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0. Introduction

The dual relationships among the equations are given by the Legendre
transformation in the classical theory of differential equations and it is
useful to solve some type of differential equations [5]. However situa-
tions are not so clear in the classical theory as usual. So Izumiya estab-
lishes the principle of duality among first order ordinary differential equa-
tions with complete solutions [6]. Our purpose in this note is to general-
ize the result for systems of first order partial differential equations with
complete solutions.

The geometrical theory of first order partial differential equations is
described natually in the context of contact geometry, which can be con-
sidered as a generalization of projective geometry ([1], [2]). A particular
aspect of projective geometry is the principle of duality. So we may
expect that some type of duality holds also among first order partial
differential equations.

In \S 1 we shall prepare some basic notions and construct the frame-
work. In \S 2 we shall establish the principle of duality among pairs of
completely integrable system of first order partial differential equations
and its complete solution. In the special case of holonomic systems of
first order partial differential equations, we can assert a more strong
result (i.e. the principle of duality among completely integrable holonomic
systems of first order partial differential equations themselves), which is
discussed in \S 3.

All arguments should be understood locally and all maps considered
here are differentiate of class C^{\infty}-

1. Basic notions

In this section we shall state our basic notions. A system of partial
differential equations of first order (or briefly, an equation) is a submer-
sion germ F:(J^{1}(R^{n}-R), z_{1}) -arrow(R^{d}, 0) , 1\leq d\leq n , on the 1-jet space of
functions of n-variables. If d=n, we call it an holonomic system of par-
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tial differential equations of first order (or briefly, an holonomic equation).
Let \theta be the canonical contact form on J^{1}(R^{n}, R) which is given by \theta=

dy- \sum_{i=1}^{n}p_{i}dx_{i} , where (x, y, p) are canonical coordinates of J^{1}(R^{n}. R) . We
define a geometric solution of F=0 to be a Legendrian immersion germ i :
(L, q_{0}) - (J^{1}(R^{n}, R), z_{0}) such that i(L)\subset F^{-1}(0) , where the Legendrian
immersion germ is an immersion i:(L, q_{0})arrow J^{1}(R^{n}. R) of an n-dimen-
sional manifold such that i^{*}\theta=0 . For a Legendrian immersion germ i :
(L, q_{0})arrow(J^{1}(R^{n}, R) , z_{0}) , q_{0}\in L is said to be a Legendrian singular point if
\pi\circ i is not an immersion at q_{0} , where \pi(x, y, p)=(x, y) . We remark that
q_{0} is a Legendrian non-singular point if and only if \tilde{\pi}\circ i is a local
diffeomorphism at q_{0} , where \overline{\pi}(x, y, p)=x .

An equation F=0 is completely integrable at Zo if there exists an
immersion germ f:(R^{n-d+1}\cross R^{n}, 0)arrow(J^{1}(R^{n}, R), z_{1}) such that Image f\subset

F^{-1}(0) and f|\{c\}\cross R^{n} is a Legendrian immersion germ for any c\in

(R^{n-d+1},0) . In this case f is calld a complete solution of F=0 at z_{0} . An
equation F=0 is completely integrable at Zo in the classical sense if there
exists a function germ f:(R^{n-d+1}\cross R^{n}. (c_{0}, x_{0})) - (R, y_{0}) such that
F(x, f(c, x), \partial f/\partial x(c, x))=0 and rank(df/dd,\partial^{2}f/\partial c_{i}\partial x_{j}) =n-d+1 .

Then we have the following lemma.

Lemma 1. 1 ([7]). For an equation F:(J^{1}(R^{n}. R), z_{0})arrow(R^{d}. 0) , the fot-

lowings are equivalent.

(1) F=0 is completely integrable at Zo in the classical sense.
(2) F=0 has a complete solution f at z_{0} such that f|\{0\}\cross R^{n} is Legen-

drian non-singular.

2. The principle of duality

We use the following generalized Legendre transformation [4] to
express the principle of duality.

