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On solvability of systems of
convolution equations in K_{M}’
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Abatract

In this note we show that if the m\cross m system of convolution equa-
tions in K_{M}’ has a solution, then the Fourier transform of the determinant
of the matrix of coefficients is slowly decreasing.

Introduction and statement of the results

We will use the notations and results of our paper [1]. By O_{c}’(K_{M}’m ;
K_{M}’m) we denote the space of all m\cross m matrices S=(S_{ij}) , whose entries
are convolution operators in K_{M}’(i. e. S_{ij}\in O_{c}’(K_{M}’\cdot,K_{M}’), 1\leq i, j\leq m) . For U
=(u_{1}, u_{2,\ldots-}u_{m})^{t}\in K_{M}^{\prime m} and \phi=(\varphi_{1}, \varphi_{2}, \ldots \varphi_{m})^{t}\in K_{M}^{m}, the duality
bracket< U, \phi>is defined by

<U , \phi>=\sum_{j=1}^{m}<u_{j}, \varphi_{j}> .

For S=(S_{ji}) , we denote by S^{t} the matrix (\check{S}_{ji}) , where \check{S}_{ji} is the symmetry
of S_{ji} with respect to the origin. The letter F, as well as \wedge , will denote
the Fourier transform. In [1], the problem of giving necessary and
sufficient conditions for a determined system of convolution equations in
K_{M}’,; the space of distributions of rapid growth, was considered. The main
result of [1] is the following

THEOREM 1. Let S\in O_{c}’(K_{M}^{\prime m};K_{M}^{\prime m}), among the following properties of
S, the implications ( a)arrow(b) - (c)-(b) hold.
(a) det(\hat{S}^{t}) satisfy the following growth condition

(I) There exist positive constants C, N and A so that

|z| \leq A\Omega^{-1}[\log(2+|\xi|)]\sup|\det(\hat{S}^{t})(z+\xi)|\geq C(1+|\xi|)^{-N} . \xi\in R^{n} .

z\in C^{n}
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where \Omega is the Young dual of M.
(b) The map S^{t}*\phiarrow\phi from S^{t_{*}}K_{M}^{m} into K_{M}^{m} is continuous.
(c) S*K_{M}’m=K_{M}’m .

It was conjectured in [1] that the implication ( b)arrow(a) of the above
theorem is true. The aim of this note is to prove that the above conjec-
ture is true. More precisely, the main result of the note is the following

THEOREM 2. Let S\in O_{c}’(K_{M}’m;K_{M}’ m) , if S*K_{M}’m=K_{M}’m then det(\hat{S}^{t})

is slowly decreasing, i. e. it satisfies the growth condition ( I) .

As an intermediate step to the proof of theorem 2 we need the follow-
ing.

THEOREM 3. Let S\in O_{c}’(K_{M}’m;K_{M}’m) , if S*K_{M}’m=K_{M}’m then S^{t}*K_{M}’m=

K_{M}’m\wedge

Proofs of the resluts.

PROOF OF THEOREM 3. Since S*K_{M}’m=K_{M}’m there exists an m\cross m

matrix E=iEtj) ;E_{ij}\in K_{M}’ , such that S*E=I , where I is the m\cross m diag0-
nal matrix with all entries on the main diagonal equal to \delta . Moreover,
the entire function \det(FS) does not vanish identically. Using Cramar’s
rule it follows that \det(S)*E_{ij}=T_{ij}\in O_{c}’ . By taking the Fourier transform
of both sides of the equality one gets

det (F(S)) . F(E_{ij})=F(T_{ij}) . Hence F(E_{ij})= \frac{F(T_{ij})}{\det(F(S))}

is a meromorphic function. Moreover, we have
F(E)=(F(E_{ij}))= \frac{1}{\det(F(S))} . adj (F(S)) ,

Hence

det (F( \check{E}^{t}))=\frac{1}{\det(F(\check{S}))^{m}} det (adj (F(\check{S}))

= \frac{1}{\det(F(\check{S}))^{m}} . det (F( \check{E}^{t}))^{m-1}=\frac{1}{\det(F(\check{S}))} ,

where adj denotes the adjoint of the matrix.
Since (b) and (c) of theorem 1 are equivalent, to prove the result we

need to show that the map \check{S}*\phiarrow\phi from \check{S}*K_{M}^{n} into K_{M}^{n} is continuous.
Since K_{M}^{n} is metrizable it suffices to show that it takes bounded sets into
bounded sets. By Mackey’s theorem the strongly bounded and weakly
bounded subsets of K_{M}^{m} are the same. Thus we need to show that if B is a
weakly bounded subset of \check{S}*K_{M}^{m} , then the set A=\{\phi\in K_{M}^{n} : \check{S}*\phi\in B\} is
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weakly bounded in K_{M}^{m} . Since S*E=I one has F(S)F(E)=F(I) , the
identity matrix, and adj (F(E)) . adj (F(S))=F(I) . Since the entries of
F(E)=(F(E_{ij})) are meromorphic functions, we can calculate adj (F(E))
as matrix of meromorphic functions. Moreover, all the steps in the fol-
lowing set of equalities are well defined. For any U\in K_{M}’m and \phi\in A one
has

