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Positive radial solutions of semilinear elliptic equations
of order 2m in annular domains

Robert DALMASSO
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Abstract. We study the existence of positive radial solutions of (-1)^{m}

\Delta^{m}u=g(|x|)f(u) in an annulus with Dirichlet boundary conditions. In par-
ticular L^{\infty} a priori bounds are obtained.

1. Introduction

In this paper we investigate the existence of positive radial solutions
of the semilinear elliptic equation

(1. 1) (-1)^{m}\Delta^{m}u=g(|x|)f(u) in \Omega(a, b)

(1. 2) u= \frac{\partial u}{\partial\nu}=\ldots=(\frac{\partial}{\partial\nu})^{m-1}u=0 on \partial\Omega(a, b)

where 0<a<b<+\infty , \Omega(a, b) denotes the annulus \{x\in R^{n} ; a<|x|<b\}(n\geq

2) , \frac{\partial}{\partial\nu} is the outward normal derivative and m is a positive integer.

When m=1 problem (1. 1), (1. 2) has been intensively studied in recent
years (see e.g. [1]-[3] , [6], [10], [12], [15]). In most papers, the shooting
method was used to establish the existence of positive radial solutions. In
contrast the result of [1] was obtained by a variational method and the
use of a priori estimates, while in [15] an expansion fixed point theorem
was applied. The case m=2 was treated in [8] using a priori estimates
and well-known properties of compact mappings taking a cone in a
Banach space into itself (see [9]). However the technique used in [8] to
obtain the a priori estimates does not extend to apply to higher order
equations.

Our main result is the following L^{\infty} bound for positive radial solutions
of problem (1. 1), (1. 2).

THEOREM 1. 1. Let f and g satisfy the following hypotheses:
(H_{1})f : [0, +\infty)- R is a continuous function,
(H2) g:[a, b]arrow[0, +\infty) is a continuous function such that g\not\equiv 0

in [a, b] ,
(H3) \lim_{uarrow+\infty}f(u)/u=+\infty .
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Then there exists M>0 such that

||u||_{\infty}\leq M

for all positive radial solutions u\in C^{2m}(\overline{\Omega(a,b})) of (1. 1), (1. 2).

Under some additional assumptions on the function f, we can use the0-
rem 1. 1 to establish the existence of a positive radial solution of problem
(1. 1), (1. 2).

THEOREM 1. 2. Let f and g satisfy (H_{1})-(H_{3}) . Assume moreover
(H_{4})f(u)\geq 0 for u>0 ,

( H_{5})\lim_{uarrow 0}f(u)/u=0 .

Then problem (1. 1), (1. 2) possesses at least one positive radial solution
u\in C^{2m}(\overline{\Omega(a,b})) .

Since we are interested in positive radial solutions, the problem under
consideration reduces to the one-dimensional boundary value problem

(1. 3) (-1)^{m}\Delta^{m}u(t)=g(t)f(u(t)) , t\in(a, b)

(1. 4) u^{(j)}(a)=u^{(j)}(b)=0 , j=0 , \ldots , m-1
where \Delta denotes the polar form of the Laplacian, i.e. :

\Delta=t^{1-n}\frac{d}{dt}(t^{n-1}\frac{d}{dt}) .

In this paper our new key ingredient is the Green’s function of the
linear problem corresponding to (1. 3), (1. 4).

In our proofs we shall make an intensive use of the one dimensional
maximum principle and the related Hopf boundary lemma [14], which we
recall:

THEOREM A ([14] p. 2). Suppose u\in C^{2}((a, b))\cap C([a, b]) satisfies the
differential inequality

u’+g(x)u’\geq 0 for a<x<b
with g a bounded function. If u\leq M in (a, b) and if the maximum M of
u is attained at an interior point of {a,b), then u\equiv M.

THEOREM B ([14] p. 4). Suppose u\in C^{2}((a, b))\cap C^{1}([a, b]) is a non-
constant function which satisfies the differential inequality u’+g(x)u’\geq 0 in
(a, b) and suppose g is bounded on eve\uparrow y closed subinterval of (a, b) . If
the maximum of u occurs at x=a and g is bounded below at x=a, then
u’(a)<0 . If the mmimum occurs at x=b and g is bounded above at x=
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b, then u’(b)>0 .

