Nonhomogeneity of Picard dimensions on the half ball

Hideo Imai

(Received June 21, 1994)

We denote by H^m the upper half space $\{x = (x_1, \dots, x_m) \in \mathbb{R}^m : x_m > 0\}$ in the Euclidean *m*-space $\mathbb{R}^m (m \ge 2)$ and by \widehat{H}^m the closure of H^m with respect to the one point compactification of \mathbb{R}^m . Setting $\delta H^m = \widehat{H}^m \setminus H^m$, we may view $\{x \in \widehat{H}^m : x_m = 0\}$ as a subset of an ideal boundary δH^m of H^m and the origin x = 0 as an ideal boundary point of H^m . Take the upper half ball $U_s^+ = \{x = (x_1, \dots, x_m) \in H^m : |x| < s\}$ ($0 < s \le 1$) which may be regarded as a relative neighbourhood of the ideal boundary point x = 0 of H^m . The set $\Gamma_s^+ \equiv \{x \in H^m : |x| = s\}$ is a relative boundary of U_s^+ and $\gamma_s^+ \equiv$ $\{x \in \delta H^m : |x| \le s\}$ is an ideal boundary of U_s^+ . Therefore the boundary ∂U_s^+ of U_s^+ and the closure \overline{U}_s^+ of U_s^+ in \widehat{H}^m are $\Gamma_s^+ \cup \gamma_s^+$ and $U_s^+ \cup \Gamma_s^+ \cup$ γ_s^+ , respectively. In particular we set $U_1^+ = U^+$ and $\Gamma_1^+ = \Gamma^+$. By a *density* P(x) on U_s^+ we mean a locally Hölder continuous function P(x) defined on $\overline{U}_s^+ \setminus \{0\}$. Hence P may have a singularity at the ideal boundary point x=0.

Consider the time independent Schrödinger equation

$$L_P u(x) \equiv -\bigtriangleup u(x) + P(x)u(x) = 0 \tag{1}$$

defined on $\overline{U}_s^+ \setminus \{0\}$, where \triangle is the Laplacian $\triangle = \sum_{i=1}^m \partial^2 / \partial x_i^2$. We are interested in the class $PP(U_s^+)$ of nonnegative solutions of (1) in U_s^+ with vanishing boundary values on $\partial U_s^+ \setminus \{0\}$. The first P indicates the dependence of the class on the density P and the second P stands for the initial of the term positive (nonnegative) so that the class associated with another density Q is denoted by $QP(U_s^+)$. It is convenient to consider the subclass $PP_1(U_s^+) \equiv \{u \in PP(U_s^+) : u(x_s) = 1\}$, where x_s is an arbitrary point fixed in U_s^+ . Since $PP_1(U_s^+)$ is a compact and convex set with respect to almost uniform convergence on U_s^+ , we can consider the set $ex. PP_1(U_s^+)$ of extreme points of $PP_1(U_s^+)$ and the cardinal number $\#(ex. PP_1(U_s^+))$ of $ex. PP_1(U_s^+)$ which will be referred to as the Picard dimension of (U_s^+, P) at x=0, dim (U_s^+, P) in notation:

$$\dim(U_s^+, P) = \#(ex. PP_1(U_s^+)).$$

In particular we say that the *Picard principle* is valid for (U_s^+, P) at x=0

if dim $(U_s^+, P) = 1$.

A density P(x) is said to be radial if it depends only upon |x|. T. Tada showed in [15] dim $(U^+, P)=1$ or c for any nonnegative radial density on U^+ if m=2, where c is the cardinal number of a continuum. M. Murata [10] showed dim $(U_s^+, P)=1$ if P is locally Hölder continuous on the entire \overline{U}_s^+ and if there exists the Green's function of (1) on U_s^+ . Also Y. Pinchover [14] showed dim $(U_s^+, P)=1$ provided that there exists the Green's function of (1) on U_s^+ and $P(x)=O(|x|^{-2})$ as $x \to 0$.

If P is a density on U^+ , then (1) is defined on $\overline{U}^+ \setminus \{0\}$. In this case we will show :

Proposition There exists $a \ t \ in \ (0, 1]$ such that

 $\dim(U_s^+, P) = \dim(U_t^+, P)$

for any s in (0, t].

Hence we can define for a density P on U^+ the *Picard dimension* of P at x=0, dim P in notation, by

 $\dim P = \lim_{s \downarrow 0} \dim(U_s^+, P).$

In particular we say that the *Picard principle* is valid for a density P at x=0 if dim P=1.