Let (x, y, p)=(x_{1^{ }},\cdots, x_{n}, y, p_{1^{ }},\cdots, p_{n}) be a coordinate system of
J^{1}(R^{n}. R) with the contact structure given by \theta=dy-\Sigma_{i=1}^{n}p_{i}dx_{i} . We
adopt another coordinate system (X, Y\backslash P)= ( X_{1} , \cdots , X_{n} , Y. P_{1} , \cdots , P_{n} ) of
J^{1}(R^{n}-R) whose contact structure is given by \Theta=dY-\sum^{n}{}_{i=1}P_{i}dX_{i} . For
any subset I of \{1, \cdots, n\} , we now define a diffeomorphism L_{I} : J^{1}(R^{n}. R)

arrow J^{1}(R^{n}, R) by

X_{I^{C}}=x_{I^{C}} , X_{I}=p_{I} , Y=p_{I}x_{I}-y , P_{I^{C}}=-p_{I^{C}} , P_{I}=x_{I} ,

where I^{c}=\{1, \cdots, n\}\backslash I , x_{I}=\{x_{i}|i\in I\} , X_{I}=x_{I} means that X_{i}=x_{i} for any
i\in I , p_{I}\cdot x_{I}=\Sigma_{i\in I}p_{i}x_{i} and (x_{1}, \cdots, x_{n})=(x_{I}, x_{I^{C}})=(x_{I^{C}}, x_{I}) . We call L_{I} the
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Legendre I -transformation. It is easy to see that L_{I} is a contact
diffeomorphism L_{I} : (J^{1}(R^{n}, R) , \theta) - (J^{1}(R^{n}, R), \Theta) and L_{\{1,\cdots,n\}} is the clas-
sical Legendre transformation.

Let F:(J^{1}(R^{n}-R), z_{1}) - (R^{d}, 0) be an equation. If we apply the
Legendre /-transformation to our equation, we obtain a new equation

F_{I}=F\circ(L_{I})^{-1} : (J^{1}(R^{n}R), Z_{0})arrow(R^{d}, 0) , Z_{0}=L_{I}(z_{)}) ,

in the new coordinate system (X, Y, P) .
Then we have the following simple lemma.

Lemma 2. 1 Let i:(L, q_{0})arrow(J^{1}(R^{n}. R), z_{0}) be a geometric solution of
F=0 . Then L_{I}\circ i : (L, q_{0}) - (J^{1}(R^{n}-R), Z_{0}) , Z=L_{I}(z_{0}) , is a geometric
solution of F_{I}=0 .

Proof. Since L_{I} is a contact diffeomorphism and F_{I}^{-1}(0)=L_{I}(F^{-1}(0)) , it is
easy to see that L_{I}\circ i is a geometric solution of F_{I}=0 . Q. E. D.

Let d be an integer such that 1\leq d\leq n . We denote CI^{tn,d)}(z_{)}) the set
of completely integrable equations F:(J^{1}(R^{n}-R), a)arrow(R^{d}, 0) . We also
denote CS^{(n,d)}(z_{0}) the set of pairs (F, \Gamma_{F}) , where F\in CI^{(n,d)}(z_{0}) and \Gamma_{F} :
(R^{n-d+1}\cross R^{n}, 0)arrow(J^{1}(R^{n}, R) , z_{)}) is a complete solution of F=0 at Zo . We
set II : CS^{(n,d)}(z_{0}) - CI^{(n,d)}(z_{\}}) by \Pi((F, \Gamma_{F}))=F . We denote \Gamma_{F}(c, t)=

(x^{F}(c, t) , y^{F}(c, t) , p^{F}(c, t)) for (c, t)\in(R^{n-d\dagger 1}\cross R^{n}\backslash 0) .
Then we define 2^{2^{n}}-1 subsets of CS^{(n,d)}(z_{)}) as follows:

CS_{0}^{(n,d)}(z_{)})=\{(F, \Gamma_{F})\in CS^{(n,d)}(z_{1})|

\partial(x_{K^{C}}^{F}, p_{K}^{F})/\partial(t)|_{0}\neq 0 for any K\subset\{1, \cdots, n\}\}

and

cs\downarrow_{\{j_{1},\cdots J_{l}\}(z_{)})=\{(F,\Gamma_{F})\in CS^{(n,d)}(z_{)})|}^{nd)},

\partial(x_{f_{t}^{c}}^{F}, p_{Ji}^{F})/\partial(t)|_{0}=0 for i=1, \cdots , l and
\partial(x_{K^{C}}^{F}, p_{K}^{F})/\partial(t)|_{0}\neq 0 for any K\subset\{1, \cdots, n\} such that K\not\in\{J_{1^{ }},\cdots, J_{l}\}\} ,

where l=1 , \cdots , 2^{n}-1 , J_{i}\subset\{1, \cdots, n\} , J_{i}\neq J_{j}(i\neq j) and \partial(x_{K^{C}}^{F}, p_{K}^{F})/\partial(t)|_{0} is the
Jacobian of the map t=(t_{1^{ }},\cdots, t_{n}) - (x_{K^{C}}^{F}(0, t), p_{K}^{F}(0, t)) at t=0.

