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1. Introduction

The qualitative theory of foliations has been developed in the last two
decades and many results were obtained. For example, see Hector
[Hec2] and Cantwell-Conlon [C-C]. But the developments were obtained
essentially only for codimension one C^{2} foliations. In Nishimori [Nisi],
the author began a study of the qualitative properties of foliations of
higher codimension and obtained some experimental results in the form of
a qualitative theory of similarity pseudogroups. After [Nisi], this area
had two papers: Matsuda [Mat] and Matsuda-Minakawa [M-M]. The
setting taken in these works is as follows.

In order to set our goal clearly, we take a classical theorem of the
qualitative theory of codimension one foliations as a model for our
intended theory and try to find an analogy of this theorem. The theorem
taken is the following.

Theorem A (Sacksteder’s Theorem, see Sacksteder [Sac]). Let \mathscr{F} be a
codimension one C^{2} foliation of a closed manifold M, and \mathscr{M}\subset M an excep-
tional minimal set with respect to \mathscr{F} Then there exists a leaf F of \mathscr{F}

contained in \mathscr{M} such that F has a contracting element in its linear
holonomy group LHol(F).

Dynamical systems can be considered as foliations of higher codimen-
sion and they are known to show generally chaotic behaviour. In the
present stage, we want to avoid such complications. So we decide to
treat only foliations with transverse similarity structures. For the simplic-
ity, we consider (holonomy) pseudogroups instead of foliations. In this
setting, the author obtained an analogy of Sacksteder’s Theorem. Then
Matsuda and Minakawa got a stronger result in the same setting, which is
an analogy of the following.

Theorem B (Hector [Hecl] in the analytic case, Duminy in the general
case). In the same situation as in Theorem A, a semi-proper leaf can be
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taken as F in the conclusion of Theorem A .

The purpose of this paper is to improve the formulations in the papers
[Nisi], [Mat] and [M-M] and to give some remarks obtained after those
papers. This paper is organized as follows. In \S 2, we introduce a notion
Sacksteder system which is an analogue of the exceptional minimal set in
codimension one foliations. We study fundamental properties of Sack-
steder’s systems, and we propose a fundamental conjecture which is anal0-
gous to the above Sacksteder’s Theorem. We give some affirmative evi-
dences for the conjecture. In \S 3, we generalize the notion orbits with bub-
bles in [Nisl] to orbits almost with bubbles, and prove a theorem anal0-
gous to Sacksteder’s Theorem. In \S 4, we study how the points in a Sack-
steder system are scattered in the euclidean space. We have a new phe-
nomenon which appears only in higher dimension (that is, dimension
greater than one). In \S 5, we introduce a class of Sacksteder systems
(called convexly self-similar), which prove to be affirmative examples for
a conjecture proposed in \S 4.

2. Formulations and the main conjecture

We want to work in the simplest setting where an analogy of Sack-
steder’s Theorem could exist. So we introduce the following definitions.
Denote by \Gamma_{q,+}^{s1m,*} the set of orientation preserving homeomorphisms f
between nonempty bounded convex open subsets of R^{q} which is the restric-
tion of a similarity transformation \hat{f} of R^{q} . For a map f, we denote by
D(f) (respectively R(f) ) the domain (respectively the range) of f. Put
\Gamma_{q,+}^{s{\rm Im}}=\Gamma_{q,+}^{sim,*}\cup\{id_{R^{q}}, id_{\emptyset}\} , where id_{R^{q}} is the identity map of R^{q} and id_{\emptyset} is the
unique transformation of the empty set \emptyset .

Definition 2. 1 A subset \Gamma_{0}\subset\Gamma_{q,+}^{s1m,*} is called symmetric if, for each f:U
arrow V belonging to \Gamma_{0} , the inverse f^{-1} : Varrow U belongs to \Gamma_{0} .

Definition 2. 2 A subset \Gamma\subset\Gamma_{q,+}^{s1m} is called a pseudogroup if (a) id_{R^{q}}

belongs to \Gamma . (b) for each f, g\in\Gamma the composition fg:g^{-1}(D(f)\cap R(g))-arrow

f(D(f)\cap R(g)) belongs to \Gamma and (c) for each f\in\Gamma the inverse f^{-1} belongs
to \Gamma For a subset \Gamma_{0}\subset\Gamma_{q,+}^{s1m,*} . the pseudogroup generated by \Gamma_{0} means the
smallest one containing \Gamma_{0} and is denoted by \langle\Gamma_{0}\rangle .

Definition 2. 3 Fix a pseudogroup \Gamma\subset\Gamma_{q,+}^{s1m} . For x\in R^{q} , the subset
\Gamma(x):=\{f(x):f\in\Gamma, x\in D(f)\} is called an orbit of x . A subset A\subset R^{q} is
called invariant if for each x\in A the orbit \Gamma(x) is contained in A.

Naturally we have the usual properties in the qualitative theory: the



Some remarks in a qualitative theory of similarity pseudogroups 163

complement, the interior and the closure of an invariant subset are invar-
iant, and the union and the intersection of a family of invariant subsets
are invariant, etc.

Now we formulate our object precisely, which is an analogue of an
exceptional minimal set in codimension one foliations.

Definition 2. 4 A Sacksteder system is a pair \mathscr{M}=(\Gamma_{0}, \mathscr{L}) of an infinite
compact nowhere dense subset \mathscr{M} of R^{q} and a finite symmetric subset \Gamma_{0}\subset

\Gamma_{q,+}^{s1m,*} satisfying

(a) \mathscr{M}\subset\Omega:=\bigcup_{h\in\Gamma 0}D(h) ,
(b) \mathscr{M}\cap\delta D(h)=\emptyset for each h\in\Gamma_{0} ,
(c) h(\mathscr{M}\cap D(h))=\mathscr{M}\cap R(h) for each h\in\Gamma_{0} ,
(d) for each x\in \mathscr{M} the orbit \Gamma(x) is dense in \mathscr{M} .

where we put \delta A:=\overline{A}- Int A for a subset A\subset R^{q} and \Gamma is the pseud0-
group generated by \Gamma_{0} . We call R^{q} the ambient space of \mathscr{L} .

Remark 2. 5. In the above situation, the condition (d) implies that \mathscr{M} is
a minimal set of the pseudogroup \Gamma : that is, \mathscr{M} is a minimal element of
the set of nonempty closed invariant subsets of R^{q} partially ordered by the
inclusion\subset . In the case q>1 , the pseudogroup \Gamma may have minimal sets
of various Hausdorff dimensions between 0 and q . (In the case q=1 , an
exceptional minimal set is defined as a nowhere dense minimal set contain-
ing more than one orbit.) Here we consider a nowhere dense minimal set
as a rough generalization of an exceptional minimal set in the case q=1 .
(As we see later, we need a further condition to obtain an analogy of
Sacksteder’s Theorem). Since an invariant subset of a pseudogroup corre-
sponding to an exceptional minimal set of a codimension one foliation is
known to be a Cantor set, the assumption in Definition 2. 4 that \mathscr{M} is
infinite compact nowhere dense is natural for our purpose. The other con-
ditions (a), ... . (d) can be justified in the similar way. In the case q=1 ,
the underlying set \mathscr{M} of a Sacksteder system \mathscr{L} is a Cantor set as we see
later.

