{p}(G) spaces ([11], [17,
Proposition 18. 18]). Since PF_{p}(G) is the norm closure of L^{1}(G) in
CV_{p}(G) , the same inclusion relation holds for PF_{p}(G) . Since the dual
space of PF_{p}(G) is W_{q}(G)(1/p+1/q=1) , B_{p}(G) is contractively included
in B_{p}(G) whenever 1<p<p’\leq 2 or 2\leq p’<p<\infty .

(2) Pytlik [18] proved that if F_{r} is a free group with r generators
(r\geq 2) and if 1<p , p’<\infty , p\neq p’ then there exists an element of CV_{p}(F_{r})

which does not belong to CVP(Fr) . This implies by duality that under the
same assumption there exists an element of A_{p}(F_{r}) (resp. W_{p}(F_{r}) ) which
does not belong to A_{p}(F_{r}) (resp. W_{p}(F_{r}) ).

The following theorem is a partial extension of [3, Corollary 3.9] (see
also [19, Remark 3.3 (2)] ) .

THEOREM 2. 6. Let F_{r} be a free group with r generators (2\leq r\leq\infty) ,

and 1<p<\infty . Then there exists a sequence \{\varphi_{n}\} in A_{p}(F_{r}) such that

\sup_{n}||\varphi_{n}||_{Bp}\leq 1 ,

\lim_{narrow\infty}||\varphi_{n}u-u||_{Ap}=0 , u\in A_{p}(F_{r}) .

PROOF: For each element x in F_{r} , |x| denotes the length of x . First
suppose that F_{r} is finitely generated, i . e . 2\leq r<\infty . For m\in N , let \chi_{m} be
the characteristic function of the set \{x\in F_{r} : |x|=m\} . By [19, Corollary 1]
we know that \chi_{m}\in B_{2}(F_{r}) and ||\chi_{m}||_{B_{2}}\leq e(m+1) . Therefore we have \chi_{m}\in

B_{p}(F_{r}) and ||\chi_{m}||_{Bp}\leq e(m+1) by Theorem 2.4. For each \sigma>0 and m\in N ,



Algebras A_{p} and B_{p} and amenability of locally compact groups 585

define

\varphi_{\sigma,m}(x)=\{

e^{-\sigma|x|} , |x|\leq m ,
0, otherwise,

and \varphi_{\sigma}(x)=e^{-\sigma|x|} . For fixed \sigma>0 , since

|| \varphi_{\sigma,m}-\varphi_{\sigma}||_{Bp}\leq\sum_{n=m+1}^{\infty}e^{-\sigma n}||\chi_{n}||_{Bp}\leq\sum_{n=m+1}^{\infty}e(n+1)e^{-\sigma n} .

we have

(2. 1) \lim_{marrow\infty}||\varphi_{\sigma,m}-\varphi_{\sigma}||_{Bp}=0 .

Since \varphi_{\sigma} is positive definite by [7, Lemma 1.2], it follows from Proposi-
tion 2.2 that ||\varphi_{\sigma}||_{B_{2}}\leq\varphi_{\sigma}(e)=1 . Also 1=||\varphi_{\sigma}||_{\infty}\leq||\varphi_{\sigma}||_{Bp} , so that ||\varphi_{\sigma}||_{Bp}=1 by
Theorem 2.4. Let \phi_{\sigma,m}=\varphi_{\sigma,m}/||\varphi_{\sigma,m}||_{Bp} . Since \psi_{\sigma,m} has finite support, it
belongs to A_{p}(F_{r}) . Moreover by (2.1)

||\phi_{\sigma,m}||_{Bp}=1 , \lim_{marrow\infty}||\phi_{\sigma,m}-\varphi_{\sigma}||_{B_{P}}=0 .