Let L_{I}^{*} : (J^{1}(R^{n}, R) , \Theta) - (J^{1}(R^{n}-R), \theta) be the Legendre I-transfor-
mation from the coordinates (X, Y. P) to the coodinates (x, y, p) . Then
we can check that L_{I}^{*}\circ L_{I}=id and L_{I}\circ L_{I}^{*}=id . Let F:(J^{1}(R^{n}. R), Z_{0})arrow

(R^{d}, 0) be an equation in the coordinate system (X, Y. P). Then we
obtain a new equation F_{I}^{*}=F\circ(L_{I}^{*})^{-1} : (J^{1}(R^{n}, R), z_{0})arrow(R^{d}, 0) , z_{)}=L_{I}^{*}(Z_{0}) ,
in the coordinate system (x, y, p) .

We denote *CS^{(n,d)}(Z_{0}) the set of pairs (F, \Gamma_{F}) of a completely
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integrable equation F : (J^{1}(R^{n}, R) , Z_{0})arrow(R^{d}, 0) and its complete solution
\Gamma_{F} at Z_{0} in the coordinate system (X, Y\neg. P) . We also define 2^{2^{n}}-1 subsets
*CS6^{n,d)}(Z_{0}) and *CS\mathfrak{l}_{tJ1J\iota 1\}(Z_{0})}^{n,d)},,\cdots, of *CS^{(n,d)}(Z_{0}) in exactly the same
definition as those of the above.

Then we have the following lemma.

Lemma 2. 2 (1) CS^{(n,d)}(z_{0}) is a disjoint union of CS6^{n,d)}(z_{0}) and
CS\mathfrak{l}_{\{J_{1}^{d)}\cdots.J\iota\}(a)}^{n}," , where l=1 , \cdots , 2^{n}-1 , f_{i}\subset\{1, \cdots, n\} and J_{i}\neq Jj(i\neq j) .

(2) *CS^{(n.d)}(Z_{0}) is a disjoint union of *CS6^{n,d)}(Z_{0}) and *CSf_{\{f_{1},\cdots,ft\}(Z_{0})}^{n,d)}, ,

where l=1, \cdots , 2^{n}-1 , J_{i}\subset\{1, \cdots, n\} and J_{j}\neq Jj(i\neq j) .

Proof. We only consider (1). By the definitions, CS6^{n,d)}(z_{I}) and
CS\mathfrak{l}_{\{J_{1},\cdots,J\iota\}(z_{1})}^{n,d)}, are disjoint subsets of CS^{(n,d)}(a) . So it is enough to show
that any element of CS^{(n,d)}(z_{0}) belongs to one of CS6^{n,d)}(z_{0}) and
cs\mathfrak{t}_{\{J1J\iota\}(a)}^{n,d)},,\cdots, .

For (F, \Gamma_{F})\in CS^{(n,d)}(z_{0}) , we denote \Gamma_{F,C}(t)=\Gamma_{F}(c, t) . Because L_{0}=

Image \Gamma_{F.0}(t) is a Legendrian submanifold of J^{1}(R^{n}, R) , by Arnold
-Zakalyukin theory ([3], Corollary 20. 2) there exist a subset K\subset\{1, \cdots, n\}

and a function germ S_{0}(x_{K^{C}}, p_{K}) such that
L_{0}=\{(x_{K^{c}},-\partial S_{0}/\partial p_{K},S_{0}-\langle\partial S_{0}/\partial p_{K}, p_{K}\rangle,\partial S_{0}/\partial_{X_{K^{C}}},p_{K})|(x_{K^{C}}, p_{K})\in R^{n}\} .

Then there exists a function germ S(c, x_{K^{C}}, p_{K}) such that we can
regard the complete solution as follows:

\Gamma_{F}(c, x_{K^{C}}, p_{K})=(x_{K^{c}},-\partial S/\partial p_{K},S-\langle\partial S/\partial p_{K},p_{K}\rangle, \partial S/\partial x_{K^{C}}, p_{K}) .