(1) <U,\phi>=<F(\check{U}) , F(\phi)>=<adj(F(E))adj(F(S))F(\check{U}) ,
F(\phi)>

=<adj(F(E)) (adj (F(S)) . F(S) ) (F(E)F(\check{U}) ,
F(\phi)> ;

=<adj(F(E))(\det(F(S)). F(I))(F(E)F(\check{U})) ,
F(\phi)> ;

=<\det(F(S))I . (adj (F(E)) . F(E) ) . F(\check{U}) , F(\phi)> :
=<(\det(F(\check{S}^{t}). F(I))(\det F(\check{E}^{t})F(\check{U})), F(\phi)>,\cdot

=<adj(F(\check{S}^{t}))\det(F(\check{E}^{t}))F(\check{U}) , F(\check{S})F(\phi)> ;

=< \frac{1}{\det(F(\check{S}^{t}))}adj (F(\check{S}^{t}))F(\check{U}) , F(\check{S})F(\phi)> ;

=<F(\check{E}^{t})F(\check{U}) , F(\check{S})F(\phi)> :
=<\check{E}^{t}*U,\check{S}*\phi>

Since U\in K_{M}’m and \check{S}*K_{M}^{n} is metrizable it follows that \check{E}^{t}*U is in (\check{S}*K_{M}^{m})’

Now, since B is weakly bounded in \check{S}*K_{M}^{m} there exists a constant C which
depends on U (and on S) such that

(2) |<U , \phi>|=|<\check{E}^{t}*U,\check{S}*\phi>|\leq C ,

for all \phi in A. This completes the proof of the theorem.
We remark that since \check{S}*K_{M}^{m} is a proper subspace of K_{M}^{m} , its dual (\check{S}*

K_{M}^{n})’ will include elements which are not in K_{M}’m .

REMARK 1: Although the entries of adj (F(E)) are not necessarily
elements in (F(K_{M}))’, all the steps in the set of equalities (1) are well
deffined. If one can prove that the entries of adj (F(E)) are in (F(K_{m}))’

the proof of theorem 2 will follow immediately.

PROOF OF THEOREM 2. The idea of the proof is similar to that in
the proof of the implication (b)arrow(a) of theorem 1 of [1]. Thus we will
not repeat the unnecessary details. The proof is by contradiction. Sup-
pose det (F(S^{t})) is not slowly decreasing. Then for every j\in N there
exists \xi_{j}\in R^{n} so that |\xi_{j}|>e^{j} , and
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(3) |z|\leq SuP_{y}^{|\det(F(S^{t}))(z+\xi_{J})|<(1+|\xi_{j}|)^{-j}}a_{J}
’

z\in C^{n}

where A_{j}=e^{2j} and \alpha_{j}=\Omega^{-1}(\log(2+|\xi_{j}|)) . For each j\in N we let k_{j} be the
greatest integer less than or equal to log \alpha_{j}+1 . Let \varphi be a C^{\infty}- function
with compact support in the unit ball, \varphi\geq 0 and \check{\varphi}(0)=1 . For j\in N , we
define the function \varphi j by \varphi_{j}(\xi)=\alpha_{j}\varphi(\alpha_{j}\xi) , and the function \psi_{j}^{1} by

\phi_{j}^{1}(\xi)=e^{i<\xi_{j},\xi>}(\varphi_{j}*\varphi_{j}*\ldots*\varphi_{j})(\xi) ,

where the convolution product is being taken k_{j} times. Define the func-
tion \phi_{j} by \phi_{j}=\phi_{j}^{1}*\phi_{j}^{1} , hence supp \phi_{j} is contained in the ball B(0,2) . Thus

\hat{\phi}_{j}^{1}(z+\xi_{j})=(\hat{\varphi}_{j}(z))^{k_{j}},\hat{\varphi}_{j}(z)=\hat{\varphi}(\frac{z}{\alpha_{j}}) ,

\hat{\phi}_{j}^{1}(z+\xi_{j})=(\hat{\varphi}j(\frac{z}{\alpha_{j}}))^{k_{j}} , and \hat{\phi}_{j}^{1}(\xi_{j})=(\hat{\varphi}(0))^{k_{j}}=1 ,

(see [1] p. 203).