Since
||\phi_{\sigma,m}u-\varphi_{\sigma}u||_{Ap}\leq||\phi_{\sigma,m}-\varphi_{\sigma}||_{MAp}||u||_{Ap}

\leq||\phi_{\sigma,m}-\varphi_{\sigma}||_{Bp}||u||_{A_{P}} , u\in A_{p}(F_{r}) ,

we have

(2.2) \lim_{marrow\infty}||\phi_{\sigma,m}u-\varphi_{\sigma}u||_{Ap}=0 , u\in A_{p}(F_{r}) .

On the other hand,
\lim_{\sigmaarrow 0}||\varphi_{\sigma}\delta_{x}-\delta_{x}||_{Ap}=\lim_{\sigmaarrow 0}|\varphi_{\sigma}(x)-1|=0 , x\in F_{r} ,

where \delta_{x}(t)=1 if t=x and \delta_{x}(t)=0 otherwise. Therefore, since
A_{p}(F_{r})\cap L(F_{r}) is dense in A_{p}(F_{r}) and ||\varphi_{\sigma}||_{Bp}=1 , we have

\lim_{\sigmaarrow 0}||\varphi_{\sigma \mathcal{U}}-u||_{Ap}=0 , u\in A_{p}(F_{r}) .

From this combined with (2.2) it follows that for all \^u AP(Fr) ,

\lim||\phi_{\sigma,m}u-u||_{Ap}=0 .
marrow\infty

\sigmaarrow 0

Now the existence of the sequence with the required property is shown by
the separability of A_{p}(F_{r}) as in the last part of the proof of [3, Theorem
4. 6].

Now let F_{\infty} be a free group with infinitely many generators. Let a , b
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be the free generators of F_{2} . Then the subgroup F of F_{2} generated by
\{b^{n}ab^{-n} : n\in N\} can be identified with F_{\infty} . Let \{\varphi_{n}\} be a sequence of the
theorem obtained for F_{2} . Put \phi_{n}=\varphi_{n}|_{F} . Then \phi_{n} belongs to A_{p}(F)([9 ,

Theorem 1]) and ||\phi_{n}||_{B_{p}(F)}\leq||\phi_{n}||_{B_{p}(F_{2})}\leq 1 ([10, p. 146]). For u\in A_{p}(F) define
the function \tilde{u} by \tilde{u}(x)=u(x) if x\in F and \tilde{u}(x)=0 if x\in F_{2}\backslash F Then by
[9, Proposition 5] we have \tilde{u}\in A_{p}(F_{2}) and

\lim_{narrow\infty}||\phi_{n}u-u||_{A_{p}(F)}\leq\lim_{narrow\infty}||\varphi_{n}\tilde{u}-\tilde{u}||_{A_{p}(p_{2})}=0 .

Hence the sequence \{\phi_{n}\} has a required property. \blacksquare

REMARKS 2. 7. (1) It can be shown that if G is weakly-amenable (in
the sense of [2] ) , then A_{p}(G) has an approximate identity \{u_{a}\}_{a\in I} such
that \sup_{a\in I}||u_{a}||_{Bp}<+\infty . In fact let \{v_{a}\}_{a\in I} be an approximate identity of
A(G)=A_{2}(G) such that \sup_{a\in I}||v_{a}||_{B_{2}}<+\infty and let f\in L(G) be a non-nega-
tive function such that ||f||_{1}=1 . Then the net \{f*v_{a}\}_{a\in I} has a required
property.

(2) Since F_{r} is not amenable, A_{p}(F_{r}) does not possess a bounded
approximate identity, so that the function \varphi_{\sigma} in the proof of Theorem 2.6
does not belong to A_{p}(F_{r}) for small \sigma . In fact, for \sigma<\min\{1/p, 1/q\} log
(2r-1) where 1/p+1/q=1 , \varphi_{\sigma} does not belong to A_{p}(F_{r}) , which is seen
from the following fact: If 1<p\leq 2 (resp. 2\leq p<\infty ), and if a function \varphi

on F_{r} belongs to A_{p}(F_{r}) , then the function x\mapsto\varphi(x)e^{-\sigma|x|} belongs to
\swarrow q(F_{r}) (resp. \swarrow p(F_{r}) ) for every \sigma>0 . This can be deduced from [6,
Lemma 8. 4. 7] and [7, Theorem 3. 1].