Therefore we get

(F, \Gamma_{F})\in\{(F, \Gamma_{F})|\partial(x_{K^{C}}^{F}, p_{K}^{F})/\partial(t)\neq 0\}

=CS6^{n,d)}(z_{0})\cup(\cup
K\not\in l--1,,\{J_{1}, ,\cdots 2 |J_{l}\}

\ldots n{}_{-1}CS\mathfrak{l}_{\{f_{1}\cdots f\iota\}(z_{1}))}^{n,d)}, .

Q. E. D.

As for the set of completely integrable equations in the classical sense
we can easily get the following as a corollary of Lemmas 1. 1 and 2. 2.

Lemma 2. 3 (1) {F\in CI^{(n,d)}(a)|F=0 is completely integrable at z_{0} in the
classical sense = \Pi(cs6^{n,d)}(z_{)})\cup(\bigcup_{l,\phi\not\in(}=1\cdot _{J_{1},\cdot\cdot,J_{l}I}^{CS\mathfrak{l}^{n}1},2^{n},-1,\{’ J)d,\cdots,J\iota\}(a))) .

(2) {F\in CI^{(n,d)}(z_{)})|F=0 is not completely integrable at z_{1} in the classi-
cal sense} =CI^{tn,d)}(z_{1}) \backslash \Pi(CS6^{n,d)}(z_{)})\cup(\bigcup_{l=1\cdots,2^{\hslash},\phi\not\in} _{t\acute{J}_{1},\cdot\cdot,J\downarrow I}^{{}_{-1}CS\mathfrak{t}_{\{f_{1},\cdots,f\iota\}(z_{1})))}^{n,d)}},,.

Now we have the following duality theorem.
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Theorem 2. 4 Let n, d be integers such that 1\leq d\leq n . For any subset
I\subset\{1, \cdots, n\} , we have one-tO-One correspondences

Df^{n,d)} : CS^{(n,d)}(z_{)}) -arrow*CS^{(n,d)}(Z_{0}) and
*D\}^{n,d)} : *CS^{(n,d)}(Z_{0})- CS^{(n,d)}(z_{)})

defined by

D\}^{n,d)}(F, \Gamma_{F})=(F_{I}, L_{I}\circ\Gamma_{F}) , *D\}^{n,d)}(F, \Gamma_{F})=(F_{I}^{*}. L_{I}^{*}\circ\Gamma_{F}) and
Z =L_{I}(z_{)}) ,

which satisfy

*Df^{n,d)}\circ DI^{n,d)}=id and Df^{n,d)_{\circ}}*Df^{n,d)}=id.

Furthermore there exist disjoint unions of 2^{2^{n}}-1 subsets

CS^{(n,d)}(z_{1})=CS6^{n,d)}(z_{)}) \cup(\bigcup_{l=1} ^{2^{n},-1}J,\subset \mathfrak{l}1,\cdot\cdot n\}" f_{1}\neq Jj(i\neq j)")\prime CS\downarrow_{\{J1}^{n}d,\cdots,J\iota } (z_{1}))

and

*CS^{tn,d)}(Z_{0})=*CS6^{n,d)}(Z_{0}) \cup(\bigcup_{l=1,f_{l}\subset} _{\{1,n\},J}^{2^{n}-1}\cdot" t^{n,d)}\{*CS,f_{1},\cdots,f\iota\}(Z_{0}))’|\neq J_{j}(i\neq j)

such that

D\}^{n,d)}(CS6^{n,d)}(z_{1}))=*CS6^{n,d)}(Z_{0}) ,
D\}^{n,d)}(cs\downarrow_{\{J1J\iota\}(z_{)}))=*CS\mathfrak{l}_{\{tI,f_{1}l,\cdots,[I,f\iota]\}(Z_{0})}^{nd)}}^{n,d)},,\cdots,,

and

*Df^{n,d)}(*CS_{0}^{(n,d)}(Z_{0}))=CS6^{n,d)}(z_{)}) ,
*D\}^{n,d)}(*CSt_{\{\dot{f}_{1}}^{nd)},,\cdots J\iota\}(Z_{0}))=cs\downarrow^{n},\{\mathfrak{l}^{d)}I,f_{1}l,\cdots,[I,J\iota]\}(a) ,

there [I, J]=(I\cup J)\backslash (I\cap J) .