Now assume S*K_{M}’m=K_{M}’m . Then, form theorem 2 one has S^{t}*K_{M}’m=

K_{M}’m i . e . there exists an m\cross m matrix F=(F_{ij}) , F_{ij}\in K_{M}’, such that S^{t}*

F=I. Thus with \tau_{\xi}\check{\Psi}_{j}=(\tau_{\xi}\check{\phi}_{j}, 0,0,\ldots,0)^{t}-one has

(4) \phi_{j}(\xi)=<\delta , \tau_{\xi}\check{\phi}_{j}>=<I , \tau_{\xi}\check{\Psi}_{j}> :
=<F(\check{S}^{t}*\check{F}) , F(\tau_{\xi}\check{\Psi}_{j})> ;
=<F(\check{F}) , F(\check{S}) . F(\tau_{\xi}\check{\Psi}_{j})> ;
=<F(\check{F})F(I) , F(\check{S}) . F(\tau_{\xi}\check{\Psi}_{j})> :
=<F(\check{F}) (adj (F\check{F}) ) adj(F(\check{S}^{t})) , F(\check{S})F(\tau_{\xi}\check{\Psi}_{j})> :
=<\det(F(\check{F})) . F(I)adj(F(\check{S}^{t})) , F(\check{S})F(\tau_{\xi}\check{\Psi}_{j})> ;
=<adj(F(\check{S}^{t}))(\det(F(\check{F}))F(I)) , F(\check{S}) . F(\tau_{\xi}\check{\Psi}_{j})> ;
=<\det(F(\check{F}))F(I) , adj (F(\check{S}))F(\check{S})) . F(\tau_{\xi}\check{\Psi}_{j})> :
=<\det(F(\check{F}))F(I) , det (F(\check{S})) . F(\tau_{\xi}\check{\Psi}_{j})>

Recall that F(F)= \frac{1}{\det(F(S^{t}))} . adj (F(S^{t})) , and in all of the above steps

the entries of F(\check{F}) are considered as meromorphic functions. Hence adj
(F(\check{F})) and \det(F(\check{F})) are well defined. Moreover, the duality brackets
in all of the above steps are well defined. For example, in the last duality
bracket, since \det(F\check{S})) is not identically zero it follows that det (F\check{F}))

is equal to \frac{1}{\det(F(\check{S}))} , which is a continuous linear functional on the sub-
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space det (F(\check{S})) . F(K_{M}) of F(K_{M}) .
From (4) it follows that there exists a positive integer k and a posi-

tive constant A_{k} such that

(5) |\phi_{j}(\xi)|\leq A_{k}\omega_{k} (det (F(\check{S})) . F(\tau_{\xi}\Psi_{j}) )
\leq A_{k}\omega_{k} (det (F(S^{t})F(\tau_{\xi}\phi_{j})) .

Inequality (5) corresponds to the first estimate in inequality (12) of [1].

By repeating the estimates (12), (13), (14) and (15) of [1], it follows
that |\phi_{j}(\xi)|\leq e^{-j} for large j . Hence

(6) 1=| \hat{\phi}_{j}(\xi_{j})|\leq\int|\phi_{j}(\xi)|d\xi\leq 4^{n}e^{-j} .

As j goes to infinity, inequality (6) gives the contradiction which
completes the proof of the theorem.

REMARK 2. The question which has been addressed in this note
appeared also in [2], where systems of convolution equations in D_{\omega}’ were
studied, D_{\omega}’ is the space of Beurling generalized distributions. In that
case S=(S_{ij}) , S_{ij}\in E_{\omega}’ the space of convolution operators in D_{\omega}’ . We
remark that theorems 2 and 3 of this note remain valid if the space K_{M}’ is
replaced by D_{\omega}’ . To prove the analogue of theorem 3, let K_{j} be a
sequence of compact subsets of R^{mn} such that K_{j} is contained in the inte-
rior of K_{j+1} , and the union of all the K_{j} ’s is R^{mn} . Since S*D_{\omega}^{m} is the
inductive limit of the subspaces S*D_{\omega}^{m}(K_{j}) , it suffices to show that the map
S*\phiarrow\phi from S*D_{\omega}^{m}(K_{j}) into D_{\omega}^{m}(K_{j}) is continuous. This could be car-
ried out exactly like the proof of theorem 3. To prove the analogue of
theorem 2, i . e . to show that if S*D_{\omega}^{m^{r}}=D_{\omega}^{m^{r}} then \det(F(S^{t})) is slowly
decreasing (see definition 2. 1 of [2]), we assume the contrary. Let the
sequence (\varphi_{j}) be as in the proof of the implication (c) =>(a) of theorem
2. 1 of [2]. We proceed as in the set of equalitie (4), then we establish
the following inequality which corresponds to inequality (5).

(7) |\varphi_{j}(x)|\leq A_{k}\rho_{k}(\det(F(S^{t}))F(\tau_{x}\varphi_{j}))

\leq A_{k}\rho_{k}(\tau_{-X}(\det(S^{t}*\varphi_{j})) ,

where k is a positive integer and A_{k} is some positive constant. Inequaltiy
(7) corresponds to inequality (13) of [2]. We proceed as in the proof of
the implication (c) =>(a) of theorem 2. 1 of [2]. The contradiction
which comes out completes the proof of the assertion.
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