3. Characterizations of amenability

In this section, we characterize the amenability of G in several ways
using the notions of multipliers of A_{p}(G) and W_{p}(G) .

Suppose that 1<p<\infty , 1/p+1/q=1 and 1\leq p’\leq\infty . A bounded linear
operator \Phi:A_{p}(G) -arrow M(G) is called a multiplier of A_{p}(G) into M(G) if
\Phi(uv)=u\Phi(v) for every u , v\in A_{p}(G) , where d(u\mu)=ud\mu for u\in C_{0}(G)

and \mu\in M(G) . We denote by \mathscr{M}(A_{p}, M) the space of multipliers of A_{p}(G)

into M(G) . Similarly we define the space \mathscr{M}(W_{p}, M) of multipliers of
W_{p}(G) into M(G) , the space \mathscr{M}(A_{p}, L^{p})’ of multipliers of A_{p}(G) into
L^{p}(G) and the space \mathscr{M}(W_{p}, L^{p})’ of multipliers ofW_{p}(G) into L^{p}(\prime G) .

For each \mu\in M(G) the operator \Phi_{\mu} : u\mapsto u\mu of A_{p}(G) (resp. W_{p}(G) )

into M(G) is clearly an element of \mathscr{M}(A_{p}, M) (resp. \mathscr{M}( W_{p} , M)) such that
||\Phi_{\mu}||\leq||\mu|| . Hence M(G) is contractively imbedded in \mathscr{M}(A_{p}, M) or \mathscr{M}(W_{p} ,
M) by the natural imbedding \mu\mapsto\Phi_{\mu} . Analogously L^{p}(\prime G) is
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contractively imbedded in \mathscr{M}(A_{p}, L^{p}) or \mathscr{M}(W_{p}, L^{p}) .
Let Q_{p}(G) denote the Banach space consisting of all functions h=

\Sigma_{i=1}^{\infty}u_{i}g_{i} with u_{i}\in A_{p}(G) and g_{i}\in C_{0}(G) satisfying \Sigma_{i=1}^{\infty}||u_{i}||_{Ap}||g_{i}||_{\infty}<+\infty ,
where the norm ||h||_{Qp} is the infimum of \sum_{i=1}^{\infty}||u_{i}||_{Ap}||g_{i}||_{\infty} for all such expres-
sions. Also let R_{p}(G) denote the Banach space consisting of all functions
h=\Sigma_{i=1}^{\infty}u_{i}g_{i} with u_{i}\in W_{p}(G) and g_{i}\in C_{0}(G) satisfying \Sigma_{i=1}^{\infty}||u_{i}||_{Wp}||g_{i}||_{\infty}<

+\infty , where the norm ||h||_{Rp} is the infimum of \Sigma_{i=1}^{\infty}||u_{i}||_{Wp}||g_{i}||_{\infty} for all such
expressions. Note that Q_{p}(G) and R_{p}(G) are the subspaces of C_{0}(G) .
Moreover ||h||_{\infty}\leq||h||_{Qp} for h\in Q_{p}(G) , and ||h||_{\infty}\leq||h||_{Rp} for h\in R_{p}(G) .

LEMMA 3. 1. Let 1<p<\infty .
(1) \mathscr{M}(A_{p}, M) is the dual Banach space of Q_{p}(G) . The duality is

given by

\langle\Phi, h\rangle=\sum_{i=1}^{\infty}\langle\Phi(u_{i}),g_{i}\rangle , \Phi\in \mathscr{M}(A_{p}, M) , h= \sum_{i=1}^{\infty}u_{i}g_{i}\in Q_{p}(G) .