Proof. For any (F. \Gamma_{F} ) \in CS^{(n,d)}(z_{0}) , L_{I}\circ\Gamma_{F} is a complete solution of
F_{I}=0 at Z_{0} by Lemma 2. 1. Then (F_{I}, L_{I}\circ\Gamma_{F})\in*CS^{tn,d)}(Z_{0}) . Then D1^{n.d)}

is a well defined and one-t0-0ne correspondence. *D\}^{n,d)} is also a well
defined and one-t0-0ne correspondence in exactly the same reason.

Since *D\}^{n,d)}\circ D\}^{n,d)}(F, \Gamma_{F})=*D\}^{n,d)}(F_{I}, L_{I^{\circ}}\Gamma_{F})=(F\circ(L_{I}^{*}\circ L_{I})^{-1}-(L_{I}^{*}\circ L_{I})

\circ\Gamma_{F})=(F, \Gamma_{F}) and D\}^{n,d)}\circ*D\}^{n,d)}(F, \Gamma_{F})=D\}^{n,d)}(F_{I}^{*}. L_{I}^{*}\circ\Gamma_{F})=(F\circ(L_{I}\circ L_{I}^{*})^{-1} .
(L_{I}\circ L_{I}^{*})\circ\Gamma_{F})=(F, \Gamma_{F}) , then we have *D\}^{n,d)}\circ D\}^{n,d)}=id and DI^{n,d)}\circ*DI^{n,d)}=

id .
Now we only show the relations for the map D\}^{n,d)} . The relations for

the map *D\}^{n,d)} are shown in the similar way. From the definitions of
DI^{n.d)} , CS6^{n,d)}(z_{)}) and *CS6^{n,d)}(Z_{0}) , it is clear that Df^{n,d)}(CS6^{n,d)}(z_{)}))=
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*CS6^{n,d)}(Z_{0}) .
If D\}^{n,d)}(CSf_{\{J\iota\}}^{n,d)},(z_{)}))=*CSf_{\{k_{i}^{d}}^{n},\{(Z_{0}) for each i=1 , \cdots , l , then we have a

relation D\}^{n,d)}(CS\downarrow_{\{\int^{d}}^{n},’ 1),\cdots,J\iota\}(z_{0}))=*CS\downarrow_{\{K_{1},\cdots,K\iota\}}^{n,d)},(Z_{0}) from the definitions of
CS\mathfrak{l}_{\{J_{1},\cdots,J\iota\}}^{n,d)}.(z_{1}) and *CS\mathfrak{l}_{\{K_{1},\cdots K\iota\}(z_{0})}^{n,d)}, . Therefore it is enough to show that
D\}^{n,d)}(CSf^{n},\{’ J\})d(z_{)}))=*CSf_{\{[I,f]\}}^{n,d)},(Z_{0}) .

Let
D\}^{n,d)}(CSf_{\{f\}}^{n,d)},(z_{)}))=*CSf_{\{K}^{n,d},\downarrow(Z_{0}) ,

where
D\}^{n,d)}(F, \Gamma_{F})=(F_{I}, L_{I^{\circ}}\Gamma_{F}) ,
L_{I}(x, y, p)=(x_{I^{C}}, p_{I}, p_{I}\cdot x_{I}-y, -p_{I^{C}}, x_{I})=(X_{I^{C}}, X_{I}, Y, P_{I^{C}}, P_{I}) ,

CS_{1,lj\}}^{(nd)}(z_{)})=\{(F, \Gamma_{F})\in CS^{(n,d)}(z_{0})|\partial(x_{J^{c}}^{F}, p_{J}^{F})/\partial(t)|_{0}=0 and
\partial(x_{L^{C}}^{F}, p_{L}^{F})/\partial(t)|_{0}\neq 0 for any L\subset\{1, \cdots, n\} such that L\neq J}

and
*CS_{1.\{K}^{(n,d}/(Z_{0})=\{(F, \Gamma_{F})\in*CS^{(n,d)}(Z_{0})|\partial(X_{K^{C}}^{F}, F_{K}^{F})/\partial(t)|_{0}=0 and

\partial(X_{L^{C}}^{F}, P_{L}^{fi})/\partial(t)|_{0}\neq 0 for any L\subset\{1, \ldots, n\} such that L\neq K}.