In contrast with U_s^+ we take a punctured ball $U_s = \{x \in \mathbb{R}^m : 0 < |x| < s\}$ $(0 < s \le 1)$ in $\mathbb{R}^m \setminus \{0\}$ and we may regard x=0 as an ideal boundary component of the space $\mathbb{R}^m \setminus \{0\}$ so that the relative boundary of U_s is $\Gamma_s \equiv \{x \in \mathbb{R}^m : |x|=s\}$. But in this case we denote by \overline{U}_s the relative closure $U_s \cup \Gamma_s$ of U_s in $\mathbb{R}^m \setminus \{0\}$. We set $U_1 = U$ and $\Gamma_1 = \Gamma$. If \tilde{P} is a density defined on U, i.e. a locally Hölder continuous function defined on \overline{U} , then Schrödinger equation

$$L_{\tilde{P}}u(x) \equiv -\bigtriangleup u(x) + \tilde{P}(x)u(x) = 0$$

is defined on \overline{U} . We can consider the class $\widetilde{P}P(U_s)$ of nonnegative solutions of $L_{\widetilde{P}}u=0$ on U_s with vanishing boundary values on Γ_s for each s in (0, 1]. With an arbitrary fixed point \widetilde{x}_s in U_s , $\widetilde{P}P_1(U_s) \equiv \{u \in \widetilde{P}P(U_s) : u(\widetilde{x}_s)=1\}$ is a compact and convex set. The cardinal number of the set of extreme points of $\widetilde{P}P_1(U_s)$ will be referred to as the *Picard dimension* of (U_s, \widetilde{P}) at x=0, dim (U_s, \widetilde{P}) in notation (M. Nakai [11]). It was shown in M. Nakai [12], M. Murata [9] and M. Nakai and T. Tada [13] that there exists a t in (0, 1] such that

 $\dim(U_s, \tilde{P}) = \dim(U_t, \tilde{P})$

for each s in (0, t]. Hence by the same way as above the *Picard dimension* of the density \tilde{P} on U at x=0 and the *Picard principle* for the density \tilde{P} at x=0 are defined in [13] (also see M. Nakai [11] and [12]). We say that for a density \tilde{P} on U the homogeneity of Picard dimensions holds at x=0 if dim $\tilde{P}=\dim c\tilde{P}$ for any constant c>0 ([11], [13]). In particular we say that for a density \tilde{P} on U the homogeneity of the Picard principle is valid at x=0 if dim $\tilde{P}=\dim c\tilde{P}=1$ for any constant c>0 ([13]).

It was shown in M. Kawamura and M. Nakai [7] that for nonnegative radial densities on U the homogeneity of Picard dimensions is always valid at x=0. The nonhomogeneity of the Picard principle for negative radial densities at x=0 is studied in [4] and [5]. The nonhomogeneity of Picard dimensions for signed radial densities is also studied in T. Tada [16].

In anologous to the case of the punctured ball U in which x=0 is an isolated ideal boundary component, we say that for a density P on U^+ the homogeneity of Picard dimensions holds at x=0 if dim cP=dim P for any c>0. In particular we say that for a density P on U^+ the homogeneity of the Picard principle is valid at x=0 if dim cP=dim P=1 for any c>0.

Consider the negative densities Q and R on U^+ given by

$$Q(x) \equiv -\frac{1}{4|x|^2} \left\{ m^2 + \frac{1}{\left(\log\frac{\eta}{|x|}\right)^2} + \frac{1}{\left(\log\frac{\eta}{|x|} \cdot \log\log\frac{\eta}{|x|}\right)^2} \right\}$$
(2)

and

$$R(x) = -\frac{1}{4|x|^2} \left\{ m^2 + \frac{1}{\left(\log\frac{\eta}{|x|}\right)^2} + \frac{2}{\left(\log\frac{\eta}{|x|} \cdot \log\log\frac{\eta}{|x|}\right)^2} \right\},$$
(3)

where η is any fixed constant with $\eta > e^e$. The purpose of this paper is to show the following result which states that the homogeneity of the Picard principle does not necessarily hold at x=0 for negative densities on U^+ .

Theorem The density Q given by (2) satisfies

$$\dim Q = 1 \qquad but \qquad \dim cQ = 0$$

for any c > 1. The density R given by (3) satisfies

 $\dim R = 0 \qquad but \qquad \dim cR = 1$

for any 0 < c < 1.

To show the theorem we will see that $\dim(U_s^+, Q)=1$ and $\dim(U_s^+, R)=0$ for any s in (0, 1] so that we can take 1 as the value of t in the proposition for densities Q and R. But in the latter half of the theorem we will see that, whenever we select a constant $c \in (0, 1)$, we merely can take a t in (0, 1) depending upon the constant c.