As a substitute of the holonomy group of a leaf of a foliation, we
consider the stabilizer defined in the following.

Definition 2. 6 Let \mathscr{L}=(\Gamma_{0}, \mathscr{M}) be a Sacksteder system and denote by \Gamma

the pseudogroup generated by \Gamma_{0} . For a point x\in \mathscr{M} , put

Stab(x) := {f\in\Gamma:x\in D(f) and f(x)=x },

and we call it the stabilizer of \Gamma at x . A point x\in \mathscr{M} is called a focus of
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the system \mathscr{S} if Stab(x) contains a contraction.

Before we go ahead, we give an observation on the topology of the
underlying subset \mathscr{M} of a Sacksteder system \mathscr{L} .

Proposition 2. 7 Let \mathscr{L}=(\Gamma_{0}, \mathscr{M}) be a Sacksteder system. Then
(1) The underling set \mathscr{M} is perfect.
(2) If q=1 or \mathscr{M} is totally disconnected, then \mathscr{M} is a Cantor set.
(3) If x\in \mathscr{M} is a focus of the system \mathscr{L} , then the singleton \{x\} is a

connected component of \mathscr{M}

Proof. (1) Since \mathscr{M} is infinite and compact, there exists a sequence x_{1} ,
x_{2} , x_{3} , \ldots of pairwise distinct points in \mathscr{M} which converges to some point a
\in \mathscr{M} . We may suppose that a\neq x_{n} for all n\in N . This implies that a=
\lim_{narrow\infty}x_{n}\in \mathscr{M}-\{a\} . Take a point y=f(a)\in\Gamma(a) , where f\in\Gamma and a\in

D(f) . For sufficiently large n\in N the point xn is contained in D(f) and
the points f(x_{n}) converges to f(a) , which implies that y=f(a) belongs to
\overline{\mathscr{M}-\{y\}} . For a point z\in \mathscr{M}-\Gamma(a) , we see that

z\in\overline{\Gamma(a)}\subset\overline{\mathscr{M}-\{z\}}

since \Gamma(a) is dense in \mathscr{M}. Therefore \mathscr{M} is perfect.
(2) If q=1 , then \mathscr{M} is totally disconnected since \mathscr{M} is a nowhere

dense (that is, not locally dense) subset of R . If \mathscr{M} is totally discon-
nected, then \mathscr{M} is a Cantor set since \mathscr{M} is also compact and perfect (see
[Wil, Theorem 30. 3] ) .

(3) Let x\in \mathscr{M} be a focus of \mathscr{L} , and C the connected component of \mathscr{M}

containing the point x . By definition, we have a contracting element f\in

\Gamma such that x\in D(f) and f(x)=x . It is easy to see that \mathscr{M}\cap\delta D(f)=\emptyset ,

and furthermore that for every n\in N the subset \delta f^{n}(D(f)) does not inter-
se t \mathscr{M} If follows that C\subset f^{n}(D(f)) for every n\in N . Since f is a con-
traction, the intersection \bigcap_{n=1}^{\infty}f^{n}(D(f)) equals to the singleton \{x\} . there
fore C=\{x\} . \square

The main conjecture in our theory is the following.

Conjecture 2. 8 A Sacksteder system \mathscr{L}=(\Gamma_{0}, \mathscr{M}) has a focus if the
underlying subset \mathscr{M} is a Cantor set.

Remark 2. 9. (1) Consider the case q=1 . The C^{2} pseudogroup version
of the original Sacksteder’s Theorem implies that every Sacksteder system
\mathscr{L} has a focus. Thus Conjecture 2. 8 is true in this case.

(2) Concerning the connectivity of \mathscr{M} . we know the following facts.
In [Nisi, Example 3. 1(2) ], we construct a Sacksteder system \mathscr{L}=(\Gamma_{0}, \mathscr{M})
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such that \mathscr{S} has no focus and \mathscr{M} is connected (actually q=2 and \mathscr{M} is a
circle). This means that, in order to prove that a Sacksteder system \mathscr{L}

has a focus, we must suppose some type of disconnectedness on \mathscr{M} .
Although we suppose here that \mathscr{M} is a Cantor set, Proposition 2. 7(3) may
suggest that the right condition can happen to be that \mathscr{M} has a connected
component consisting of one point.

We have examples supporting Conjecture 2. 8: Williams [Wil], Hut-
chinson [Hut] and Hata [Hat] imply the following.

Proposition 2. 10 Let \mathscr{L}=(\Gamma_{0}, \mathscr{M}) be a Sacksteder system. Suppose that
there exists a subset \Gamma_{1}\subset\Gamma_{0} satisfying that (a) each h\in\Gamma_{1} is a contraction,
(b) \mathscr{M}\subset D(h) for each h\in\Gamma_{1} and (c) \mathscr{M}\subset\bigcup_{h\in\Gamma_{1}}h(\mathscr{M}) . Then

\mathscr{M}=C1(\bigcup_{n=1}^{\infty}\bigcup_{h_{1},\cdots,hn\in\Gamma_{1}}Fix(h_{1}\ldots h_{n})) ,

which implies that the system \mathscr{L} has a focus.
It is easy to construct a Sacksteder system satisfying the condition in

Proposition 2. 10.

Example 2. 11. Take a closed disk D in R^{q} and a finite number of dis-
joint closed disks D_{1} , \ldots

D_{n}\subset Int(D) . For each i=1 , \ldots : n , take a similar-
ity transformation \overline{h}_{i} with \overline{h}_{i}(D)=D_{i} and put h_{i}=\overline{h}_{i}|_{Int(D)} : Int(D)-arrow

Int(A). Let \Gamma_{1}=\{h_{1_{ }}, \ldots . h_{n}\} , \Gamma_{0}=\{h_{1_{ }},\ldots h_{n}, h_{1_{ }}^{-1},\ldots.h_{\overline{n}}^{1}\} and \mathscr{M}=

C1(\bigcup_{k=1}^{\infty}\bigcup_{g_{1},\cdots,g_{k}\in\Gamma_{1}}Fix(g_{1}\ldots g_{k})) . In the case n\geq 2 the pair \mathscr{L}=(\Gamma_{0}, \mathscr{M}) is a
Sacksteder system having the desired property.