(2) \mathscr{M}(W_{p}, M) is the dual Banach space of R_{p}(G) . The duality is
given by

\langle\Phi, h\rangle=\sum_{i=1}^{\infty}\langle\Phi(u_{i}), g_{i}\rangle , \Phi\in \mathscr{M}(W_{p}, M) , h= \sum_{i=1}^{\infty}u_{i}g_{i}\in R_{p}(G) .

PROOF: We only prove (1) (the proof of (2) is analogous). Let F\in
Q_{p}(G)^{*} and u\in A_{p}(G) . Define \mathscr{F}_{u}(g)=F(ug) for g\in C_{0}(G) . Then \mathscr{I}_{u}^{arrow} is a
bounded linear functional on C_{0}(G) and |\mathscr{F}_{u}(g)|\leq||F||||u||_{Ap}||g||_{\infty} . Therefore
there exists \mu_{u}\in M(G) such that \mathscr{F}_{u}(g)=\langle\mu_{u}, g\rangle , g\in C_{0}(G) and ||\mu_{u}||\leq

||F||||u||_{Ap} . The mapping \Phi:u\mapsto\mu_{u} defines a bounded linear operator of
A_{p}(G) into M(G) with ||\Phi||\leq||F|| . It is easily verified that \Phi\in \mathscr{M}(A_{p}, M) .

Conversely let \Phi\in \mathscr{M}(A_{p}, M) . Define F(h)=\Sigma_{i=1}^{\infty}\langle\Phi(u_{i}), g_{i}\rangle for h\in

Q_{p}(G) , h=\Sigma_{i=1}^{\infty}u_{i}g_{i} . Let us show that F is well defined, that is, if h\equiv 0

then F(h)=0. Let I be the set of all compact subsets of G, and \{u_{K}\}_{K\in J} a
net of elements of A_{p}(G) such that v_{K}\equiv 1 on K and 0\leq v_{K}\leq 1([4 , Lemme
3. 2]). For given \epsilon>0 , choose N\geq 1 such that \Sigma_{i>N}||u_{i}||_{Ap}||g_{i}||_{\infty}<\epsilon . Let K
\in I be such that \Sigma_{i=1}^{N}||u_{i}||_{Ap}||g_{i}v_{K}-g_{i}||_{\infty}<\epsilon . Since v_{K}\in A_{p}(G) , we have

\sum_{i=1}^{\infty}\langle\Phi(u_{i}), g_{i}v_{K}\rangle=\sum_{i=1}^{\infty}\langle\Phi(u_{i}v_{K}), g_{i}\rangle=\sum_{i=1}^{\infty}\langle\Phi(v_{K}), u_{i}g_{i}\rangle=\langle\Phi(v_{K}), h\rangle=0 .

Hence we have

|F(h)|=| \sum_{i=1}^{\infty}\langle\Phi(u_{i}), g_{i}-g_{i}v_{K}\rangle|

\leq\sum_{i=1}^{\infty}||\Phi||||u_{i}||_{Ap}||g_{i}-g_{i}v_{K}||_{\infty}
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\leq||\Phi||\sum_{i=1}^{N}||u_{i}||_{Ap}||g_{i}-g_{i}v_{K}||_{\infty}+||\Phi||\sum_{i>N}||u_{i}||_{Ap}||g_{i}||_{\infty}

\leq 2||\Phi||\epsilon .

Since \epsilon>0 is arbitrary, we have F(h)=0. Now it is clear that F\in Q_{p}(G)^{*}

and ||F||\leq||\Phi|| . \blacksquare

THEOREM 3. 2. Let 1<p<\infty and 1\leq p’<\infty . Then the following con-
ditions are equivalent :

(1) G is amenable :
(2) C_{0}(G)=A_{p}(G)\cdot C_{0}(G) ;
(3) C_{0}(G)=W_{p}(G)\cdot C_{0}(G) ;
(4) \mathscr{M}(A_{p}, M)\simeq M(G) ;
(5) \mathscr{M}(W_{p}, M)\simeq M(G) ;
(6) p\mathscr{M}(A_{p}, L^{p})\simeq L^{p}(G) :
(7)_{p}\mathscr{M}(W_{p}, L^{p})\simeq L^{p}(G) .