1. We begin with some definitions. A function u is a solution of (1) in U_s^+ if u is a C^2 function on U_s^+ which satisfies (1) in U_s^+ . A lower semicontinuous, lower finite function v on U_s^+ is a supersolution of (1) in U_s^+ if $v(x) \ge u(x)$ in B whenever $v(x) \ge u(x)$ on the boundary ∂B of B for any ball B in U_s^+ with $\overline{B} \subset U_s^+$ and for any solution u(x) of (1) in B continuous in \overline{B} . If v(x) is a C^2 function on U_s^+ , then v(x) is a supersolution of (1) on U_s^+ if and only if $L_P v(x) \ge 0$ on U_s^+ . A potential p of (1) on U_s^+ is a positive supersolution of (1) in U_s^+ such that, if $p \ge u$ holds on U_s^+ for some solution u of (1) in U_s^+ , then $u \le 0$ on U_s^+ . We take any point y fixed in U_s^+ . By the *Green's function* $G_s(x, y)$ of (1) on U_s^+ (with its pole y in U_s^+) we mean, if it exists, the potential of (1) on U_s^+ is a Brelot's harmonic space. There exits a potential of (1) on U_s^+ if and only if \mathcal{H}_P of solutions of (1) on U_s^+ is a Brelot's harmonic space.

Choose the negative radial densities \tilde{Q} and \tilde{R} on U given by

$$\tilde{Q}(x) \equiv -\frac{1}{4|x|^2} \left\{ (m-2)^2 + \frac{1}{\left(\log\frac{\eta}{|x|}\right)^2} + \frac{1}{\left(\log\frac{\eta}{|x|} \cdot \log\log\frac{\eta}{|x|}\right)^2} \right\}$$
(4)

and

$$\tilde{R}(x) \equiv -\frac{1}{4|x|^2} \left\{ (m-2)^2 + \frac{1}{\left(\log\frac{\eta}{|x|}\right)^2} + \frac{2}{\left(\log\frac{\eta}{|x|} \cdot \log\log\frac{\eta}{|x|}\right)^2} \right\}.$$
 (5)

We set $\log_2 |x| = \log \log |x|$ and $\log_3 |x| = \log \log_2 |x|$. Take the functions $\tilde{p}(x)$ and $\tilde{q}(x)$ given by

$$\tilde{p}(x) \equiv |x|^{-\frac{m-2}{2}} \left\{ \log \frac{\eta}{|x|} \log_2 \frac{\eta}{|x|} \right\}^{\frac{1}{2}},$$
$$\tilde{q}(x) \equiv \log_3 \frac{\eta}{|x|}.$$

Consider the Schrödinger equations

$$L_{\tilde{\varrho}}u(x) \equiv (-\triangle + \tilde{Q}(x))u(x) = 0$$
(6)

$$L_{\tilde{R}}u(x) \equiv (-\triangle + \tilde{R}(x))u(x) = 0 \tag{7}$$

on \overline{U}_s with $0 \le s \le 1$.

Lemma 1 ([5]) $\tilde{p}(x)$ and $\tilde{p}(x)\tilde{q}(x)$ are linearly independent solutions of (6) on U.

Lemma 2 ([5]) dim $(U_s, \tilde{R})=0$ for any s in (0, 1].

We also use the following boundary Harnack principle ([1]):

Lemma 3 Take any r in (0, s) and an arbitrary a in (0, r) with a+r < s. Let u and v be any positive solutions of (1) on $U_{r+a}^+ \setminus \overline{U}_{r-a}^+$ which vanish continuously on $\partial(U_{r+a}^+ \setminus U_{r-a}^+) \setminus (\Gamma_{r+a}^+ \cup \Gamma_{r-a}^+)$. Then there exists a positive constant c > 1 such that

$$\frac{u(x)}{u(x')} \le c \frac{v(x)}{v(x')}$$

holds for any u, v, x and x' in Γ_r^+ .

2. We denote by $\omega = (\omega_1, \dots, \omega_m)$ the coordinates of the unit sphere Γ so that the spherical coordinates of a point $x \neq 0$ can be expressed as $r\omega$ with r = |x| and $\omega = x/|x|$. The Laplacian $\triangle = \triangle_x = \triangle_{r\omega}$ is decomposed into the form

$$\triangle_x = \triangle_r + r^{-2} \triangle_\omega$$

where $\triangle_r = \partial^2/\partial r^2 + (m-1)r^{-1}\partial/\partial r$ and \triangle_{ω} is the Laplace-Beltrami operator on Γ with respect to the natural Riemannian metric on Γ induced by the Euclidean metric on R^m . Since the coordinate function ω_m is a spherical harmonic of order one, we have $\triangle_{\omega}\omega_m = -(m-1)\omega_m$ on $\Gamma(cf., e.g. [8])$. We consider the function p(x) on U^+ given by

$$p(x) = p(r\omega) \equiv \tilde{p}(r)\omega_m.$$

Then it is easy to see that

$$\triangle p(x) = (\triangle_r + \frac{1}{r^2} \triangle_{\omega}) \tilde{p}(r) \omega_m = (\triangle_r \tilde{p}(r)) \omega_m + \frac{1}{r^2} \tilde{p}(r) \triangle_{\omega} \omega_m$$

on U^+ . Since $\tilde{Q}(x) - (m-1)/|x|^2 = Q(x)$ on $\overline{U}^+ \setminus \{0\}$, the function p(x) is a solution of $L_{\varrho}u = 0$ on U^+ where Q(x) is the density given by (2). Since