3. Orbits almost with bubbles

We are going to introduce a notion of orbits almost with bubbles as a
generalization of the notion of orbits with bubbles in Nishimori [Nisi],
which causes the existence of a focus. This means that we will replace
the condition in Conjecture 2. 8 that \mathscr{M} is a Cantor set by the existence of
a focus and prove an analogy of Sacksteder’s Theorem. We consider that
the result cast light on Conjecture 2. 8 from a side.

Throughout this section, we fix a Sacksteder system \mathscr{L}=(\Gamma_{0}, \mathscr{M}) and
denote by \Gamma the pseudogroup generated by \Gamma_{0} .

Definition 3. 1 For a point x\in \mathscr{M} , denote by G(x) the graph whose ver-
tices are the points of the orbit \Gamma(x) and whose edges between two ver-
tices y , z\in\Gamma(x) are triplets e=(y, h, z) such that h\in\Gamma_{0} , y\in D(h) and h(y)
=z. We identify naturally the edges e=(y, h, z) and c^{-1}=(z, h^{-1}, y) in
the topological space G(x) . We call G(x) the Cayley graph of the system
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\mathscr{L} at x .

Definition 3. 2 For a point x\in \mathscr{M}, the orbit \Gamma(x) is called almost with
bubbles if there exists a compact subset K\subset G(x) and for each y\in

\Gamma(x)-K there exists a nonempty bounded convex open subset B_{y} (called

a bubble at y) of \Omega:=\bigcup_{h\in\Gamma 0}D(h) satisfying the following conditions:

(a) y\in\delta B_{\mathcal{Y}} where \delta B_{\mathcal{Y}}
:=\overline{B_{\mathcal{Y}}} -Int(BY),

(b) B_{y}\cap B_{z}=\emptyset if y\neq z ,
(c) if e=(y, h, z) is an edge contained in G(x)-K with y\neq z , then B_{\mathcal{Y}}

\subset D(h) and h(B_{y})=B_{z} .

If the empty set can be taken as K, the orbit \Gamma(x) is called with bubbles.

The papers N ishimori [ Nisl] , Matsuda [Mat] and M atsuda
-Minakawa [M-M] treated orbits with bubbles and obtained almost thor-
ough results on them. The purpose of this section is to generalize the
main result on orbits with bubbles in [Nisl] and to prove the following.

Theorem 3. 3 Let \mathscr{L}=(\Gamma_{0}, \mathscr{M}) be a Sacksteder system. Suppose that for
some point x\in \mathscr{M} the orbit \Gamma(x) is almost with bubbles. Then the system

\mathscr{L} has a focus.
We make some preparations for the proof of Theorem 3. 3.
Herefter let \mathscr{L}=(\Gamma_{0}, \mathscr{M}) be a Sacksteder system.

Definition 3. 4 (1) Denote by W(\Gamma_{0}) the set of words with \Gamma_{0} as the
alphabet. In order to distinguish a word from a composition, we prefer to
write a word w\in W(\Gamma_{0}) in such a way as w=(h_{m_{ }},\ldots h_{1}) rather than w=
h_{m}\cdots h_{1} . In this way, we identify W(\Gamma_{0}) with the disjoint union
\coprod_{m=0}^{\infty}(\Gamma_{0})^{m}- where (\Gamma_{0})^{m} denotes the product of m-copies of \Gamma_{0} and (\Gamma_{0})^{0} is
the singleton consisting of the empty word ( ) .

(2) For w=(h_{m_{ }}, \ldots . h_{1})\in(\Gamma_{0})^{m}\subset W(\Gamma_{0}) , let g_{w}=h_{m}\cdots h_{1} . For the
empty word ( ) , let g()^{=id_{R^{q}}} .

The following proposition gives a description of elements of the
pseudogroup \Gamma generated by the symmetric subset \Gamma_{0} .

Proposition 3. 5 (1) If w\in W(\Gamma_{0}) , then g_{w}\in\Gamma_{r}

(2) The map \Phi : W(\Gamma_{0})arrow\Gamma defined by

\Phi(w)=g_{w} for all w\in W(\Gamma_{0})

is surjective.

Proof. (1) follows from the definition of pseudogroups. (2) follows
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from the assumption that \Gamma_{0} is symmetric. \square

Definition 3. 6 (1) For a word w\in W(\Gamma_{0}) , denote by |w| the word
length of w ; that is, |w|=m if w=(h_{m,\ldots-}h_{1})\in(\Gamma_{0})^{m} , and |w|=0 if w is
the empty word ( )\in(\Gamma_{0})^{0}

(2) For x , y\in R^{q} with y\in\Gamma(x) , put

d_{G}(x, y)= \min{ |w| : w\in W(\Gamma_{0}) , x\in D(g_{w}) and g_{w}(x)=y}.

Distinguish d_{G}(x, y) from the Euclidean distance ||x-y|| in R^{q} . Con-
sider the Cayley graph G(x) as a metric space such that each edges has
length 1. Then d_{G}(x, y) coincides with the distance of x and y in this
metric space G(x) .

Definition 3. 7 Let x , y\in R^{q} . A word w\in W(\Gamma_{0}) is called a path from x
to y if x\in D(g_{w}) and g_{w}(x)=y . If w satisfies |w|=d_{G}(x, y) in addition,
then w is called a short-cut from x to y .

Let w=(h_{m} , ... . h_{1})\in W(\Gamma_{0}) be a path from x to y . Then the triplet
(x, w, y) is considered as an edge path in the Cayley graph G(x) : that is,

(x, w, y)=(x, h_{1}, x_{1})(x_{1}, h_{2}, x_{2})\cdots(x_{m-1}, h_{m}, y)

where x_{i}:=h_{i}h_{i-1}\cdots h_{1}(x) . If w is a short-cut from x to y in addition,
then the edge path (x, w, y) is the shortest one from x to y in G(x) and
the points x , x_{1} , \cdots , x_{m-1} , y are pairwise distinct.

Notation 3. 8 For a point x\in R^{q} and a nonnegative integer n , denote by
D_{G}(x:n) (respectively C_{G}(x;n) , S_{G}(x;n) ) the subgraph of G(x) consist-
ing of the vertices y of G(x) with d_{G}(x, y)\leqq n (respectively d_{G}(x, y)\geqq n ,
d_{G}(x, y)=n) and edges of G(x) connecting such vertices.

Note that D_{G}(x : n) and S_{G}(x ; n) are finite subgraphs, C_{G}(x ; n) is
an infinite subgraph and they satisfy

D_{G}(x;n)\cup C_{G}(x:n)=G(x) , D_{G}(x;n)\cap C_{G}(x;n)=S_{G}(x:n) .

Hereafter suppose that for some point a\in \mathscr{M} the orbit \Gamma(a) is
almost with bubbles.