Here each of (4)-(7)_{p} means that the natural imbedding is surjective
isomorphism. Moreover each isomorphism in (4)-(7)_{p} is isometric if G is
amenable.

PROOF: (1)\Rightarrow(2) . Since G is amenable, A_{p}(G) has a bounded
approximate identity ([9, 15]). Therefore (2) follows from [13, (32. 22)].
(2)\Rightarrow(3) is clear because A_{p}(G)\subset W_{p}(G) in general.

(2)\Rightarrow(4) . By (2), Q_{p}(G) is isomorphic with C_{0}(G) . Therefore it fol-
lows from Lemma 3. 1 (1) that \mathscr{M}(A_{p}, M)\simeq C_{0}(G)^{*}\simeq M(G) . (3)\Rightarrow(5) is
similarly shown by Lemma 3.1 (2).

(4)\Rightarrow(1) . By (4) there exists a positive constant C such that

(3. 2) ||f||_{1}\leq C||\Phi_{f}||_{\chi(A_{p},M)} , f\in L^{1}(G) ,

where \Phi_{f} : u\mapsto uf for u\in A_{p}(G) . Also we have

|| \Phi_{f}||_{l(A_{p},M)}-=\sup\{|\langle uf, g\rangle| : u\in A_{p}(G), ||u||_{Ap}\leq 1, g\in C_{0}(G), ||g||_{\infty}\leq 1\}

(3.2) = \sup\{|\langle u, fg\rangle| : u\in A_{p}(G), ||u||_{Ap}\leq 1, g\in C_{0}(G), ||g||_{\infty}\leq 1\}

\leq\sup\{||\lambda(fg)||_{PMq} : g\in C_{0}(G), ||g||_{\infty}\leq 1\} .

Let f\in L^{1}(G) and f\geq 0 . Then for every g\in C_{0}(G) and h\in L^{q}(G) , we have

||gf*h||_{q}\leq||||g||_{\infty}f*|h|||_{q}\leq||g||_{\infty}||\lambda(f)||_{PMq}||h||_{q} ,

so that ||\lambda(gf)||_{PMq}\leq||g||_{\infty}||\lambda(f)||_{PMq} . From this and (3. 1) and (3.2) it fol-
lows that

(3.3) ||f||_{1}\leq C||\lambda(f)||_{PMq} , f\in L^{1}(G) , f\geq 0 .
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For 0\leq f\in L^{1}(G) , we have
||f||_{1}^{n}=||f^{(*n)}||_{1}\leq C||\lambda(f^{(*n)})||_{PMq}\leq C||\lambda(f)||_{PMq}^{n}

by (3.3), so that ||f||_{1}\leq C^{1/n}||\lambda(f)||_{PMq} for every n\in N . Hence we have
||f||_{1}=||\lambda(f)||_{PMq} , f\in L^{1}(G) , f\geq 0 .

It follows from [14] that G is amenable. (5)\Rightarrow(1) is analogously shown.
(1)\Rightarrow(6)_{p} . Let \Phi\in \mathscr{M}(A_{p}, L^{p}) and let \{u_{a}\}_{a\in I} be a bounded approxi-

mate identity of A_{p}(G) with ||u_{a}||_{Ap}\leq 1 . First consider the case p’>1 . Since
\{\Phi(u_{a})\}_{a\in I} has a w^{*}-accumulation point f in L^{p}(G) by boundedness, it
may be assumed that w^{*}- \lim_{a}\Phi(u_{a})=f . Then for every u\in A_{p}(G) , we
have

\Phi(u)=w^{*}-\lim_{a}\Phi(uu_{a})

=w^{*}- \lim_{a}u\Phi(u_{a})=uf .