 $\tilde{p}(x)\tilde{q}(x)$ is also a solution of (6) on U, by the same computation $\tilde{q}(x)p(x)$ is also a solution of $L_{Q}u=0$ on U^{+} .

Choose any s in (0, 1] and take an arbitrary t fixed in (0, s). We set

$$h(x) = \frac{\tilde{q}(x) - \tilde{q}(s)}{\tilde{q}(t) - \tilde{q}(s)} p(x)$$

which is a solution of $L_{\varrho}u=0$ on $U_s^+ \setminus \overline{U}_t^+$ which coincides with p(x) on Γ_t^+ and 0 on Γ_s^+ . Observe that

$$\frac{\tilde{q}(x) - \tilde{q}(s)}{\tilde{q}(t) - \tilde{q}(s)} > 1 \quad (<1, \text{resp.})$$

for |x| < t (>t, resp.). In view of this we see that

$$h(x) > p(x)$$
 $(h(x) < p(x), \text{ resp.})$

for |x| < t(>t, resp.). Consider the function v(x) given by h(x) on $U_s^+ \setminus \overline{U}_t^+$ and p(x) on \overline{U}_t^+ . Since

$$v(x) = \min(h(x), p(x)) \quad (x \in U_s^+),$$

v(x) is a positive supersolution of $L_{\varrho}u=0$ on U_s^+ . The unicity theorem assures that v(x) is not a solution of $L_{\varrho}u=0$ on U_s^+ by virtue of the fact that $h(x) \neq p(x)$ on U_s^+ . Hence by the Riesz decomposition theorem (cf., e.g. [2], [6]) there exists a potential and thus the Green's function of $L_{\varrho}u=0$ on U_s^+ . Observe that $Q(x)=O(|x|^{-2})$ as $x \to 0$. Theorem 7.1 in [14] shows that dim $(U_s^+, P)=1$ if there exists the Green's function of (1) on U_s^+ and $P(x)=O(|x|^{-2})$ as $x \to 0$. Therefore dim $(U_s^+, Q)=1$ for any s in (0, 1]. We have shown:

Assertion Let Q be the density on U^+ given by (2). Then dim $(U_s^+, Q)=1$ for any s in (0, 1] and hence dimQ=1.

3. Proof of Theorem. For the density Q given by (2) suppose that there exists a positive solution h in $cQP(U_s^+)$ for some constant c > 1 and some s in (0, 1]. Consider the function $h^*(x)$ given by

$$h^*(x) = \int_{\Gamma^*} h(r\omega) \omega_m d\omega.$$

For $x = (x_1, \dots, x_{m-1}, x_m)$ we denote x_1, \dots, x_{m-1} by x' so that x can be expressed as (x', x_m) . We also take the function $\tilde{h}(x)$ given by

$$\widetilde{h}(x) = \begin{cases} h(x', x_m) & \text{if } x_m > 0\\ -h(x', -x_m) & \text{if } x_m \le 0. \end{cases}$$

Since the density cQ is radial, we may regard cQ as a density on U_s so that $\Delta \tilde{h}(x) = cQ(x)\tilde{h}(x)$ holds on U_s . Since $\tilde{h}(x',x_m)\omega_m = \tilde{h}(x',-x_m)(-\omega_m)$ for any $x = (x',x_m)$ in U_s , we have $2h^*(x) = \int_{\Gamma} \tilde{h}(r\omega)\omega_m d\omega$. Since Γ is compact, the Green's formula yields that

$$\int_{\Gamma} (\bigtriangleup_{\omega} \tilde{h}(r\omega) \omega_m - \tilde{h}(r\omega) \bigtriangleup_{\omega} \omega_m) d\omega = 0.$$

Also we observe that

$$2\triangle_{r}h^{*}(x)=\int_{\Gamma}\triangle_{r}\tilde{h}(r\omega)\omega_{m}d\omega=\int_{\Gamma}\{(\triangle-\frac{1}{r^{2}}\triangle_{\omega})\tilde{h}(r\omega)\}\omega_{m}d\omega.$$