For sufficiently large N\in N , we can take D_{G}(a ; N-1) as K in
Definition 3. 2. This means that for each vertex x in C_{G}(a,\cdot N) there
exists a bubble B_{\chi} satisfying the conditions in Definition 3. 2. For exam-
ple, for each edge e=(x, h, y) in C_{G}(a:N) with x\neq y , we have B_{x}\subset D(h)

and h(B_{x})=B_{y} .
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Lemma 3. 9 There exists a sequence \{\mu_{n}\}_{n=N}^{\infty} of positive numbers such that
(1) \mu_{n}>\mu_{n+1} for all n\geqq N,

(2) \lim_{narrow\infty}\mu_{n}=0 ,
(3) if x is a vertex of S_{G}(a:n)(n\geqq N) , then diamB_{x}<\mu_{n} .

Proof Since the bubbles B_{x} are disjoint and their union is contained in
the bounded subset \Omega:=\bigcup_{h\in\Gamma_{0}}D(h) of R^{q} , it follows that \Sigma_{x\in Cc(x)}vol(B_{x})

<\infty . Note that every bubble B_{X} is similar to one of the finite bubbles
\{B_{y}\}_{y\in S_{G}(a,N)} because every vertex x\in C_{G}(a;N) is connected to some vertex
y\in S_{G}(a;N) by an edge path in C_{G}(a;N) . It follows that

\sum_{x\in C_{G}(a,N)}(diamB_{x})^{q}<\infty .

For n\geqq N , let

\delta_{n}=\sup\{diamB_{x} : x\in C_{G}(a ; n)\} ,

which is not infinity because

( \delta_{n})^{q}\leqq\sum_{x\in C_{G}(a,N)}(diamB_{x})^{q}<\infty .

Since the sequence \{\delta_{n}\}_{n\geq N} is weakly decreasing and has a lower bound 0,
there exists a limit \delta_{\infty}:=\lim_{narrow\infty}\delta_{n} . If \delta_{\infty}>0 , then there exists an infinite
number of x\in C_{G}(a:N) with diamB_{\chi}>\delta_{\infty}/2 , which contradicts the above
inequality. Hence \delta_{\infty}=0 . Now put \mu_{n}:=\delta_{n}+1/n for all n\geqq N . It is easy
to see that the sequence \{\mu_{n}\}_{n\geq N} satisfies the desired conditions. \square

The main point in our arguments is that we must always worry about
the domains of elements in the pseudogroup \Gamma . since the domains of com-
posed elements become usually the smaller if the more elements of \Gamma_{0} are
composed. We consider this problem now. First note that there is a posi-
tive number \epsilon such that for all x\in \mathscr{M} and for all h\in\Gamma_{0} with x\in D(h) the
\epsilon-neighborhood U(x;\epsilon):=\{z\in R^{q} : ||z-x||<\epsilon\} is contained in the domain
D(h) . This follows from the condition (b) in Definition 2. 4.

The following two lemmas are the key step to prove Theorem 3. 3.
Let \Delta:=\sup\{diamB_{x} : x\in C_{G}(a ; N)\} .

Lemma 3. 10 Let x\in S_{G}(a;N) . If w\in W(\Gamma_{0}) is a short-cut from x in
C_{G}(a:N) , then

U(x; \epsilon\cdot\frac{diamB_{X}}{\Delta})\subset D(g_{w}) .

Proof We proceed by an induction on m=|w| .
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(I) If m=1 , then h:=g_{w} is an element in \Gamma_{0} . Since diamB_{x}\leqq\Delta and
x\in D(h) , the above remark implies that

U(x: \epsilon\cdot\frac{diamB_{X}}{\Delta})\subset U(x:\epsilon)\subset D(h)=D(g_{w}) .

(II) Suppose that Lemma 3. 10 is satisfied for shortcuts of word
-length less than m. For a short-cut w=(h_{m^{ }},\cdots h_{1})\in W(\Gamma_{0}) from x , let
\hat{w}:=(h_{m-1}, \ldots, h_{1}) and \hat{g}:=g -. Note that \overline{w} is also a short-cut from x
and that \hat{g}(x)\in\chi\cap D(h_{m}) , which implies that U(\hat{g}(x);\epsilon)\subset D(h_{m}) . Note
also that \hat{g}(x)\neq h_{m}(\hat{g}_{(\chi\rangle})(=g_{w}(x)) , which implies that h_{m}(B_{\overline{g}(x)})=B_{gw(x)} and
the similitude ratio of h_{m} equals to diamB_{gw(x)}/diamB_{\overline{g}(x)} . By the induc-
tion hypothesis, it follows that U(x;\epsilon diamB_{x}/\Delta)\subset D(\overline{g}) and the follow-
ing computation has the meaning:

\hat{g}(U(_{X} _{:} _{\epsilon}\cdot\frac{diamB_{X}}{\Delta}))=U(\overline{g}(x) _{;} _{\epsilon}\cdot\frac{diamB_{x}}{\Delta}\cdot\frac{diamB_{\overline{g}(x)}}{diamB_{X}})

\subset U(\hat{g}(x) ; \epsilon)

\subset D(h_{m}) .

This implies that

U(_{X} _{;} _{\xi} \cdot\frac{diamB_{X}}{\Delta})\subset D(h_{m}\hat{g})=D(g_{w}) . \square

Lemma 3. 11 There exists a positive number \epsilon_{0} such that for all short
-cut w\in W(\Gamma_{0}) from a to a point in G_{G}(a;N) ,

U(a:\epsilon_{0})\subset D(g_{w}) .

Proof Denote by \mathscr{P} the set of all the short-cuts w\in W(\Gamma_{0}) from a to a
point in S_{G}(a;N) . Then \mathscr{P} is a finite set. Since the intersection

V := \bigcap_{w\in e^{g_{\overline{w}^{1}}(U(g_{w}(a) _{;} _{\epsilon}\cdot\frac{diamB_{gw(a)}}{\Delta}))}}

is an open subset in R^{q} containing a , there exists a positive number \epsilon_{0}

such that V_{0}=U(a;\epsilon_{0})\subset V , Now let w\in W(\Gamma_{0}) be a short-cut from a to
a point in C_{G}(a;N) . We can divide w to a composition of a path v from
a to a point x\in S_{G}(a:N) and a path u from x:w=uv. Note that v is a
short-cut from a and u is a short-cut from x . It follows that U_{x}:=

U(x ; \epsilon diam B_{x}/\Delta) \subset D(g_{u}) and V_{0}\subset V\subset g_{\overline{v}}^{1}( U_{x}) , hence that g_{v}(V_{0})\subset U_{x}\subset

D(g_{u}) . Therefore
U(a ; \epsilon_{0})=V_{0}\subset D(g_{u}g_{v})=D(g_{uv})=D(g_{w}) . \square
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Proof of Theorem 3. 3. Let \sigma := \max\{SR(g_{v}): v\in \mathscr{P}\} and \delta :=
\min\{diamB_{x} : x\in S_{G}(a;N)\} , where SR(g) means the similitude ratio of
g\in\Gamma Take n\geqq N in such a way that

\sigma\cdot\frac{\mu_{n}}{\delta}<\frac{1}{3}.