REMARK 1. 1. Theorems 1. 1 and 1. 2 can be easily extended to han-
dle more general nonlinearities of the type f(|x|, u) .

Our paper is organized as follows. In Section 2 we give a maximum
principle for higher order equations and we describe the special shape of
nontrivial solutions of (1. 3), (1. 4) when f\geq 0 and g\geq 0 . We also recall
some simple inequalities of the Green’s function of the linear problem cor-
responding to (1. 3), (1. 4). In Section 3 we prove Theorem 1. 1. Finally
Theorem 1. 2 is proved in Section 4.

2. Preliminaries

The homogeneous Dirichlet problem

\{

\Delta^{m}v=0 in (a, b)
v^{(j)}(a)=v^{(j)}(b)=0 , j=0, \ldots , m-1

has only the trivial solution. Then it is well-known (see e.g. [13] p. 29)
that the operator (-1)^{m}\Delta^{m} with Dirichlet boundary conditions has one and
only one Green’s function G_{m}(t, s) .

THEOREM 2. 1. G_{m}(t, s)>0 for a<t, s<b .

PROOF. Since (-1)^{m}\Delta^{m} is a disconjugate operator on [a, b] , this fol-
lows readily from a theorem obtained in [7] (Theorem 11 p. 108).

THEOREM 2. 2. Let u\in C^{2m}([a, b]) be such that

\{

(-1)^{m}\Delta^{m}u\geq 0 in (a, b)
u^{(j)}(a)=u^{(j)}(b)=0 , j=0, ... , m-1 .

Assume that u\not\equiv 0 . Then :

(i) u>0 on (a, b) .
(ii) u^{(m)}(a)>0 and (-1)^{m}u^{(m)}(b)>0 .
(iiia) Assume m=1 . Then there exist d_{1} , d_{2}\in(a, b) such that d_{1}\leq

d_{2} , u’>0 on [a, d_{1}) , u’<0 on (d_{2}, b] and u’\equiv 0 on [d_{1}, d_{2}] .
(iiib) Assume m\geq 2 . Then there exists c\in(a, b) such that u’>0 on

(a, c) and u’<0 on (c, b) .

PROOF. Theorem 2. 1 gives (i). Then (ii) is a simple consequence of
a proposition obtained in [7] (Proposition 13 p. 109). We now prove (iiia).
(ii) when m=1 gives u’(a)>0 and u’(b)<0 . Let d_{1} (resp. d_{2} ) be the first
(resp. the last) zero of u’ on (a, b) . If d_{1}<d_{2} Theorems A and B imply
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that u is constant on [d_{1}, d_{2}] . The proof of (iiib) requires some lemmas.

LEMMA 2. 1. Let m\geq 2 and 1\leq j\leq m-1 . Then \Delta^{j}u is neither non-
negative nor nonpositive in [a, b] .

PROOF. Suppose first that j=1 . If \Delta u\geq 0 on [a, b] , Theorem A
implies u\leq 0 on [a, b] , a contradiction with (i). If \Delta u\leq 0 on [a, b] , (i)
and Theorem B imply that u’(a)>0 and u’(b)<0 , again a contradiction.
Now if 2\leq j\leq m-1 (and necessarily m\geq 3 ), suppose for instance that
(-1)^{j}\Delta^{j}u\geq 0 in [a, b] . Define w=-\Delta u . Then we have

(-1)^{j-1}\Delta^{j-1}w\geq 0 in [a, b]

and

w(a)=w’(a)=\ldots=w^{(j-2)}(a)=0 , w(b)=w’(b)=\ldots=w^{(j-2)}(b)=0 .

Since by Theorem 2. 1 (with m=j-1) the Green’s function of (-1)^{j-1}\Delta^{j-1}

for the Dirichlet problem in [a, b] is positive we get w=-\Delta u\geq 0 in [a, b] ,

which is impossible by what we have just seen. Clearly, the case
(-1)^{j}\Delta^{j}u\leq 0 in [a, b] can be handled in the same way. The proof of the
lemma is complete.