Moreover since

||f||_{p} \leq\lim_{a}\inf||\Phi(u_{a})||_{p}\leq||\Phi|| ,

we obtain \Phi=\Phi_{f} and ||\Phi||=||f||_{p} . Next when p’=1 , since \Phi(u_{a})\in L^{1}(G)\subset

M(G) , we may assume that the net \{\Phi(u_{a})\}_{a\in I} converges to some element
\mu\in M(G) in the w^{*}-topology. The same argument as above shows that
\Phi(u)=u\mu\in L^{1}(G) for every u\in A_{p}(G) . It follows that \mu\in L^{1}(G) . Thus
we have (6)_{p} for any p’\geq 1 . (1)\Rightarrow(7)_{p} is clear because (1) implies 1\in

MA_{p}(G)=W_{p}(G)([1]) .
(6)_{p}\Rightarrow(6)_{1} . We may suppose that p’>1 . Let I be the set of all com-

pact subsets of G ordered by inclusion. For each K\in I , take u_{K}\in A_{p}(G)

\cap L(G) such that u_{K}\equiv 1 on K and 0\leq u_{K}\leq 1 . Let \Phi\in \mathscr{M}(A_{p}, L^{1}) . For any
K_{1} K_{2}\in I , since \Phi(u_{K_{1}})u_{K_{2}}=\Phi(u_{K_{1}}u_{K_{2}})=u_{K_{1}}\Phi(u_{K_{2}}) , we have
\Phi(u_{K_{1}})|_{K_{1}\cap K_{2}}=\Phi(u_{K_{2}})|_{K_{1}\cap K_{2}} . Hence there is a measurable function h on G

such that h|_{K}=\Phi(u_{K})|_{K} for all K\in I . If u\in A_{p}(G)\cap L(G) , then we have

\Phi(u)=\lim_{K}\Phi(uu_{K})=\lim_{K}u\Phi(u_{K})=uh ,

Hence
||u|h|^{1/p}||_{p}^{p},\leq||u||_{\infty}^{p-1}||uh||_{1}

\leq||u||_{\infty}^{p-1}||u||_{Ap}||\Phi||\leq||\Phi||||u||_{Ap}^{p} .

This shows that |h|^{1/p’} defines a multiplier of A_{p}(G) into L^{p}(G) . Hence by
(6)_{p} we have |h|^{1/p}\in L^{p}(G) , so that h\in L^{1}(G) . Thus we obtain (6)_{1} . The
proof of (7)_{p}\Rightarrow(7)_{1} is similar.
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If we replace \mathscr{M}(A_{p}, M) with \mathscr{M}(A_{p}, L^{1}) in the proof of (4)\Rightarrow(1) , we
can also obtain the proof of (6)_{1}\Rightarrow(1) , and (7)_{1}\Rightarrow(1) is analogously
shown.

Finally if G is amenable, the same argument as in the proof of (1)\Rightarrow

(6)_{p} shows that each isomorphism in (4)-(7)_{p} is isometric. \blacksquare

REMARKS 3. 3. (1) When p’=\infty , the implication (6) p\Rightarrow(1) of The
orem 3.2 does not hold. In fact, if G is discrete and \Phi\in \mathscr{M}(A_{p}, \swarrow^{\infty}) , then
the function \varphi(x)=\Phi(\delta_{x})(x) belongs to \swarrow\infty(G) and \Phi(u)=u\varphi for u\in
A_{p}(G) . Hence for any discrete group G, \mathscr{M}(A_{p}, \swarrow)\infty is isomorphic to
\swarrow\infty(G) .

(2) From [6, Lemma 8. 4. 7] it can be shown that for a free group G
=F_{r} , the function \varphi(x)=(2r-1)^{-|\chi|} belongs to \mathscr{M}(A_{p}, \swarrow)1 , but not to
\swarrow 1(G) .
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