Since the orbit \Gamma(a) is dense in \mathscr{M} , there exists a point x\in\Gamma(a) such that
x\in U(a:1/3) and d_{G}(a, x)\geqq n . Take a short-cut w\in W(\Gamma_{0}) from a to x .
Divide w to a composition of a short-cut v from a to a point y\in S_{G}(a;N)

and a short-cut u from y to x . Since diamB_{y}\geqq\delta and diamBy <\mu_{n} , it
follows that

SR(g_{w})=SR(g_{u})\cdot SR(g_{v})=\frac{diamB_{x}}{diamB_{y}}\cdot SR(g_{v})

\leqq\frac{\mu_{n}}{\delta}\cdot\sigma\leqq\frac{1}{3} .

This implies that

g_{w}(U(a; \epsilon_{0}))\subset U(g_{w}(a):\frac{\epsilon_{0}}{3})\subset U(a;\frac{2}{3}\cdot\epsilon_{0}) .

Hence according to the Brouwer fixed point theorem, there exists a point
z\in U(a;2\epsilon_{0}/3) fixed by g_{w} . Since SR(g_{w})<1/3 , the element g_{w} is a con-
traction. This implies that

z= \lim_{karrow\infty}(g_{w})^{k}(a)\in\overline{\Gamma(a)}=\mathscr{M} ,

hence z is a focus of the Sacksteder system \mathscr{L} . This completes the proof
of Theorem 3. 3. \square

4. Distribution dimensions of Sacksteder systems

In this section, for a Sacksteder system \mathscr{L}=(\Gamma_{0}, \mathscr{M}) , we study how the
points of \mathscr{M} are scattered in the ambient space R^{q} .

Definition 4. 1 Let A be an infinite subset of R^{q} and x a point belong-
ing to A. (1) Denote by 1dd(A, x) the minimum of natural numbers n

such that there exists an n-dimensional affine subspace P and a neighbor-
hood V of x in R^{q} with A\cap VdP , and call it the local distribution dimen-
sion of A at x . (2) Denote by add(A, x) the minimum of natural num-
bers n such that there exists an n-dimensional linear subspace S of R^{q}

satisfying the condition: if \{x_{i}\}_{i=1}^{\infty}\subset A-\{x\} is an infinite sequence converg-
ing to x and the sequence \{(x_{i}-x)/||x_{i}-x||\}_{i=1}^{\infty} converges to a vector v\in R^{q} ,
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then v\in S . We call it the asymptotic distribution dimension of A at x .
(Clearly add(A, x)\leqq 1dd(A , x) .)

The first fundamental property of distribution dimensions is the fol-
lowing.

Proposition 4. 2 Let \mathscr{L}=(\Gamma_{0}, \mathscr{M}) be a Sacksteder system. Then the
local distribution dimension ldd(\mathscr{M}, x) does not depend on x\in \mathscr{M} .

Proof. Let x , y\in \mathscr{M} . Put n:=1dd(\mathscr{M}, x) . By definition, there exists an
n-dimensional affine plane P and an open subset W containing x in R^{q}

with \mathscr{M}\cap W\subset P . Since the orbit \Gamma(y) is dense in \mathscr{M} there exists an ele-
n ot g\in\Gamma such that y\in D(g) and z:=g(y)\in \mathscr{M}\cap W . It follows that

y\in \mathscr{M}\cap g^{-1}(W)=g^{-1}(\mathscr{M}\cap W)\subset g^{-1}(P) .

Since g^{-1}(P) is contained in an n-dimensional affine plane, it follows that
ldd(\mathscr{M}, y)\leqq n=1dd(\mathscr{M}, x) . By exchanging the roles of x and y , we have
ldd(\mathscr{M}, x)\leqq 1dd(\mathscr{M}, y) . This completes the proof. \square

This proposition motivates the following.

Definition 4. 3 For a Sacksteder system \mathscr{L}=(\Gamma_{0}, \mathscr{M}) , we denote by
ldd(\mathscr{L}) the constant number ldd(\mathscr{M}, x) where x\in \mathscr{M} , and we call it the
local distribution dimension of \mathscr{L} . We call the system \mathscr{L} irreducible if the
local distribution dimension ldd(\mathscr{L}) coincides with the dimension q of the
ambient space R^{q} of \mathscr{L} .

If a Sacksteder system \mathscr{L} is not irreducible, it is natural to study \mathscr{L}

by taking locally ldd(\mathscr{L})-dimensional affine planes in place of the ambient
space. By this reason, we introduce a reduction of a Sacksteder system
as follows.

Definition 4. 4 We say that a Sacksteder system \mathscr{L}=(\Gamma_{0}, \mathscr{M}) with ambi-
ent space R^{q} is reducible to a Sacksteder system \overline{\mathscr{L}}^{=(\overline{\Gamma}_{0}},\hat{\mathscr{M}} ) with ambient
space R^{\hat{q}} if the dimensions of the ambient spaces satisfy q>\hat{q} and there
exist a decomposition \mathscr{M}=\mathscr{M}_{1}\cup\cdots\cup \mathscr{M}_{k} , disjoint open sets W_{i} containing
each \mathscr{M}_{i} in R^{q} , and affine maps \varphi_{i} : R^{q}arrow R^{\hat{q}} satisfying the following condi-
tions:

(a) the images \hat{W}_{1}:=\varphi_{1}(W_{1}) , ... W_{k}:=\varphi_{k}(\overline{W}_{k}) are disjoint open sets
in R^{\hat{q}} ,

(b) \hat{\mathscr{M}}=\hat{\mathscr{M}}_{1}\cup\cdots\cup\overline{\mathscr{M}}_{k} where \hat{\mathscr{M}}_{i} :=\varphi_{i}(\mathscr{M}_{i}) ,
(c) each \varphi_{i} maps the affine space Q_{i} spanned by \mathscr{M}_{i} isometrically to
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the affine space \hat{Q}_{i} spanned by \overline{\mathscr{M}}i ,
(d) for each h\in\Gamma_{0} and \mathscr{M}_{i} , \mathscr{M}_{j} with D(h)\cap \mathscr{M}_{i}\neq\emptyset and R(h)\cap \mathscr{M}_{j}\neq\emptyset ,

there exists an open set W_{h_{J}i}\subset D(h) containing D(h)\cap \mathscr{M}_{i} in R^{q}

and an element \hat{h}_{hji}\in\hat{\Gamma}_{0} such that \hat{h}_{h_{J}i}\varphi_{i}=\varphi_{j}h on W_{h_{J}i} (thus we
have the following commutative diagram:

