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Local solvability of semilinear parabolic equations
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Introduction.

The problem of local in time existence of solutions of semilienar para-
bolic equations has been studied by a number of authors (e. g . [10, 20, 4,
18,3]) using several different methods. Friedman [10] made use of the
C^{1+8} estimates (p. 191 therein), also the Sobolevskii-Tanabe method (cf.
[22, 3]) gave a contribution to these studies. However, probably the most
important innovation in recent years came from H. Amann (see [3] and
references therein), who covered general systems of equations using the
idea of an extended “ variation of constants ” formula. Also in [0] in-
dependent studies of this problem are presented. Our approach here is
more classical, close in spirit but different in method to that of Friedman
[10]. The proofs based on a priori estimates and the iteration technique
[2] make it possible to study in compact form the equation (1) with linear
boundary conditions of the third type. Our estimates (23), (31) of the life
time of solutions seems to be new and to have interesting implications
(compare e . g . Lemma 4). The form of equation (1) (with the weak
assumption of the local Lipschitz continuity of f) covers most of the
recently studied single equations with blowing-up solutions [11, 4, 9] as
well as problems with blowing-up derivatives [8] , also the formally more
complete form of the equation in [10, p. 201] (except that we need the
coefficients to be smoother). The technique presented here has been used
before by the present author [6, 7] in studies on the long time behaviour
of solutions of parabolic problems.

Notation.

The notation of Sobolev spaces is taken from an excellent monograph
by R. Adams [1], for the H\"older spaces from Lady2enskaja at al. [13]
(except that we use the letter C instead of H in [13] to distinguish the
notation of Sobolev space). |\Omega| denotes the Lebesgue measure of \Omega , C:=
|\Omega|^{1/(2n+2)} . As throughout this paper the space variable x belongs to a fixed
bounded domain \Omega\subset R^{n} . hence all the unspecified integrals are understood
to be taken over \Omega , also unsepcified sums are taken from 1 to n (the space
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dimension). By a C^{1,2} solution u of (1)-(3) we mean the classical solution
of the problem in [0, T_{ex})\cross\Omega ( T_{ex}\leq+\infty is the maximal time of existence
of u ) having, in compact subsets of [0, T_{ex})\cross\overline{\Omega} , continuous derivatives
appearing in (1).

For convenience we collect here certain inequalities of importance for
our estimates. For a , b\geq 0 , \epsilon>0 , m>1 we have the Young inequality:

(i) ab \leq\frac{1}{m}\epsilon^{m}a^{m}+\frac{m-1}{m}\epsilon^{\frac{m}{m-1}}b^{\frac{m}{m-1}} ,

which for m=2, \epsilon^{2}=\tilde{\epsilon} is known as the Cauchy inequality. Let \Omega\subset R^{n} .
having the cone property, be bounded ([1, p. 78]), and let \epsilon_{0} be a finite
positive number, then

(ii) K>00\leq\epsilon\leq\epsilon_{0}0\leq j\leq m-1\exists\forall\forall|v|_{j,p}\leq K\epsilon|v|_{m,p}+K\epsilon^{\frac{j}{m-1}}||v||_{p} ,

for any v\in W^{m,p}(\Omega) , K=K(\epsilon_{0}, m, p, \Omega) , 1\leq p<\infty . For p>n we also note
[16] :

(iii) ||v||_{\infty}\leq c||v||_{1,p}^{n/p}||v||_{p}^{1-n/p} .

Preliminaries.

We deal with the parabolic equation:

(1) u_{t}= \sum_{i.j}(a_{ij}(t, x)u_{x_{j}}))_{x_{i}}+f(t, x, u, u_{x})=:L(u) ,

where t>0 (which will later be limited from above), x\in\Omega\subset R^{n} with a
bounded domain \Omega , \partial\Omega\in C^{2+\gamma}(\gamma\in(0,1) fixed) and u_{x}=(u_{x_{1}},\ldots , u_{x_{n}}) . Equa-
tion (1) will be considered with the conditions:

(2) u(0, x)=u_{0}(x) for x\in\Omega ,

and, with \frac{\partial}{\partial N}:=\sum_{i,j}a_{ij}(t, x)\frac{\partial}{\partial_{x_{J}}}\cos(n, x_{i}) ,

(3) \phi(x)u+\phi(x)\frac{\partial u}{\partial N}=0 on \partial\Omega ,

n denotes the inward normal to \partial\Omega in x , where one of the following addi-
tional assumptions is required:

(3 a) \phi(x)\equiv 0 and \phi(x)\geq\phi_{0}>0 (the Dirichlet problem)

(3 b) \phi(x)\leq 0 and \phi(x)\geq\phi_{0}>0 (the third boundary problem).
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In most estimates we need only the condition following from (3a) and

from (3b), i . e . u \frac{\partial u}{\partial N}\geq 0 on \partial\Omega .

Assumptions.

The following assumptions are valid throughout the paper:

(A1) a_{ij} , (a_{ij})_{x_{i}}(i, j=1, \ldots, n) are H\"older continuous with respect to x
(exponent \gamma), a_{ij} are Lipschitz continuous in t and (a_{ij})_{x_{i}} are H\"older con-
tinuous in t (exponent \gamma/2 ) all this in sets [0, \tau]\cross\overline{\Omega}(\tau>0 arbitrary, the
Lipschitz, H\"older constants may depend on \tau),

(A2) The equation is parabolic:

(4)
\tau>0a_{0}>0\forall\exists

t \in[0,\tau]x\in\overline{\Omega}\xi\in R^{n}\forall\forall\sum_{i,j},a_{ij}(t, x)\xi_{i}\xi_{j}\geq a_{0}|\xi|^{2}
.