Therefore we have

$$\int_{\Gamma} \bigtriangleup \tilde{h}(r\omega) \omega_m d\omega = cQ(x) \int_{\Gamma} \tilde{h}(r\omega) \omega_m d\omega = 2cQ(x)h^*(x)$$

and

$$-\frac{1}{r^2}\int_{\Gamma} \bigtriangleup_{\omega}\tilde{h}(r\omega)\omega_m d\omega = -\frac{1}{r^2}\int_{\Gamma}\tilde{h}(r\omega)\bigtriangleup_{\omega}\omega_m d\omega$$
$$= \frac{m-1}{|x|^2}\int_{\Gamma}\tilde{h}(r\omega)\omega_m d\omega = 2\frac{m-1}{|x|^2}h^*(x).$$

It follows from these identities that

$$\triangle_r h^*(x) = (cQ(x) + \frac{m-1}{|x|^2})h^*(x)$$

on U_s . For any densities $\tilde{S}(x)$ and $\tilde{T}(x)$ on U we write $\tilde{S}(x) < \tilde{T}(x)$ if there exists an s in (0, 1] such that $\tilde{S}(x) < \tilde{T}(x)$ on U_s . Observe that the relation

$$4|x|^{2}(\log\frac{\eta}{|x|}\log_{2}\frac{\eta}{|x|})^{2}(\tilde{R}(x)-cQ(x)-\frac{m-1}{|x|^{2}})$$

= $(c-1)\{m^{2}(\log\frac{\eta}{|x|}\log_{2}\frac{\eta}{|x|})^{2}+(\log_{2}\frac{\eta}{|x|})^{2}+1\}-1>0$

is valid for any constant c > 1 where \tilde{R} is the density given by (5). Therefore we have $cQ(x)+(m-1)/|x|^2 < \tilde{R}$ for any c > 1. Since

$$L_{\tilde{R}}h^*(x) = (-\triangle + cQ(x) + \frac{m-1}{|x|^2})h^*(x) + (\tilde{R}(x) - cQ(x) - \frac{m-1}{|x|^2})h^*(x)$$

= $(\tilde{R}(x) - cQ(x) - \frac{m-1}{|x|^2})h^*(x) > 0,$

there exists a t in (0, 1] such that $L_{\tilde{R}}h^*(x) > 0$ on U_s for any s in (0, t) so

that h^* is a positive supersolution of (7) on U_s but not a solution of (7). Therefore there exists the Green's function of (7) on U_s . It is known ([3]) that dim $(U_s, \tilde{P})=1$ whenever $\tilde{P}(x)=O(|x|^{-2})$ as $x \to 0$ and there exists the Green's function of $L_{\tilde{P}}u=0$ on U_s . Hence dim $(U_s, \tilde{R})=1$. But this contradicts Lemma 2. Thus dim $(U_s^+, cQ)=0$ for any c>1 and every s in (0, 1] and a fortiori dim cQ=0 for any c>1. From this and the above assertion the first part of the theorem follows.

We next consider the density R on U^+ given by (3) and suppose that there exists a positive solution u in $RP(U_s^+)$ for some s in (0, 1]. We set

$$u^*(x) = \int_{\Gamma^+} u(r\omega) \omega_m d\omega$$

and

$$\tilde{u}(x) = \begin{cases} u(x',x_m) & \text{if } x_m > 0\\ -u(x',-x_m) & \text{if } x_m \le 0. \end{cases}$$

Then we have

$$2\triangle_{r}u^{*}(x)=\int_{\Gamma}\{(\triangle-\frac{1}{r^{2}}\triangle_{\omega})\tilde{u}(r\omega)\}\omega_{m}d\omega.$$

The density R(x) is radial so that we may consider R(x) as a radial density on U. Then by the same method as in the proof of the first part of Theorem we deduce that

$$\int_{\Gamma} \bigtriangleup \tilde{u}(r\omega) \omega_m d\omega = 2R(x)u^*(x)$$

and

$$-\frac{1}{r^2}\int_{\Gamma} \bigtriangleup_{\omega}\tilde{u}(r\omega)\omega_m d\omega = -\frac{1}{r^2}\int_{\Gamma}\tilde{u}(r\omega)\bigtriangleup_{\omega}\omega_m d\omega = 2\frac{m-1}{|x|^2}u^*(x).$$

Since $u^*(x)$ is radial, we may regard $u^*(x)$ as a positive radial function on U_s . Therefore we have $\triangle_r u^*(x) = (R(x) + (m-1)/|x|^2)u^*(x)$ on U_s . Since $\tilde{R}(x) = R(x) + (m-1)/|x|^2$ on U_s , $u^*(x)$ is a positive radial solution of (7) on U_s . This contradicts Lemma 2. Therefore dim $(U_s^+, R) = 0$ for any s in (0, 1].