\subseteq h \subset

\mathscr{M}_{i}\cap D(h) W_{hji} W_{h^{-1}ij} R^{q}

\varphi_{i}\downarrow \varphi_{j}\downarrow

\overline{\mathscr{M}}_{i}\cap D(\overline{h}_{hji})

\subseteq

\overline{W}_{hji}

h_{h_{?}i}

\hat{W}_{h^{-1}ij}

\subset

R^{\overline{q}}

where \hat{W}_{h_{J}i} :=\varphi_{i}(W_{h_{J}i}) and \hat{W}_{h^{-1}ij}:=\varphi_{j}(W_{h^{-1}ij})) ,

(e) \hat{\Gamma}_{0} consists of such elements \overline{h}_{hgi} as in (d).

We call the map \varphi:=\varphi|_{W_{1}}\cup\cdots\cup\varphi|_{W_{k}} : W:=W_{1}\cup\cdots\cup W_{k}arrow R^{\overline{q}} a reduction of
\mathscr{L} to \overline{\mathscr{L}} .

Proposition 4. 5 (1) If a Sacksteder sytem \mathscr{L}=(\Gamma_{0}, \mathscr{M}) is reducible by a

reduction \varphi to a Sacksteder system \overline{\mathscr{L}}^{=}(\hat{\Gamma}_{0},\hat{\mathscr{M}}) , then ldd(\mathscr{L})=ldd(\mathscr{L})\wedge and
add(\overline{\mathscr{M}}, \varphi(x))=add(\mathscr{M}. x) for all x\in \mathscr{M} .

(2) Let \mathscr{L}=(\Gamma_{0}, \mathscr{M}) be a Sacksteder system with ambient space R^{q}

and put \hat{q}=1dd(\mathscr{L}) . Then \mathscr{L} is reducible to an irreducible Sacksteder
system \hat{\mathscr{L}}^{=(\overline{\Gamma}_{0},\hat{\mathscr{M}})} {that is, with ambient space R^{\overline{q}} ).

Proof (1) We use the notations in Definition 4. 4. Let x\in \mathscr{M}_{i}\subset \mathscr{M} .
The condition (c) in Definition 4. 4 implies that \varphi_{i} : Q_{i}- \hat{Q}_{i} is an isomor-
phism of affine spaces. For each open set V\subset W_{i} containing x , the image
\overline{V}:=\varphi_{i}(V) is an open set containing \hat{x}:=\varphi_{i}(x) in R^{\hat{q}} by the condition (a)
in Definition 4. 3 (which implies rank(\varphi_{i})=\hat{q} ). These facts imply that
1dd(\hat{\mathscr{M}}_{i},\hat{x})=1dd(\mathscr{M}_{i}, x) and add(\hat{\mathscr{M}}_{i},\hat{x})=add(\mathscr{M}_{i}, x) . It follows that

1dd(\overline{\mathscr{L}})=1dd(\hat{\mathscr{M}}_{i},\overline{x})=1dd(\mathscr{M}_{i}, x)=1dd(\mathscr{L}) ,
add(\hat{\mathscr{M}},\hat{x})=add(\overline{\mathscr{M}}_{i},\hat{x})=add(\mathscr{M}_{i}, x)=add(\mathscr{M}, x) .

(2) Put \overline{q}=1dd(\mathscr{L}) . For each x\in \mathscr{M}, take a convex open set V_{x}

containing x and a \overline{q}-dimensional affine plane P_{\chi} in R^{q} with \mathscr{M}\cap V_{x}\subset P_{X} .
Since \mathscr{M} is compact and \{ V_{x}\}_{x\in\chi} is an open covering of \mathscr{M}, there exist a
finite number of points x(1) , \ldots , x(k)\in \mathscr{M} such that \mathscr{M}\subset V_{x(1)}\cup\cdots\cup V_{x(k)} .
Let W_{i}:=V_{x(i)} , \mathscr{M}i:=\mathscr{M}\cap W_{i} and Q_{i}:=P_{x(i)} . Take affine isometries \phi_{i} :
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Q_{i}arrow R^{\hat{q}} in such a way that \varphi_{1}(W_{1}) , \ldots , \varphi_{k}(W_{k}) are pairwise disjoint, where
\varphi_{i} is the composition of \phi_{i} and the orthogonal projection of R^{q} to Q_{i} . Let
\overline{\mathscr{M}}_{i}:=\varphi_{i}(\mathscr{M}_{i}) and \overline{\mathscr{M}}:=\hat{\mathscr{M}}_{1}\cup\cdots\cup\overline{\mathscr{M}}k . For each element h\in\Gamma_{0} and \mathscr{M}_{i} ,

\mathscr{M}j with D(h)\cap \mathscr{M}_{i}\neq\emptyset and R(h)\cap \mathscr{M}_{j}\neq\emptyset , take a sufficiently small convex
open set \overline{W}_{h_{J}i} containing \varphi_{1}(D(h)\cap \mathscr{M}_{i}) and put \overline{h}_{h_{J}i}:=\psi_{j}h\phi_{i}^{-1} : \overline{W}_{h_{J}i}arrow R^{\overline{q}}

(After we made the above construction for h\in\Gamma_{0} , we take ( \hat{h}_{h_{J}i})^{-1} as \overline{h}_{h^{-1}ij}

for the inverse h^{-1}\in\Gamma_{0}. ) Denote by \hat{\Gamma}_{0} the set of such \hat{h}_{h_{J}i}’ s . Then the
pair \hat{\mathscr{L}}:=(\hat{\Gamma}_{0},\overline{\mathscr{M}}) is a Sacksteder system with ambient space R^{\hat{q}} and the
given Sacksteder system \mathscr{L} is reducible to \hat{\mathscr{L}} by the reduction \varphi:=\varphi_{1}\cup\cdots

\cup\varphi_{k} . \square

Note that if a Sacksteder system \mathscr{L} is reducible to a Sacksteder sys-
tem \overline{\mathscr{L}} then the qualitative properties of \mathscr{L} and \hat{\mathscr{L}} are completely the
same.

The main result in this section is the following.

Theorem 4. 6 Les \mathscr{L}=(\Gamma_{0}, \mathscr{M}) be a Sacksteder system. If \mathscr{L} has a focus
x_{1}\in \mathscr{M}, then add(\mathscr{M}, x_{0})=1dd(\mathscr{L}) .