(A3) f is Lipschitz continuous in t , u and u_{x_{i}}(i=1, \ldots, n) and H\"older

continuous (exponent \gamma) in x , the Lipschitz, H\"older constants are general
in sets [0, \tau]\cross\overline{\Omega}\cross[-a, a]\cross[-b, b]^{n} ( a , b>0 arbitrary),

(A4) \phi , \psi\in C^{1+\gamma}(\partial\Omega) , \partial\Omega\in C^{2+\gamma} .

(A5) u_{0}\in C^{2+\gamma}(\overline{\Omega}) and u_{0}=0=L(u_{0}) on \partial\Omega in the case of condition

(3a) or \phi(x)u_{0}+\phi(x)\frac{\partial u_{0}}{\partial N}=0 on \partial\Omega in the case of condition (3b).

A preliminary lemma.

We start by formulating a lemma making it possible to estimate the
space derivatives of u through the time derivative u_{t} and u alone. To do
so let us first define a set:

X:=\{(t, x, u, p):t\in[0, T_{0}] , x\in\overline{\Omega} , |u|\leq M_{1} , \sum_{i}|p_{i}|\leq M_{2}\} ,

where p=(p_{1}\ldots, p_{n}) , T_{0}>0 is fixed. For (t, x, u, u_{x})\in X let us denote by A
the Lipschitz constant of a_{ij} with respect to t(i, j=1,\ldots, n) , and by L_{t} , L_{u}

and L_{\chi} the Lipschitz constants of f with respect to, respectively, t , u and
u_{x_{i}}(i=1, \ldots, n) . Further, let |f(t, x, 0, O)|\leq N . We have:

LEMMA 1: As long as the C^{1,2} solution u 0f(l)-(3) remains in X, it
fulfills, with sufficiently small \delta>0 satisfying (15), the condition:

(5) \forall\exists\sum_{i\delta C_{\delta}>0}||u_{x_{i}}(t, \cdot)||_{\infty}\leq\delta(||u_{t}(t,\cdot)||_{2n+2}+NC)

+C_{8}||u(t,\cdot)||_{\infty} ,
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where C_{8}=const. \delta^{\frac{3n+2}{n+2}} Also, with the same \delta and C_{8} :
(6) \sum_{i}||(u_{0})_{x_{i}}||_{\infty}

\leq\delta(||\sum_{i,j}(a_{ij}(0^{ },\cdot)(u_{0})_{Xj})_{x_{i}}+f(0^{ },\cdot, u_{0},(u_{0})_{x})||_{2n+2}+NC)+C_{8}||u_{0}||_{\infty} .

Proof: As shown in [21, p. 138], for weak solutions of elliptic prob-
lems

(7) Sv:= \sum_{ij}(A_{ji}(x)v_{x_{j}})_{x_{i}}=F(x) , x\in\Omega ,

(8) \sum_{i,j}A_{ij}(x)v_{x_{j}}\cos(n, x_{i})=\Phi(x) on \partial\Omega ,

with A_{ij}\in W^{1,S}(\Omega) , \Phi\in W^{1-1/S,S}(\partial\Omega) , s>n , the Calderon-Zygmund estimates
are valid:

(9) ||v||_{2,s}\leq c_{1}(||Sv||_{s}+||\Phi||_{1-1/s,s,\partial\Omega})+c_{2}||v||_{s} .

In the case of our more general than (8) boundary condition (3 b) , using

(9) with \Phi=\frac{\phi}{\emptyset}v and the trace estimate [1, p. 217] we get:

(10) ||v||_{2,S} \leq c_{1}(||Sv||_{S}+||\frac{\phi}{\emptyset}v||1-1/s,s,\partial\Omega)+c_{2}||v||_{s}

\leq c_{1}(||Sv||_{s}+K_{1}||\frac{\phi}{\emptyset}v||_{1,s})+c_{2}||v||_{s} .

Since from [1, p. 115], for mp>n , the W^{m,p}(\Omega) is a Banach Algebra, then
for s>n :

||v||_{2,S} \leq c_{1}(||Sv||_{s}+K_{1}K^{*}||\frac{\phi}{\emptyset}||_{1,S}||v||_{1,S})+c_{2}||v||_{s} ,

and finally, as a consequence of ( ii) applied to |v|_{1,s} :

(ii) ||v||_{2,S}\leq const . (||Sv||_{s}+||v||_{s})

\leq c_{s,\infty}(||Sv||_{s}+||v||_{\infty}) .

For the case of bundary condition (3a) the estimate (11) is stated explicitly
ly in [14, Chap. III].