To complete the proof of Theorem we only have to show that $\dim(cR) = 1$ for any c in (0, 1). For any densities S(x) and T(x) on U^+ we also write S(x) < T(x) if there exists an s in (0, 1] such that S(x) < T(x) on U_s^+ . We observe that the following relation is valid for any c in (0, 1):

$$4|x|^{2}(\log \frac{\eta}{|x|} \log_{2} \frac{\eta}{|x|})^{2}(cR(x) - Q(x))$$

= $(1-c)\{m^{2}(\log \frac{\eta}{|x|} \log_{2} \frac{\eta}{|x|})^{2} + (\log_{2} \frac{\eta}{|x|})^{2} + 1\} - c > 0.$

Therefore we have Q(x) < cR(x) for any c in (0, 1). By the Assertion there exists a positive solution u(x) in $QP(U^+)$. Since we have

$$L_{cR}u(x) = L_{Q}u(x) + (cR(x) - Q(x))u(x) = (cR(x) - Q(x))u(x) > 0,$$

there exists a $t \in (0, 1)$ such that $L_{cR}u(x) > 0$ on U_s^+ for any $s \in (0, t)$ so that u(x) is a positive supersolution but not a solution of $L_{cR}u=0$ in U_s^+ . Also $cR(x)=O(|x|^{-2})$ as $x \to 0$. Therefore Theorem 7.1 in [14] yields that $\dim(U_s^+, cR)=1$ for any s in (0, t) and a fortiori dim cR=1 for any c in (0, 1). The proof of Theorem is herewith complete.

4. Proof of Proposition. The proposition will be shown by the minor modification of the method in [12] and [13] where it was shown that the existence of a t such that there exists a bijective positive linear mapping of $\tilde{P}P(U_t)$ onto $\tilde{P}P(U_s)$ for any s in (0, t).

We denote by $\widehat{C}(\overline{\Gamma}_t^+)$ the space of all continuous functions φ on the closure $\overline{\Gamma}_t^+$ of Γ_t^+ with $\varphi(x', 0)=0$ and for each φ in $\widehat{C}(\overline{\Gamma}_t^+)$ we set

$$\tilde{\varphi}(x) = \begin{cases} \varphi(x'\!,\!x_m) & \text{if } x_m > 0 \\ -\varphi(x'\!,\!-x_m) & \text{if } x_m \le 0. \end{cases}$$

Then $\tilde{\varphi}$ is in the space $\hat{C}(\Gamma_t)$ of all continuous functions ψ on Γ_t which satisfy $\psi(x', -x_m) = -\psi(x', x_m)$ for each $x = (x', x_m) \in \Gamma_t$. Conversely if ψ is in $\hat{C}(\Gamma_t)$, then $\psi|_{\bar{\Gamma}_t^+}$ is in $\hat{C}(\bar{\Gamma}_t^+)$. Therefore $\hat{C}(\bar{\Gamma}_t^+)$ is the restriction of $\hat{C}(\Gamma_t)$ to $\bar{\Gamma}_t^+$. The space $\hat{C}(\Gamma_t)$ is a closed subspace of the Banach space $C(\Gamma_t)$ of all continuous functions on Γ_t equipped with the sup-norm on Γ_t . Therefore $\hat{C}(\bar{\Gamma}_t^+)$ may be regarded as a Banach space for any t in (0, 1].

If $PP(U_t^+)=\{0\}$ for any 0 < t < 1, then the proposition trivially holds. If $PP(U_{t_0}^+)\neq\{0\}$ for some t_0 in (0, 1], then there exists a positive solution h in $PP(U_{t_0}^+)$. Take any t in $(0, t_0)$. Then we have h > 0 on $U_t^+ \cup \Gamma_t^+$. We choose any s fixed in (0, t) and any r in (0, s). Denote by $D_{s,r}h$ the solution of (1) on $U_s^+ \setminus \overline{U}_r^+$ with boundary values h on Γ_s^+ and zero on $\partial(U_s^+ \setminus U_r^+) \setminus \Gamma_s^+$. Then the minimum principle yields that $h \ge D_{s,r}h$ on $U_s^+ \setminus \overline{U}_r^+$ for every r in (0, s). Hence we have $h \ge D_s h \equiv \lim_{r \to 0} D_{s,r}h$ on U_s^+ . We also denote by $K_s h$ the solution of (1) on $U_t^+ \setminus \overline{U}_s^+$ with boundary values h on Γ_s^+ and zero on $\partial(U_t^+ \setminus U_s^+) \setminus \Gamma_s^+$. Then $K_s h < h$ on $U_t^+ \setminus \overline{U}_s^+$. Setting $v(x) = D_s h$ on U_s^+ and $v(x) = K_s h$ on $U_t^+ \setminus U_s^+$, v(x) is a positive supersolution of (1) but not a solution of (1) on U_t^+ . Therefore there exists the Green's function of (1) on U_t^+ for any t in (0, t_0). We fix any such t in (0, t_0) and take any s in (0, t).