LEMMA 2. 2. \Delta^{m-1}u does not vanish throughout any subinterval of
[a, b] .

PROOF. Since u>0 on (a, b) , the lemma is proved when m=1 .
Now assume m\geq 2 . Suppose that there exist \alpha , \beta\in[a, b] such that a\leq\alpha<

\beta\leq b and w=(-1)^{m-1}\Delta^{m-1}u\equiv 0 on [\alpha, \beta] . By Lemma 2. 1 we have \alpha>a or
\beta<b . Let t\in[a, \alpha)\cup(\beta, b] . If w(t)>0 and t\in[a, \alpha) (resp. t\in(\beta, b])

Theorems A and B imply that w’(\alpha)<0 (resp. w’(\beta)>0), a contradiction.
Thus w\leq 0 on [a, b] and this is impossible by Lemma 2. 1.

LEMMA 2. 3. Assume m\geq 2 . Then there exist r, s\in(a, b) such that r
<s, \Delta u>0 on (a, r)\cup(s, b) and \Delta u<0 on (r, s) .

PROOF. Suppose first m=2. By (ii) \Delta u(a)>0 and \Delta u(b)>0 . By
Lemma 2. 1 there exists x\in(a, b) such that \Delta u(x)<0 . Define r (resp. s)

to be the first (resp. the last) zero of \Delta u on (a, b) . Then Theorem A
implies that \Delta u<0 on (r, s) . Now assume m\geq 3 . It follows from Lemma
2. 2 that \Delta u does not vanish throughout any subinterval of [a, b] . There-
fore we may apply Proposition 13 of [7] (p. 109) and conclude that \Delta u has
at most two zeros on (a, b) . Using Taylor’s formula and (ii) we can
show that there exists \eta>0 such that \Delta u>0 on (a, a+\eta)\cup(b-\eta, b) .
Then the result follows with the aid of Lemma 2. 1.
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Now we can prove (iiib). Lemma 2. 3, (i), Theorem A and Theorem
B imply that u’>0 on (a, r] and u’<0 on [s, b) . Let to (resp. t_{1} ) be the
first (resp. the last) zero of u’ in (a, b) . Then r<t_{0}\leq t_{1}<s . Suppose that
t_{0}<t_{1} . Since by Lemma 2. 3 u is not constant on [t_{0}, t_{1}] , Theorems A and
B imply that either u’(t_{0})>0 or u’(t_{1})<0 , a contradiction. Thus t_{0}=t_{1}=c

and (iiib) is proved. The proof of the theorem is complete.

Now we recall some simple inequalities obtained in [4] for the Green’s
function of the linear problem corresponding to (1. 3), (1. 4). Below \Delta^{*}

denotes the adjoint of \Delta .
Let v , v^{*} . w , w^{*}\in C^{2m}([a, b]) be defined by the following relations:

(2. 1)

’
\Delta^{m}v=\Delta^{*m}v^{*}=0 in (a, b)
v^{(j)}(a)=v^{*(j)}(b)=0 , j=0 , \ldots , m-1
v^{(j)}(b)=v^{*(j)}(a)=0 , j=0 , \ldots , m-2 (if m\geq 2 )

\backslash v^{(m-1)}(b)=(-1)^{m-1} , v^{*(m-1)}(a)=1

and

(2. 2)

/\Delta^{m}w=\Delta^{*m}w^{*}=0 in (a, b)
w^{(j)}(a)=w^{*(j)}(b)=0 , j=0, \ldots , m-2 (if m\geq 2 )
w^{*(j)}(a)=w^{(j)}(b)=0 , j=0 , \ldots , m-1

\backslash w^{(m-1)}(a)=1 , w^{*(m-1)}(b)=(-1)^{m-1} .

The functions defined in (2. 1), (2. 2) are positive on (a, b) because of
the disconjugacy of the operators \Delta^{m} and \Delta^{*m} . Applying Corollary 3. 2 of
[4] and Theorem 2. 1 we get

THEOREM 2. 3. On the upper triangle a\leq t\leq s\leq b,

0 \leq G_{m}(t, s)\leq\frac{1}{v^{(m)}(a)}v(t)v^{*}(s)

and on the lower triangle a\leq s\leq t\leq b,

0 \leq G_{m}(t, s)\leq\frac{1}{|w^{(m)}(b)|}w(t)w^{*}(s) .