Then from (1) (for fixed t>0 ), when denoting:

Pu:= \sum_{i,j}(a_{ij}(t, x)u_{x_{J}})_{x_{i}} ,

we have
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(12) ||Pu||_{p}=||u_{t}-f(t,\cdot, u, u_{x})||_{p}

\leq||u_{t}(t,\cdot)||_{p}+||f(t,\cdot, u, u_{x})-f(t,\cdot, u, O)||_{p}

+||f(t,\cdot, u, O)-f(t,\cdot, 0, 0)||_{p}+||f(t,\cdot, 0, O)||_{p}

\leq||u_{t}(t,\cdot)||_{p}+L_{x}\sum_{i}||u_{x_{i}}(t,\cdot)||_{p}+L_{u}||u(t,\cdot)||_{p}+N\tilde{C} ,

as long as the solution remains in X (here \overline{C}:=C^{\frac{2n+2}{p}}).
Finally, using (iii) for v:=w_{x_{i}} and summing over i , we get:

\sum_{i}||w_{x_{i}}||_{\infty}\leq c\sum_{i}||w_{x_{i}}||_{1,p}^{n/p}||w_{x_{i}}||_{p}^{1-n/p}

\leq c||w||_{2,p}^{n/p}\sum_{i}||w_{x_{i}}||_{p}^{1-n/p} ,

and, with the use of (i) with m= \frac{p}{n} and (ii) we obtain:

\sum_{i}||w_{x_{i}}||_{\infty}\leq cn\{\frac{n}{p}\epsilon_{1}^{\frac{p}{n}}||w||_{2,p}+\frac{p-n}{p}\epsilon_{1}^{-\frac{p}{p-n}}(K\epsilon|w|_{2,p}+K\epsilon^{-1}||w||_{p})\}

Choosing \epsilon=\epsilon_{1}^{\frac{pz}{n(p-n)}},\overline{\delta}:= const, \epsilon_{1}^{\frac{p}{n}} we thus verify that

(13) \sum_{i}||w_{x_{i}}||_{\infty}\leq\overline{\delta}||w||_{2,p}+C_{\overline{\delta}}||w||_{p} ) .

with C_{\overline{\delta}}=const . \tilde{\delta}^{\frac{p+n}{p-n}}(p>n as usual).

The three estimates (11), (12) and (13) together (with p=s=2n+2 , v

=w=u(t,\cdot) , P=S) , give:

(14)
\sum_{i}||u_{x_{i}}(t,\cdot)||_{\infty}\leq\tilde{\delta}\{c_{2n+2,\infty}[||u_{t}(t,\cdot)||_{2n+2}+L_{x}\sum_{i}||u_{x_{i}}(t,\cdot)||_{2n+2}

+L_{u}||u(t,\cdot)||_{2n+2}+NC]+||u(t,\cdot)||_{\infty}\}+C_{\overline{8}}||u(t,\cdot)||_{2n+2} .

Since ||v||_{2n+2}\leq C||v||_{\infty} , then for \overline{\delta} so small that:

(12) \tilde{\delta}c_{2n+2,\infty}\max\{L_{x}C;1\}\leq\frac{1}{2},

denoting \delta :=2\tilde{\delta}c_{2n+2,\infty} ( \delta\leq 1 as a consequence of (15)), it follows from
(14) that

\frac{1}{2}\sum_{i}||u_{x_{i}}(t,\cdot)||_{\infty}\leq\frac{1}{2}\overline{\delta}(||u_{t}(t,\cdot)||_{2n+2}+NC)+

+[ \frac{1}{2}\delta(L{}_{u}C+1)+C_{\overline{\delta}}C]||u(t,\cdot)||_{\infty} .

The square bracket above will be dominated by the largest component
inside it multiplied by a suitable constant, hence (5) follows. To get (6)



486 T. Dlotko

we may use the equality:

||Pu_{0}|_{t=0}||_{p}=||[Pu_{0}|_{t=0}+f(0,\cdot, u_{0}, (u_{0})_{x})]-f(0,\cdot, u_{0}, (u_{0})_{x})||_{p}

and then repeat our arguments starting from (12), with the only evident
changes being:

u(t,\cdot)arrow u_{0} , u_{t}(t,\cdot)arrow Pu_{0}|_{t=0}+f(0,\cdot, u_{0},(u_{0})_{x}) .

The estimate (6) is not optimal but will be used in this form in the sequel.
The proof of Lemma 1 is completed.

It is worth noticing that Lemma 1 is not necessary in the proof of the
following Theorem 1 (c. f. [5]) , if the coefficients a_{ij} in (1) are time in-
dependent for all i , j=1,\ldots , n .

The main result.

We are now in a position to formulate the main result of the paper.
This theorem gives a priori estimates of the solution u .

THEOREM 1. Under the conditions stated in the Assumptions, for
arbitrary positive numbers m_{1} and m_{2} and two further positive numbers M_{1}

and M_{2} , such that m_{1}<M_{1} and m_{2}<M_{2} , there exists a time T>0 such that
a C^{1,2} solution u of (1)-(3) with

(16) ||u_{0}||_{\infty}\leq m_{1} and \delta(||L(u_{0})|_{t=0}||_{2n+2}+NC)+C_{\delta}||u_{0}||_{\infty}\leq m_{2^{*}}

for some \delta as in Lemma 1, satisfies
(17) ||u(t^{ },\cdot)||_{\infty}\leq M_{1} and \sum_{i}||u_{x_{i}}(t^{ },\cdot)||_{\infty}\leq M_{2}

at least until the time T.