For any u in $PP(U_t^+)$, we set

$$\tau u \equiv u - D_s u. \tag{8}$$

Then we have $u - D_s u \ge 0$ on U_s^+ . The mapping τ given by (8) is a positive, homogeneous and additive operator of $PP(U_t^+)$ into $PP(U_s^+)$.

We now show that τ is injective, i.e. if $\tau u = \tau v$ on U_s^+ fo some u, v in $PP(U_t^+)$, then $w \equiv u - v = 0$ on U_t^+ . For this it sufficies to show that w = 0 on Γ_s^+ by the minimum principle. Suppose that $w \neq 0$ on Γ_s^+ . Considering -w instead of w if necessary, we assume that $\sup_{\Gamma_s^+} w > 0$. Then there exists a point x_s^0 in Γ_s^+ with $w(x_s^0) > 0$. We set $c \equiv \inf\{\lambda \in R : \lambda h \ge w$ on $\Gamma_s^+\}$. Since u + v > w on Γ_s^+ , c is a positive finite constant by Lemma 3. Also since $ch - w \ge 0$ on $\partial(U_t^+ \setminus U_s^+)$, the minimum principle yields that ch - w > 0 on $U_t^+ \setminus \overline{U}_s^+$. Owing to the identity $w = D_{s,r}w$ on Γ_s^+ , $ch - D_{s,r}w \ge 0$ is valid on $\partial(U_s^+ \setminus U_r^+)$ and hence on $U_s^+ \setminus \overline{U}_r^+$. As $r \to 0$ we obtain that $ch - D_s w \ge 0$ on U_s^+ . Also, since $\tau u = \tau v$ on U_s^+ , the identity $w = D_s w$ on U_s^+ implies that $ch - w \ge 0$ on U_s^+ . Therefore $ch - w \ge 0$ on U_t^+ . The minimum principle yields that $ch - w \ge 0$ on U_s^+ . Therefore $ch - w \ge 0$ on U_t^+ . The minimum principle yields that $ch - w \ge 0$ on U_s^+ . Therefore $ch - w \ge 0$ on U_t^+ . The minimum principle yields that $ch - w \ge 0$ on U_s^+ . Therefore $ch - w \ge 0$ on U_t^+ . The minimum principle yields that $ch - w \ge 0$ on U_s^+ . Hence

$$w \le c(1 - \frac{1}{c_1}(1 - \frac{w(x_s^0)}{ch(x_s^0)}))h$$

on Γ_s^+ . But this contradicts the definition of c. Thus we have w(x)=0 on Γ_s^+ and a fortiori τ is injective.

We next show that τ is surjective. We show that there exists a function u in $PP(U_t^+)$ with $\tau u = v$ for any v in $PP(U_s^+)$. Take an r in (0, s)and for a given φ in $\widehat{C}(\overline{\Gamma}_r^+)$ consider the solution $K\varphi$ of (1) on $U_t^+ \setminus \overline{U}_r^+$ with boundary values φ on Γ_r^+ and zero on $\partial(U_t^+ \setminus U_r^+) \setminus \Gamma_r^+$. Then K is a linear and order-preserving mapping of $\widehat{C}(\overline{\Gamma}_r^+)$ into the class of solutions of (1) on $U_t^+ \setminus \overline{U}_r^+$ with boundary values zero on $\partial(U_t^+ \setminus U_r^+) \setminus \Gamma_r^+$.

For any φ in $\widehat{C}(\overline{\Gamma}_r^+)$ we consider the operator T given by

$$T\varphi = D_s(K\varphi|_{\Gamma_s^*}).$$

Then T is a linear operator of $\hat{C}(\overline{\Gamma}_r^+)$ into itself which is also orderpreserving. We fist suppose that the equation

$$\varphi - T\varphi = v \quad \text{on} \quad \Gamma_r^+$$
(9)

is solved by a function φ in $\widehat{C}(\overline{\Gamma}_r^+)$ with $\varphi \ge 0$ on Γ_r^+ for a given v in $PP(U_s^+)$. We set

$$u = \begin{cases} K\varphi & \text{on} & U_t^+ \setminus U_r^+ \\ D_s K\varphi + v & \text{on} & \overline{U}_s^+. \end{cases}$$

We observe that $K\varphi - (D_s K\varphi + v)$ is equal to $\varphi - (T\varphi + v) = 0$ on Γ_r^+ in view of (9) and is equal to $K\varphi - (K\varphi + 0) = 0$ on Γ_s^+ . Therefore $K\varphi - (D_s K\varphi + v)$ is a solution of (1) on $U_s^+ \setminus \overline{U}_r^+$ with boundary values zero on $\partial (U_s^+ \setminus U_r^+)$. Hence $K\varphi = D_s K\varphi + v$ on $U_s^+ \setminus \overline{U}_r^+$. Therefore u is a well defined solution of (1) on U_t^+ . Since $K\varphi = u$ on Γ_s^+ , $D_s K\varphi = D_s u$ on U_s^+ . Thus we have $u - D_s u = v$, i.e. $\tau u = v$ on U_s^+ . Hence τ is surjective.