We easily deduce the following corollary.

COROLLARY 2. 1. There exists C>0 such that

0\leq G_{m}(t, s)\leq C(s-a)^{m}(b-s)^{m} for a\leq t, s\leq b .

3. Proof of Theorem 1. 1

We shall prove that there exists M>0 such that
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(3. 1) ||u||_{\infty}\leq M

for all positive solutions u\in C^{2m}([a, b]) of (1. 3), (1. 4).
Define

\rho(t)=(t-a)^{m}(b-t)^{m} for a\leq t\leq b .

Let \varphi\in C^{2m}([a, b]) be the solution of the boundary value problem

\{

(-1)^{m}\Delta^{m}\varphi=g\rho in (a, b)
\varphi^{(j)}(a)=\varphi^{(j)}(b)=0 , j=0, \ldots , m-1 .

By Theorem 2. 2 \varphi>0 in (a, b) and there exist c_{1}>0 and c_{2}>0 such that

(3. 2) c_{1}\rho\leq\varphi\leq c_{2}\rho on [a, b] .

By (H_{3}) , there exist \lambda>c_{1}^{-1} and a positive constant c_{3} such that

(3. 3) f(u)\geq\lambda u-c_{3} for u\geq 0 .

Now let u\in C^{2m}([a, b]) be a positive solution of (1. 3), (1. 4). If we multi-
ply equation (1. 3) by t^{n-1}\varphi and integrate by parts 2m times we obtain

(3. 4) \int_{a}^{b}t^{n-1}\varphi gf(u)dt=\int_{a}^{b}t^{n-1}\rho gudt .

From (3. 2), (3. 3) and (3. 4) we deduce that

\int_{a}^{b}t^{n-1}\rho gudt\geq\lambda\int_{a}^{b}t^{n-1}\varphi gudt-c_{4}\geq\lambda c_{1}\int_{a}^{b}t^{n-1}\rho gudt-c_{4}

for some positive constant c_{4} , hence

(3. 5) \int_{a}^{b}t^{n-1}\rho gudt\leq\frac{c_{4}}{\lambda c_{1}-1} .

It easily follows that there is a positive constant c_{5} such that

(3. 6) \int_{a}^{b}t^{n-1}\rho g|f(u)|dt\leq c_{5}

Using Corollary 2. 1 and (3. 6) we get

u(t)= \int_{a}^{b}G_{m}(t, s)g(s)f(u(s))ds\leq Ca^{1-n}c_{5} for t\in[a, b]

and (3. 1) is proved.

4. Proof of Theorem 1. 2

We shall prove that problem (1. 3), (1. 4) has at least one positive
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solution u\in C^{2m}([a, b]) . The proof makes use of a fixed point theorem
originally due to Krasnosel’skii [11] and Benjamin [5]. Here we use the
following modified version.

PROPOSITION 4. 1 ([9] p. 56). Let C be a cone in a Banach space X
and \Phi : Carrow C a compact map such that \Phi(0)=0 . Assume that there exist
numbers 0<r<R such that

(i) u\neq\theta\Phi(u) for \theta\in[0,1] and u\in C such that ||u||=r,

(ii) there exists a compact map F:\overline{B_{R}}\cross[0, +\infty)-arrow C (where B_{\rho}=\{u\in

C;||u||<\rho\}) such that F(u, O)=\Phi(u) for ||u||=R, F(u, x)\neq u for ||u||=R

and 0\leq x<\infty and F(u, x)=u has no solution u\in B_{R} for x\geq x_{0} . Then if
U=\{u\in C;r<||u||<R\} , one has:

i_{C}(\Phi, B_{R})=0 , i_{C}(\Phi, B_{r})=1 , i_{C}(\Phi, U)=-1 ,

where i_{C}(\Phi, W) denotes the fixed point index of \Phi on W. In particular \Phi

has a fixed point in U.

Now let X denote the Banach space C([a, b]) endowed with the sup
norm. Define the cone

C=\{u\in C([a, b]):u\geq 0\} .