The proof of Theorem 1 is given in two lemmas which are designed to
obtain a priori estimates of ||u(t,\cdot)||_{\infty} and ||u_{t}(t,\cdot)||_{2n+2} , respectively. An
iteration technique given by N. D. Alikakos is used in the first lemma
(c. f. [3, 5, 6]) . Our estimate (18) below generalizes the Maximum Princi-
ple for solutions of (1)-(3) .

REMARK. The second half oa the condition (16) imposed on the ini-
tial function u_{0} is evidently satisfied by u_{0} fulfilling (A5) and belonging to
a neighbourhood of zero in L^{\infty}(\Omega) . To cover arbitrary u_{0} fulfilling (A5)
we shall replaced (1)-(3) by the equivalent problem for the new unknown
v :=u-u_{0} :

This quantity dominates\sum_{i}||(u_{0})_{\chi_{i}}||_{\infty} as shown in (6). From now on \delta and C_{\delta} are fixed.
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(1’) v_{t}= \sum_{i,j}(a_{ij}(t, x)v_{x_{j}})_{x_{i}}+\overline{f}(t, x, v, v_{x}) ,

(2’) v(0, x)=0 for x\in\Omega ,

(3’) \phi(x)v+\phi(x)\frac{\partial v}{\partial N}=0 on \partial\Omega ,

where \overline{f}(t, x, v, v_{x}):=\sum_{i,j}(a_{ij}(t, x)u_{0xj})_{x_{i}}+f(t, x, v+u_{0},(v+u_{0})_{x}) . The

properities of f are preserved by \overline{f} and Theorems 1,2 applied to (1’)-(3^{r})

show local existence of the solution v .

LEMMA 2: {First a priori estimate). Under the assumptions of The-
orem 1 the following estimate of the uniform norm of u(t^{ }, \cdot ) holds for
sufficiently small t ( t\leq T_{1} , T_{1} given in (23)) :
(18) ||u(t^{ },\cdot)||_{\infty}^{2}

\leq[||u_{0}||_{\infty}^{2}+\frac{N}{L_{u}+N}(1-exp(-2t(L_{u}+N)) ) ]\exp(2t(L_{u}+N)) .

PROOF: Multiplying (1) by u^{2k-1} ; k=1,2 , \ldots , and integrating over \Omega

we obtain (to simplify notation the arguments (t, x) or (t,\cdot) will be neg-
lected):

\int u_{t}u^{2k-1}dx=\int\sum_{i,j}(a_{ij}u_{xj})_{xi}u^{2k-1}dx+\int fu^{2k-1}dx .

The components are then transformed and estimated in the following way:

\int u_{t}u^{2k-1}dx=\frac{1}{2k}\frac{d}{dt}\int u^{2k}dx ,

\int\sum_{i,j}(a_{ij}u_{xj})_{x_{i}}u^{2k-1}dx=-\int_{\partial\Omega}u^{2k-1}\frac{\partial u}{\partial N}ds

- \frac{2k-1}{k^{2}}\int\sum_{i,j}a_{ij}(u^{k})_{x_{i}}(u^{k})_{Xj}dx\leq-\frac{2k-1}{k^{2}}a_{0}\int\sum_{i}[(u^{k})_{xi}]^{2}dx ,

because of (4) and the constraints of the boundary conditions. Adding
and subtracting, the last component will be estimated, with the use of the
inequality |a|^{2k-1}\leq a^{2k}+a^{2k-2} and the Cauchy inequality, as follows:

\int f(t, x, u, u_{x})u^{2k-1}dx\leq L_{x}\int\sum_{i}|u_{xi}u^{2k-1}|dx

+L_{u} \int u^{2k}dx+N\int|u^{2k-1}|dx

\leq\frac{L_{x}}{k}\int\sum_{i}|(u^{k})_{xi}u^{k}|dx+L_{u}\int u^{2k}dx

+N \int(u^{2k}+u^{2k-2})dx\leq\frac{L_{x}\epsilon_{2}}{2k}\int\sum_{i}[(u^{k})_{xi}]^{2}dx
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+[ \frac{L_{x}n}{2\epsilon_{2}k}+L_{u}+N]\int u^{2k}dx+N\int u^{2k-2}dx .

Hence the resulting estimate takes the form ( \overline{C}:=|\Omega|^{1/k}) :

(18) \frac{1}{2k}\frac{d}{dt}\int u^{2k}dx\leq\frac{1}{k}[-\frac{2k-1}{k}a_{0}+\frac{L_{x}\epsilon_{2}}{2}]\int\sum_{i}[(u^{k})_{xi}]^{2}dx

+[ \frac{L_{x}n}{2\epsilon_{2}k}+L_{u}+N]\int u^{2k}dx+N\overline{C}^{2}(\int u^{2k}dx)^{\frac{k-1}{k}}

where the relation between the L^{2k-2} and L^{2k} norms of u has been used.