It remains to solve the integral equation (9) for a given $v \in PP(U_s^+)$. We set $c = \inf\{c_0 > 0: c_0h \ge v \text{ on } \Gamma_r^+\}$ which is finite and positive by Lemma 3. Then $ch \ge v$ on Γ_r^+ . Since h > 0 on Γ_t^+ , h > Kh on $U_t^+ \setminus \overline{U}_r^+$ in view of the minimum principle. In particular we have h > Kh on Γ_s^+ . This inequality yields that $h \ge D_s h > D_s Kh$ on U_s^+ . Again applying Lemma 3 to solutions $h - D_s Kh$ and h, there exists a constant $c_1 > 1$ such that $h \le c_1(h - Th)$ on Γ_r^+ . Therefore $Th \le (1 - 1/c_1)h$ on Γ_r^+ and a fortiori we have

$$q \equiv \sup_{\Gamma_r^*} \frac{Th(x)}{h(x)} < 1.$$

From this it follows that $q^n h \ge T^n h$ on Γ_r^+ for any positive integer n. Also T is order-preserving so that the inequality $ch \ge v$ on Γ_r^+ implies that $cTh \ge Tv$ on Γ_r^+ . Therefore the inequalities $q^n c ||h|| \ge q^n ch \ge cT^n h \ge T^n v$ are valid where $||\cdot||$ is the sup-norm on Γ_r^+ . This implies that $||T^n v|| \le c ||h|| q^n$. Therefore $\varphi = \sum_{n=0}^{\infty} T^n v$ has $\sum_{n=0}^{\infty} c ||h|| q^n$ as its majorant series and a fortiori $\varphi \in \widehat{C}(\overline{\Gamma_r^+})$ with $\varphi \ge 0$ on Γ_r^+ .

References

- [1] A. ANCONA, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier, Grenoble, 28(1978), 169-213.
- [2] C. CONSTANTINESCU and A. CORNEA, Potential Theory on Harmonic Spaces, Springer-Verlag, 1972.
- [3] H. IMAI, *Picard principle for linear elliptic differential operators*, Hiroshima Math. J., **14**(1985), 527-535.

H. Imai

- [4] H. IMAI, On Picard dimensions of nonpositive densities in Schrödinger equations, Complex Variables, (to appear).
- [5] H. IMAI, Nonhomogeneity of Picard dimensions for negative radial densities, Hiroshima Math. J., (to appear).
- [6] F.-Y. MAEDA, *Dirichlet Integral on Harmonic Spaces*, Lecture Notes in Math., 803, Springer-Verlag, 1980.
- [7] M. KAWAMURA and M. NAKAI, A test for Picard principle for rotation free densities, II, J. Math. Soc. Japan, 14(1976), 323-341.
- [8] C. MÜLLER, Spherical Harmonics, Lecture Notes in Math., 17, Springer-Verlag, 1966.
- [9] M. MURATA, Isolated singularities and positive solutions of elliptic equations in \mathbb{R}^n , Preprint Series, 14(1986/1987), 1-39. Matematisk Institut, Aarhus Universitet.
- [10] M. MURATA, On construction of Martin boundaries for second order elliptic equations, Publ. RIMS, Kyoto Univ., 26(1990), 585-627.
- [11] M. NAKAI, A test for Picard principle, Nagoya Math. J., 56(1974), 105-119.
- [12] M. NAKAI, Picard principle and Riemann theorem, Tôhoku Math. J., 28(1976), 277-292.
- [13] M. NAKAI and T. TADA, Monotoneity and homogeneity of Picard dimensions for signed radial densities, NIT Sem. Rep. Math., 99(1993), 1-51.
- [14] Y. PINCHOVER, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators, Preprint.
- [15] T. TADA, The Martin boundary of the half disk with rotation free densities. Hiroshima Math. J., 16(1986), 315-325.
- [16] T. TADA, Nonhomogeneity of Picard dimensions of rotation free hyperbolic densities, Hiroshima Math J., (to appear).

Department of Mathematics Daido Institute of Technology Takiharu, Minami Nagoya 457, Japan