For (u, x)\in C\cross[0, +\infty) we define

F(u, x)(t)= \int_{a}^{b}G_{m}(t, s)g(s)f(u(s)+x)ds for t\in[a, b]

and

\Phi(u)=F(u, 0) .

We shall show that the hypotheses of Proposition 4. 1 are satisfied. By
Theorem 2. 1, (H2) and (H_{4})F maps C\cross[0, +\infty) into C. Since G_{m} is
continuous, it is well-known that F is compact. (H_{1}) , (H_{4}) and (H_{5})

imply that f(0)=0, hence \Phi(0)=0 .
Let \alpha\in(0, c_{2}^{-1}) , where c_{2} is the constant in (3. 2). By (H_{5}) we can

choose r>0 such that f(s)\leq\alpha s for 0\leq s\leq r . Suppose that there exist \theta\in

[0, 1] and u\in C with ||u||_{\infty}=r such that u=\theta\Phi(u) . Then (-1)^{m}\Delta mu=

\theta gf(u) and u satisfies (1. 4). By Theorem 2. 2 (i) u>0 on (a, b) . With
the notations of Section 3 we have

\int_{a}^{b}t^{n-1}\rho gudt=\int_{a}^{b}t^{n-1}u(-1)^{m}\Delta^{m}\varphi dt=\int_{a}^{b}t^{n-1}\varphi(-1)^{m}\Delta^{m}udt

= \theta\int_{a}^{b}t^{n-1}\varphi gf(u)dt\leq\alpha c_{2}\theta\int_{a}^{b}t^{n-1}\rho gudt
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< \int_{a}^{b}t^{n-1}\rho gudt

and we reach a contradiction because the integrals are nonzero. Thus
condition (i) of Proposition 4. 1 is satisfied.

By (H_{3}) , there exist \lambda>c_{1}^{-1} where c_{1} is the constant in (3. 2) and x_{0}>0

such that

(4. 1) f(s+x)\geq\lambda(s+x)\geq\lambda s for s\geq 0 and x\geq x_{0}>0 .

We shall show that

(4. 2) F(u, x)\neq u for all u\in C and x\geq x_{0} .

Indeed, suppose that there exist u\in C and x \geq x_{0} such that F(u, x)=u .
Then (-1)^{m}\Delta^{m}u(t)=g(t)f(u(t)+x) for t\in[a, b] and u satisfies (1. 4). If
u\equiv 0 then f(x)=0, a contradiction to (4. 1). Thus u\^uO. Therefore u>0
by Theorem 2. 2 (i). Now with the notations of the proof of (3. 1) we
have

\int_{a}^{b}t^{n-1}\rho(t)g(t)u(t)dt=\int_{a}^{b}t^{n-1}\varphi(t)g(t)f(u(t)+x)dt

\geq\lambda\int_{a}^{b}t^{n-1}\varphi(t)g(t)u(t)dt

\geq\lambda c_{1}\int_{a}^{b}t^{n-1}\rho(t)g(t)u(t)dt

> \int_{a}^{b}t^{n-1}\rho(t)g(t)u(t)dt

and this yields a contradiction because the integrals are nonzero. Thus
(4. 2) holds and the third condition of (ii) is satisfied.

Now we note that the constant in (3. 1) can be chosen independently
of the parameter x\in[0, x_{0}] for each fixed x_{0}\in(0, +\infty) if we consider posi-
tive solutions of (1. 3), (1. 4) for the family of nonlinearities f_{\chi}(t)=f(t+x) ,
t\geq 0 . Thus we can find a constant R>r such that

(4. 3) F(u, x)\neq u for all x\in[0, x_{0}] and u\in C with ||u||_{\infty}=R .

Therefore (4. 2) and (4. 3) prove the second condition of (ii).

Thus we may apply Proposition 4. 1 to conclude that \Phi has a
nontrivial fixed point u\in C . By Theorem 2. 1, (H2), (H_{4}) and the prop-
erties of the Green’s function any nontrivial fixed point of \Phi in C yields a
positive solution of (1. 3), (1. 4) in C^{2m}([a, b]) . The proof of the theorem
is complete.
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