Noting that for k=1,2,\ldots we have 1 \leq\frac{2k-1}{k}\leq 2 , we fix \epsilon_{2}=\epsilon_{2}^{0} := \frac{2a_{0}}{L_{X}} , such

that

- \frac{2k-1}{k}a_{0}+\frac{L_{x}\epsilon_{2}^{0}}{2}\leq 0 , k=1,2,\ldots ,

to obtain the differential inequality for functions y_{k}(t):= \int u^{2k}dx :

(20) \frac{d}{dt}y_{k}(t)\leq 2k[\frac{L_{x}^{2}n}{4a_{0}k}+L_{u}+N]y_{k}(t)

+2kN\overline{C}^{2}(y_{k}(t))^{\frac{k-1}{k}}

Solving (20) we obtain:

(21) y_{k}^{1/k}(t) \leq[y_{k}^{1/k}(0)+\frac{\beta_{k}}{\alpha_{k}}(1-\exp(-\frac{\alpha_{k}}{k}t))]\exp(\frac{\alpha_{k}}{k}t)

with

(22) \alpha_{k}=2k[\frac{L_{x}^{2}n}{4a_{0}k}+L_{u}+N] , \beta_{k}=2kN\overline{C}^{2} .

The limit passage with kto+\infty in (21) and (22) leads to the final esti-
mate (18) of Lemma 2.

We define \tau_{1} to be given by the condition:

(23) [m_{1}^{2}+ \frac{N}{L_{u}+N}(1-exp( \tau_{1}(L_{u}+N) )) ]\exp(2\tau_{1}(L_{u}+N))=M_{1}^{2} .

From now on we will restrict our considerations to the time interval
[0, T_{1}] with T_{1} := \min \{ T_{0} ; \tau_{1}\} . The proof of Lemma 2 is finished.

We are now able to give the a priori estimate of the time derivative
u_{t}(t,\cdot) in L^{2n+2}(\Omega) . As shown in (5), both the first and second a priori
estimate are sufficient to estimate also the space gradient u_{x} of u .



Local solvability of semilinear parabolic equations 489

LEMMA 3: {Second a priori estimate). With the assumptions of The-
orem 1 we have an estimate:

(24) ( \int u_{t}^{2n+2}dx)^{2}\leq[r^{2}+\frac{\beta}{\alpha}( 1- \exp(-\frac{2\alpha t}{n+1}))]\exp(\frac{2\alpha t}{n+1}) ,

where the constants \alpha and \beta are defined in (28) and r:=||L(u_{0})|_{t=0}||_{2n+2} .

Proof: The proof is exactly similar to that of Lemma 2. Since we
must, in practice, differentiate (1) with respect to t , and the second deriv-
ative u_{tt} does not necessarily exist, we will study instead the difference
quotients. Let us put, for a fixed at the moment h>0 and t+h\leq T_{1} :

u_{h}(t, x):=h^{-1}(u(t+h, x)-u(t, x)) .

Subtracting (1) written for t from (1) written for t+h and multiplying by
h^{-1} . we get

(25) u_{ht}= \sum_{i,j}(a_{ij}u_{x_{j}})_{xih}+h^{-1}(f|_{t+h}-f|_{t})

where f|_{s} :=f(s, x, u(s, x), u_{x}(s, x)) . Multiplying (25) by u_{h}^{2n+1} and inte-
grating over \Omega :

(26) \frac{1}{2n+2}\frac{d}{dt}\int u_{h}^{2n+2}dx=\int\sum_{i,j}(a_{ij}u_{x_{j}})_{hx_{i}}u_{h}^{2n+1}dx

+ \int h^{-1}(f|_{t+h}-f|_{t})u_{h}^{2n+1}dx .

The right hand side components are transformed as follows:

\int\sum_{i,j}(a_{ij}u_{x_{j}})_{hx_{i}}u_{h}^{2n+1}dx=-\int_{\partial\Omega}[\frac{\partial u}{\partial N}]_{h}u_{h}^{2n+1}ds

- \int\sum_{i,j}(a_{ij}u_{x_{j}})_{h}(u_{h}^{2n+1})_{x_{i}}dx

\leq-\int\sum_{i,j}[a_{ijh}(t, x)u_{x_{j}}(t+h, x)+a_{ij}(t, x)u_{hx_{J}}(t, x)](u_{h}^{2n+1})_{x_{i}}dx

=- \frac{2n+1}{(n+1)^{2}}\int\sum_{i,j}a_{ij}(u_{h}^{n+1})_{xi}(u_{h}^{n+1})_{xj}dx

- \frac{2n+1}{n+1}\int\sum_{i,j}a_{ijh}u_{x_{j}}(t+h, x)u_{h}^{n}(u_{h}^{n+1})_{xi}dx

\leq-\frac{2n+1}{(n+1)^{2}}a_{0}\int\sum_{i}[(u_{h}^{n+1})_{x_{i}}]^{2}dx+J ,

where

J := \frac{2n+1}{n+1}A\sum_{i}||(u_{h}^{n+1})_{x_{i}}||_{2}||u_{h}^{n}||\frac{2n+2}{n}(\sum_{j}||u_{Xj}(t+h,\cdot)||_{2n+2}) .
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In the last estiamte the H\"older inequality ( \frac{1}{2}+\frac{n}{2n+2}+\frac{1}{2n+2}=1) , condi-

tion (4) and the non-negativity of the boundary integral were used. Then
from (5) it follows that:

\sum_{j}||u_{x_{j}}(t,\cdot)||_{\infty}\leq C (right hand side of (5)),

hence J will be estimated using the inequality (a+b+c)^{2}\leq 3(a^{2}+b^{2}+c^{2})

and the Cauchy inequality as stated:

J \leq\frac{2n+1}{n+1}A\sum_{i}||(u_{h}^{n+1})_{x_{i}}||_{2}||u_{h}^{n}||_{\frac{2n+2}{n}\cross}