Proof It is sufficient to prove that add(\mathscr{M}, x_{0})\geqq 1dd(\mathscr{L}) . By the hypothe-
sis, there exists a contraction g\in Stab(x_{0}) . Take an open set V contain-
ing x_{0} in R^{q} and a subspace S of dimenesion n:=add(\mathscr{M}, x_{0}) in the tan-
gent space T_{xo}R^{q}=R^{q} such that V\subset D(g) and that, if \{x_{i}\}_{i=1}^{\infty}\subset \mathscr{M}-\{x_{0}\} is
an infinite sequence converging to xo and the sequence \{(x_{i}-x_{0})/||x_{i}-x_{0}||\}_{i=1}^{\infty}

converges to a vector v\in R^{q} , then v\in S . Consider the affine plane
P:=S+x_{0} .

We claim that \mathscr{M}\cap V\subset P . We prove this by absurdity. Suppose that
there exists a point y\in(\mathscr{M}\cap V)-P . Since g is a contraction and y\in V\subset

D(g) , we can define a sequence \{y_{j}\}_{j=1}^{\infty}\subset \mathscr{M}\cap D(g) by y_{i}=g^{j}(y) . Clearly
the sequence \{y_{j}\}_{j=1}^{\infty} converges to xo. Note that for all j the angle between
the line containing x_{0} , yj and the affine plane P coincides with the angle \theta

between the line containing xo, y and P. This implies that y_{j}\in \mathscr{M}\cap D(g)

-P for all j . Denote by C the set of unit tangent vectors u\in T_{xo}R^{q}=R^{q}

such that the angle between u and S is \theta . Since C is compact and
(y_{j}-x_{0})/||y_{j}-x_{0}||\in C for all j , there exists a subsequence \{x_{i}\}_{j=1}^{\infty} of \{y_{j}\}_{j=1}^{\infty}

such that the sequence (x_{i}-x_{0})/||x_{i}-x_{0}|| converges to a vector v\in C .
Since C\cap S=\emptyset , it follows that v\not\in S . This contradicts the choice of the
subspace S\subset T_{x_{0}}R^{q} .

The above claim implies that

ldd(\mathscr{L})=ldd(\mathscr{M}, x_{0})\leqq\dim P=n=add(\mathscr{M}, x_{0}) .
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This completes the proof of Theorem 4. 6. \square

The following is an application of Theorem 4. 6.

Theorem 4. 7 Let \mathscr{L}=(\Gamma_{0}, \mathscr{M}) be a Sacksteder system. If \mathscr{L} has a focus
x_{0}\in \mathscr{M}, then \mathscr{M} cannot be contained in any submanifold of the ambient
space R^{q} with positive curvature.

Proof. We prove this theorem by absuridity. Suppose that \mathscr{M} is
contained in a submanifold \mathscr{M} of R^{q} with positive curvature. Fix a focus
x_{0}\in \mathscr{M} and put n:=1dd(\mathscr{M}) . There exist an open set V containing x_{0} and
an n-dimensional affine plane P in R^{q} such that \mathscr{M}\cap V\subset P . The intersec-
tion N:=M\cap V\cap P is a submanifold of the affine plane P. Since \mathscr{M}\cap V

\subset N , the manifold N has an accumulation point. Hence \dim N\geqq 1 . If
dim N=1 , the manifold N is a curve with non vanishing curvature. If
\dim N\geqq 2 , then N is a Riemannian submanifold with positive curvature.
In the both cases, we have \dim N<\dim P . Consider an sequence \{x_{i}\}_{j=1}^{\infty}\subset

\mathscr{M}-\{x_{0}\} converging to x_{0} such that the sequence \{(x_{i}-x_{0})/||x_{i}-x_{0}||\}_{j=1}^{\infty} con-
verges to a vector v\in T_{x_{0}}R^{q}=R^{q} . Since x_{i}\in N for all i , the vector v

belongs to the tangent space T_{x_{0}}N . Hence we can take T_{x_{0}}N as the sub-
space S in Definition 4. 1, which implies that

add(\mathscr{M}, x_{0})\leqq\dim T_{xo}N=\dim N<\dim P=n=1dd(\mathscr{L}) .

This contradicts Theorem 4. 6. \square

This theorem suggests the following.

Conjecture 4. 8 If {?}=(\Gamma_{0}, \mathscr{M}) is an irreducible Sacksteder system with a
focus, then \mathscr{M} cannot be contained in the frontier of any convex domain in
the ambient space R^{q} .

In the next section, we give an affirmative example to this conjecture.

5. Convexly self-similar Sacksteder systems

We introduce a class of Sacksteder sysems.

Definition 5. 1 A subset A\subset R^{q} is called convexly self-similar if A is
compact and infinite and, for all x\in A and for all open set V containing
x , there exist a convex open subset U containing A and a similarity trans-
formation \gamma of R^{q} such that x\in W:=\gamma(U)\subset V and \gamma(A)=A\cap W . (For
the simplicity, we consider only orientation-preserving similarity transfor-
mations.)
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Note that the subset \mathscr{M} in Example 2. 11 is a convexly self-similar set.
We give a fundamental property of convexly self-similar sets.

Proposition 5. 2 Let A\subset R^{q} be a convexly self-similar set. Then (1)
A is a Cantor set. (2) There exists a finite number of similarity transfor-
malions \gamma_{1} , ... \gamma_{k} of R^{q} such that every \gamma_{i} is a contraction and A=\gamma_{1}(A)

\cup\cdots\cup\gamma_{k}(A) . (3) Pul\mathscr{M}:=A and \Gamma_{0}:=\{h_{1_{ }},\ldots, h_{k}, h_{1-}^{-1}\ldots-h_{k}^{-1}\} where h_{i}

is the restriction of \gamma_{i} in (2) to a suitable convex open subset containing
A. Then the pair \mathscr{L}=(\Gamma_{0}, \mathscr{M}) is a Sacksteder system with a focus.
Proof. (1) First we see that A is perfect. Let x\in A and \epsilon>0 . Then
there exist a convex open set U containing A and a similarity transforma-
tion \gamma of R^{q} such that x\in W:=\gamma(U)\subset V:=U(x:\epsilon) and \gamma(A)=A\cap W .
Since A is an infinite set, so is A\cap W . Hence the intersection U(x:\epsilon)

\cap(A-\{x\}) is not empty, which implies that A is perfect. Second we see
that A is not totally disconnected. Let x\in A and \epsilon>0 . Consider such
convex open set U and such similarity transformation \gamma as above. Take
an open set U_{1} such that A\subset U_{1}\subset\overline{U}_{1}\subset U . Note that the frontier of \gamma(U_{1})

doses not intersect A. Hence the connected component C_{\chi} of A contain-
ing x must be contained in \gamma(U_{1})(\subset U(x:\epsilon)) . It follows that C_{x}\subset

\bigcap_{\epsilon>0}U(x;\epsilon)=\{x\} . Therefore A is totally disconnected. Since A\subset R^{q} is
compact perfect totally disconnected, A is a Cantor set.

(2) Fix a positive number \epsilon<diamA/3 . For each x\in A , denote by
U_{x} , W_{X} and \gamma_{x} the above U, W and \gamma . Then \{W_{x}\} is an open covering
of A. Since A is compact, there exist a finite number of points x(1) , \ldots .
x(k)\in A such that A\subset W_{x(1)}\cup\cdots\cup W_{\chi(k\rangle} . It follows that

A=(A\cap W_{x(1)})\cup\cdots\cup(A\cap W_{\chi(k)})=\gamma_{x(1)}(A)\cup\cdots\cup\gamma_{\chi(k)}(A) .

Note that \gamma_{x(i)} has the similitude ratio smaller than 2/3. Hence \gamma_{x(i)} is a
contraction.

(3) We have already known that the subset \mathscr{M} is infinite nowhere
dense and \Gamma_{0} is a finite symmetric subset of \Gamma_{q,+}^{s1n,*} satisfying (a), (b) and
(c) in Definition 2. 4. The theory of self-similar sets in [Wil], [Hut] and
[Hat] implies that \mathscr{M} coincides with the closure of the set of the fixed
points of h_{i(1)}\cdots h_{i(n)} where n\in N and i(1) , \ldots

i(n)\in\{1,2, \ldots,k\} . We see
that for all x\in \mathscr{M} the orbit \Gamma(x) is dense in \mathscr{M} where \Gamma=\langle\Gamma_{0}\rangle . Let y\in \mathscr{M}

and \epsilon>0 . Then U(y;\epsilon/2) contains the fixed point z of some g:=h_{i(1)}\cdots

h_{i(n)} as above. Since \mathscr{M} is contained in D(g) and g is a contraction, there
exists m\in N such that g^{m}(\mathscr{M})\subset U(z:\epsilon/2) . This implies that U(y;\epsilon)\cap

\Gamma(x)\neq\emptyset . Hence the condition (d) in Definition 2. 4 is verified. Clearly the
Sacksteder system \mathscr{L} has a focus. \square
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Definition 5. 3 A Sacksteder system \mathscr{L}=(\Gamma_{0,\mathscr{M}}) is called convexly self
-similar if it is obtained from a convexly self-similar set A in the same
way as in (3) of Proposition 5. 2.

Concerning Conjecture 4. 11, we have the following.

Theorem 5. 4 Let \mathscr{L}=(\Gamma_{0}, \mathscr{M}) be a convexly self-similar irreducible
Sacksteder system with ambient space R^{q} . If q=2, then \mathscr{M} cannot be
contained in the frontier of any convex domain of R^{q} .

Proof We prove this theorem by absurdity. Suppose that \mathscr{M} is
contained in the frontier of a convex domain \Omega of R^{q} .

First we see that any three points of \mathscr{M} are not on a line. Suppose
that there exist three point x , y , z on a line l\subset R^{2} in this order. By the
irreducibility, we have independent three points a , b , c\in \mathscr{M}. Then a , b , c
form a triangle. The points x and z form a triangle T with one of a , b ,
c , say a . Since \Omega is convex, the domain Int(T) surrounded by T is
contained in \Omega . Take a positive number \epsilon<\min\{||x-y||, ||z-y||, ||a-y||\}/9 .
There exists an element g\in\Gamma such that \mathscr{M}\subset D(g) and g(\mathscr{M})\subset U(y;\epsilon) as
in the proof of (3) in Proposition 5. 2. The triangle \Delta formed by g(a) ,
g(b) , g(c)\in U(y, \epsilon) cannot intersect Int(T) because g(a) , g(b) , g(c)\not\in\Omega .
Hence U(y;\epsilon)-T contains at least one of g(a) , g(b) , g(c) , say g(b) .
This means that y belongs to the interior of the convex hull of x , z, a ,
g(b) . It follows that y\in\Omega , which contradicts the hypothesis \mathscr{M}\subset\delta\Omega(=\overline{\Omega}

-\Omega) . Second we see that for a given positive number \theta any convex
n-gon has at most [2\pi/(\pi-\theta)] vertices with inner angle d\theta . This fol-
lows from the fact that the sum of all the inner angle is (n-2)\pi .

Now take three points a , b , c\in \mathscr{M}. Denote by \alpha the maximum of the
inner angles of the triangle \Delta formed by a , b , c and take \theta such that
(\pi+\alpha)/2<\theta<\pi . Take 100 [2\pi/(\pi-\theta)] points from \mathscr{M}. They form a
convex polygon P. The above second result implies that P has successive
three vertices p, q , r with inner angle >\theta . Denote by 0 the vertex before
pan\underline{db}y s the vertex after r . Denote by x the intersecting point of the
\underline{lines}op and \overline{rq} and denote by y the intersecting point of the lines \overline{pq} and
sr . Put \epsilon:=\min (||x-q|| , ||y-q|| , \min\{||t-q|| : t\neq q is a vertex of P\})/100.
As above, there exists g\in\Gamma such that \mathscr{M}\subset D(g) and g(\mathscr{M})\subset U(q;\epsilon) .
The lines \overline{py} and \overline{rx} divide U(q:\epsilon) into four sectors. If g(\mathscr{M}) intersects
the interior of the sector contained in Int(P) or that of the sector opposite
to Int(P), we have a contradiction immediately. The lines \overline{py} and \overline{rx} can
contain at most two points of \mathscr{M} by the above first result. Therefore
g(\mathscr{M}) intersects one of the remained two sectors. We may suppose that
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g(\mathscr{M}) intersects the interior of the sector S contained in the triangle for-
med by p, q , x . Take a point q_{1}\in Int(S)\cap g(\mathscr{M}) . By considering a small
neighborhood of y_{1} , we obtain g_{1}\in\Gamma such that g_{1}(\Delta)\subset Int(S) . We may
suppose that g_{1}(a) is the nearest vertex of g_{1}(\Delta) to p and that g_{1}(b) is the
nearest vertex of g_{1}(\Delta) to q . Then g_{1}(a) and g_{1}(b) cannot belong to the
triangle T formed by p, q , g_{1}(c) and the line segment between g_{1}(a) and
g_{1}(b) must intersect the triangle T This implies that \angle pg_{1}(c)q<

\angle g_{1}(a)g_{1}(c)g_{1}(b)=\angle acb<\alpha . On the other hand, we have
\angle p_{Q_{1}}(c)q>\angle pxq=\angle opq+\angle pqr-\pi>2\theta-\pi>(\pi+\alpha)-\pi=\alpha .

This contradiction completes the proof of Theorem 5. 4.
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