\cross C[\delta(||u_{t}(t+h,\cdot)||_{2n+2}+NC)+C_{\delta}||u(t+h,\cdot)||_{\infty}]

\leq\frac{2n+1}{n+1}A\{\frac{\epsilon_{3}}{2}\sum_{i}||(u_{h}^{n+1})_{x_{i}}||_{2}^{2}+\frac{3}{2\epsilon_{3}}||u_{h}^{n}||_{\frac{2n+22}{n}\cross}

\cross C^{2}[\delta^{2}(||u_{t}(t+h,\cdot)||_{2n+2}^{2}+N^{2}C^{2})+C_{8}^{2}M_{1}^{2}]\} ,

provided that t+h\leq T_{1} . Adding and subtracting, the last component in
(26) is estimated using the Cauchy and |a|^{2n+1}\leq a^{2n+2}+a^{2n} inequalities, as
follows:

\int h^{-1}(f|_{t+h}-f|_{t})u_{h}^{2n+1}dx\leq L_{t}\int|u_{h}|^{2n+1}dx

+L_{u} \int u_{h}^{2n+2}dx+L_{x}\int\sum_{i}|u_{hx_{i}}u_{h}^{2n+1}|dx

\leq\frac{L_{x}\epsilon_{4}}{2(n+1)}\int\sum_{i}[(u_{h}^{n+1})x_{i}]^{2}dx+[L_{t}+L_{u}+\frac{L_{x}n}{2(n+1)\epsilon_{4}}]\int u_{h}^{2n+2}dx

+L_{t} \int u_{h}^{2n}dx .

The resulting estimate integrated over (0, s) with s\in(0, T_{1}-h)(s arbi-
trary), takes the form:

(27)

\frac{1}{2}[\int u_{h}^{2n+2}(s, x)dx-\int u_{h}^{2n+2}(0, x)dx]

\leq\int_{0}^{s}\{[-\frac{2n+1}{n+1}a_{0}+(2n+1)A\frac{\epsilon_{3}}{2}+\frac{L_{x}\epsilon_{4}}{2}]\int\sum_{i}[(u_{h}^{n+1})_{x_{i}}]^{2}dx

+(2n+1) \frac{2AC^{2}}{2\epsilon_{3}}[\delta^{2}||u_{t}(t+h,\cdot)||_{2n+2}^{2}+N^{2}C^{2}\delta^{2}+C_{\delta}^{2}M_{1}^{2}]||u_{h}^{n}||_{\frac{2n+22}{n}}

+[L_{t}+L_{u}+ \frac{L_{x}n}{2(n+1)\epsilon_{4}}](n+1)\int u_{h}^{2n+2}dx+L_{t}(n+1)\int u_{h}^{2n}dx\}dt .

Let us take \epsilon_{3}=\epsilon_{3}^{0}

:= \frac{a_{0}}{(2n+1)A} , \epsilon_{4}=\epsilon_{4}^{0}
:= \frac{a_{0}}{L_{x}} . Since \frac{3}{2}\leq\frac{2n+1}{n+1}\leq 2 for n
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=1,2,\ldots , then the first square bracket on the right side of (27) becomes
non-positive. Passing with h to 0^{+} in (27) (with \epsilon_{i}=\epsilon_{i}^{0} , i=3,4), using the

relation between the L^{2n} and L^{2n+2} norms and denoting z(t):=

\int u_{t}^{2n+2}(t, x)dx ,

(28 a) \alpha:=\frac{3}{2a_{0}}(2n+1)^{2}A^{2}C^{2}\delta^{2}+(L_{t}+L_{u})(n+1)+\frac{L_{x}^{2}n}{2a_{0}} ,

(28 b) \beta:=C^{2}[\frac{3}{2a_{0}}(2n+1)^{2}A^{2}C^{2}(N^{2}C^{2}\delta^{2}+C_{8}^{2}M_{1}^{2})+L_{t}(n+1)] ,

we obtain from (27) an integral inequality of the Bihari type:

(29) z(s) \leq z(0)+2\int_{0}^{s}\{\alpha z(t)+\beta z^{\frac{n}{n+1}}(t)\}dt .

The solution of (29) for the explicit form of z is given by:

(30) ||u_{t}(t, \cdot)||_{2n+2}^{2}\leq||u_{t}(0,\cdot)||_{2n+2}^{2}\exp(\frac{2\alpha t}{n+1})+\frac{\beta}{\alpha}[\exp(\frac{2\alpha t}{n+1})-1] .

The quantity u_{t}(0, x) in (30) will be found from (1) with t=0(u is
smooth enough to do so), hence:

r=||u_{t}(0,\cdot)||_{2n+2}=||Pu_{0}|_{t=0}+f(0,\cdot,u_{0},(u_{0})_{x})||_{2n+2} .

The proof of Lemma 3 is completed.
We are now able to determine the time T introduced in the formula-

tion of Theorem 1. Noting (5) let \tau_{2} be given by the condition:

(31) \delta\{[r^{2}\exp(\frac{2\alpha\tau_{2}}{n+1})+\frac{\beta}{\alpha}(\exp(\frac{2\alpha\tau_{2}}{n+1})-1)]^{\frac{1}{2}}+NC\}

+C_{8}(right hand side of (18) with t=\tau_{2} ) =M_{2} ,

and let T:= \min\{T_{1} ; \tau_{2}\} . We are now sure that for t\in[0, T] the solution
u remains in X. Hence all the considerations of Lemmas 1, 2, 3 remain
valid for t in [0, T] . The proof of Theorem 1 is completed.

Local existence.

The a priori estimates of Theorem 1 are sufficient to establish the
existence of the uniformly H\"older continuous solution to (1)-(3) . Since the
proof is relatively standard (c. f. [6, 7]) only an outline will be given.

THEOREM 2. Under the Assumptions taken, there exists a unique
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C^{1+\frac{y}{2}2+\nu([0}, , T]\cross\overline{\Omega}) solution u of (1)-(3) {here lJ := \min\{\gamma;\frac{1}{2}\frac{\mu}{\mu+1}\} , \mu\geq

\frac{1}{2} as in (32) ) .

PROOF: We start with the proof of uniqueness which is the result of
the local Lipschitz continuity of f with respect to u and u_{x} . Let us
denote w :=u-v, for two different solutions u , v of (1)-(3) (satisfying
the same initial-boundary condition) remaining in X for t\leq T Then
from (1):

(32) w_{t}= \sum_{i,j}(a_{ij}(t, x)w_{x_{j}})_{x_{i}}+f(t, x, u, u_{x})-f(t, x, v, v_{x}) .

Multiplying (32) by w , integrating over \Omega and by parts, adding and
subtracting, we have:

\frac{1}{2}\frac{d}{dt}\int w^{2}dx=-\int_{\partial\Omega}w\frac{\partial w}{\partial N}ds-\int\sum_{i,j}a_{ij}(t, x)w_{x_{i}}w_{x_{j}}dx

+ \int[f(t, x, u, u_{x})-f(t, x, u, v_{x})+f(t, x, u, v_{x})-f(t, x, v, v_{x})]wdx

\leq-a_{0}\int\sum_{i}(w_{x_{i}})^{2}dx+L_{x}\int\sum_{i}|w_{x_{i}}w|dx+L_{u}\int w^{2}dx

\leq[-a_{0}+\frac{\epsilon_{5}L_{x}}{2}]\int\sum_{i}(w_{x_{i}})^{2}dx+[\frac{L_{x}}{2\epsilon_{5}}+L_{u}]\int w^{2}dx .

With the use of the Gronwall inequality, the last estimate with \epsilon_{5}=\epsilon_{5}^{0} :=
\frac{2a_{0}}{L_{\chi}} finishes the proof of uniqueness of u .

We proceed to an outline of the proof of existence. Below we show
how the a priori extimates of Theorem 1 will be strengthened to get a
priori estimates of u and u_{x} in the H\"older space of the argument (t, x) .
The proper proof of existence is then standard ([13, 6]).

Consider (1), with fixed t\in(0, T] , as a linear elliptic equation:

(33) \sum_{i,j}a_{ij}(t, x)u_{x_{j}x_{i}}+\sum_{j}(\sum_{i}a_{ij}(t, x)_{x_{i}})u_{x_{j}}

=u_{t}-f(t, x, u, u_{x})=:\overline{f}(t, x) .

For t\in(0, T] , as a consequence of (18), (24) and (5), the function \tilde{f}(t,\cdot)

belongs to L^{2n+2}(\Omega) (with the norm estimated uniformly with respect to t ).
Also, the coefficients a_{ij}(t,\cdot) . \sum_{i}a_{ij}(t,\cdot)_{\chi_{i}} are smooth enough for the Calder-

on-Zygmund estimates ([14, 17, 21, 6]) to be satisfied:

(34) ||u(t,\cdot)||_{2,2n+1}\leq c_{3}(||\tilde{f}(t,\cdot)||_{2n+1}+||u(t,\cdot)||_{1})\leq const .

for t\leq T Next, as a consequence of the Sobolev imbeddings we also
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have:

(35) ||u_{x_{i}}(t,\cdot)||_{c^{\mu}(\overline{\Omega})}\leq c_{4}||u_{x_{i}}(t,\cdot)||_{2,2n+1} , i=1 , \ldots , n ,

for \mu:=1-\frac{n}{2n+1}(\geq\frac{1}{2}) . In particular, u_{x_{i}}(t,\cdot)\in C^{\frac{1}{2}}(\overline{\Omega}) with the norm

bouded independently of t\in[0, T] . As a consequence of Lemma 3 u_{t}(t,\cdot)

\in L^{2n+2}(\Omega) , with the norm bounded uniformly for t\in[0, T] , hence as a
consequence of Theorem 1 we have the a priori estimates:

(36) ||u_{x_{i}}||_{Y}\leq const. , ||u_{t}||_{Y}\leq const. ,

Y:=L^{\infty}([0, T] ; L^{2n+2}(\Omega)) . Using the Sobolev theorems once more (now
in R^{n+1} ), as a result of (36) and (18) we verify that ( Y\subset L^{2n+2}([0, T]\cross\Omega))

(37) u\in C^{\frac{1}{2}\frac{1}{2}}’([0, T]\cross\overline{\Omega}) ,

then from Lemma 3. 1, Chapt. II of [13], (35) and (37) it follows that:

(38) u_{x_{i}}\in C^{\frac{\omega}{2},\omega}([0, T]\cross\overline{\Omega}) with \omega:=\frac{1}{2}\frac{\mu}{\mu+1},

in particular u_{x_{i}}\in C^{\frac{1}{12}\frac{1}{6}}’([0, T]\cross\overline{\Omega}) . Due to (37) and (38) the nonlinear
term f in (1) will be considered as the uniformly H\"older continuous
“ right hand side ” The standard use of Schauder type estimates for lin-
ear parabolic equations (c. f. [10, p. 65] for the Dirichlet condition, [12] for
the third boundary condition) and the Leray-Schauder Principle [14, 13, 6]

shows the existence of a C^{1+\frac{\nu}{2},2+\nu}([0, T]\cross\overline{\Omega}) solution of (1)-(3) for \nu:=
\min\{\gamma, \omega\} . The proof of Theorem 2 is completed.

To show further possible consequences of the a priori estimates of
Theorem 1 we formulate, for the case of the autonomous equation, the
following observation concerning the life time of solutions in a neighbor-
hood of the trivial solution.

LEMMA 4: If the coefficients a_{ij}, f(i, j=1, \ldots, n) are time indepen-
dent {then the limitation t\leq T_{0} in the definition of X is not necessary)
and the trivial solution for (1)-(3) is admitted, there are solutions to our
problem different from \overline{u}\equiv 0 (and close to \overline{u} for t=0) having arbitrarily
long life time T_{ex} .

PROOF: Let us note that the time \tau_{1} in (23) is a decreasing function
of m_{1} and provided that N=0 (since \overline{u} is a solution to (1)-(3) ) we could
find solutions corresponding to sufficiently small m_{1} , with arbitrarily long

\tau_{1} . Also it follows from (31) that the time \tau_{2} is a decreasing function of
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r . Again, if \beta=0 (which is true (28) if A=L_{t}=0 , that is if a_{ij} , f are
time independent) we could, for fixed M_{2} , find solutions with arbitrarily
long \tau_{2} (and r correspondingly small). Since T= \min\{\tau_{1} ; \tau_{2}\} , the proof is
finished.

Comments.

As was shown in [6] our technique is applicable to the problems with
a_{ij} depending also on u , and [7] to systems of parabolic equations. Our
estimates of the time T(<T_{ex})(23) , (31) are fully effective at least for
equations with a_{ij} time independent (/, j=1,\ldots, n) and f independent on
u_{x} , as shown by the examples which follow. When the nonlinearity f
depends on the space gradient of u or a_{ij} depend on t , there are some
constants (K in (ii), c in (iii), c_{1} , c_{2} in (9), Cs,\infty in (11)) characterizing the
domain \Omega and also boundary conditions (3a) or (3b), which in the general
case had to be found (compare [15] and related) before giving our
etimates. This is the reason why we restrict our examples here to simpler
problems. Taking the cited constants (or rather the synthetic constant C_{8}

in (6) ) for the actual domain \Omega and boundary condition, the life time T_{ex}

will be estimated using (23) and (31) with (28) for general equation (1).
There is an interesting observation made in [19] that the H\"older con-

tinuity in x of the right hand side of the linear parabolic equation is not
necessary for the existence of the classical solution. Nowhere in our
paper, except at the end of the proof of Theorem 2, has the H\"older conti-
nuity of a_{ij} , a_{ij\chi_{i}} , f with respect to x been used. Also the H\"older con-
stants for a_{ij} , a_{ijx_{i}} , f were not defined anywhere. Thus it would appear to
be possible that at least the assumption of the H\"older continuity of f with
respect to x is not necessary for local existence of the classical solution of
(1)-(3) .

Examples.

We close our paper giving examples of estimates of the life time T_{ex}

for solutions to simple parabolic equations. Here Lemma 1 is effectively
used.

EXAMPLE 1. Consider the problem:

(39) u_{t}=\Delta u+u|u|^{p-1} , p>1

(40) u(0, x)=u_{0}(x) in \Omega , u=0 on \partial\Omega .

The second order term has constant coefficients and the nonlinearity is
gradient independent. Thus only L_{u} is non-zero and hence taking m_{1}=10 ,
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M_{1}=10^{4} we have L_{u}=p10^{4(p-1)} and the time T is given by formula (23):

10^{2}\exp(2Tp10^{4(p-1)})=10^{8}-

from which

(41) T= \frac{31n10}{p10^{4(p-1)}}<T_{ex} .

Here the restriction t\leq T_{0} is not necessary as the coefficients are time in-
dependent, the same being true for their Lipschitz constants.

EXAMPLE 2. Consider the problem similar to that studied by J. W.
Bebernes :

(42) u_{t}=\Delta u+(1+t^{3})\exp(u) , x\in\Omega ,

with the condition (40). We must now limit t in advance in order to have
uniform (inside X) Lipschitz constants; set t\leq T_{0}=1 . Put m_{1}=1 , M_{1}=

10^{3} , so that L_{u}=2\exp(1000) , N=1 . The formula (23) then reads:

\{1+[2\exp(1000)+1]^{-1} [1-\exp(-2 T(2\exp(1000)+1))]\}\cross

\cross\exp[2T(2\exp(1000)+1)]=10^{6} .

hence

(43) T=[2(2\exp(1000)+1)]^{-1} ln ( \frac{10^{6}+(2\exp(1000)+1)^{-1}}{1+(2\exp(1000)+1)^{-1}})<T_{ex} .
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