Therefore \chi_{f^{C}}^{F}=(\chi_{J^{c}\cap I^{c}}^{F} and p_{J}^{F}=(p_{J\cap I}^{F}, p_{J\cap I^{C}}^{F})=

(X_{I\cap f}^{F}, - P_{I^{C}\cap J}^{F}) . Then (x_{J^{C}}^{F}, p_{J}^{F})=(X_{I^{C}\cap J^{C}}^{F}, X_{I\cap J}^{F}, P_{I\cap J^{C}}^{F}, - P_{I^{C}\cap f}^{F}) . Since
\partial(x_{J^{c}}^{F}, p_{J}^{F})/\partial(t)|_{0}=0 , we have

\partial(X_{(I^{C}\cap J^{c})\cup(I\cap J)}^{F}, P_{(I\cap J^{C})\cup(I^{C}\cap J)}^{F})/\partial(t)|_{0}=\partial(X_{K^{C}}^{F}, P_{K}^{F})/\partial(t)|_{0}=0 .

Hence we get K=(I\cap J^{c})\cup(I^{c}\cap J)=[I, J] . Q. E. D.

We show an example.

Example 2. 5 Consider the following equation:

F=x_{1}+p_{1}^{2} : (J^{1}(R^{2}, R) , 0)arrow(R, 0) .

Two of the complete solutions of F=0 are given by

\Gamma_{1}(c, t)=(-t_{1}^{2}, c_{2}, -(2/3)t_{1}^{3}+c_{1}, t_{1}, t_{2})

and
\Gamma_{2}(c, t)=(-t_{1}^{2}, t_{2}+c_{2}, -(2/3)t_{1}^{3}+(1/2)t_{2}^{2}+c_{1}, t_{1}, t_{2}) ,

where c=(c_{1}, c_{2}) is the parameter. Then we see that

(F, \Gamma_{1})\in CS4^{21)},\{\phi,\{1\},\{2\}\}(0) and (F, \Gamma_{2})\in CS4^{21)},\{\phi,\{2\}\}(0) .

We can calculate that
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F_{\{1,2\}}=P_{1}+X_{1}^{2} ,
L_{\{1,2\}^{\circ}}\Gamma_{1}(c, t)=(t_{1}, t_{2}, -(1/3)t_{1}^{3}+c_{2}t_{2}-c_{1}, - t_{1}^{2}, c_{2})

and
L_{\{1,2\}}\circ\Gamma_{2}(c, t)=(t_{1}, t_{2}, -(1/3)t_{1}^{3}+(1/2)t_{2}^{2}+c_{2}t_{2}-c_{1}, - t_{1}^{2}, t_{2}+c_{2}) .

Then we see that
(F_{\{1,2\}}, L_{\{1,2\}^{\circ}}\Gamma_{1})\in*CS4^{21},\{\{1\},\{2\},\{1,2\}\}(0) and
(F_{\{1,2\}}, L_{\{1,2\}^{\circ}}\Gamma_{2})\in*CS4^{21},(\{1\},\{1,2\}\}(0) .

By Theorem 2. 4 we can also see that
(F_{\{1,2\}}, L_{\{1,2\}}\circ\Gamma_{1})=D\}_{1,2}^{2,1}\}(F, \Gamma_{1})\in D\}_{1,2}^{2,1}\downarrow(CS\S_{l\phi,\{1\},\{2\}\}(o))}^{21)},

=*CS4^{21},\{\{1,2\},\{2\},\{1\}\}(0)

and
(F_{\{1,2\}}, L_{\{1,2\}^{\circ}}\Gamma_{2})=D\}_{1.2}^{2,1}f(F, \Gamma_{2})\in D\}_{1,2}^{2,1}\{(CS\mathfrak{x}_{\{\phi,\{2\}\}(0))}^{21)},

=*cs\mathfrak{x}_{\{\{f,2\},\{1\}\}(0)}^{21}, .

As a corollary of the above theorem, we have a characterization of
completely integrable equations.

Corollary 2. 6 Let F be an equation at zo . Then F=0 is completely
integrable at Zo if and only if there exists a subset I\subset\{1, \cdots, n\} such that
F_{I}=0 is completely integrable at Z_{0}=L_{I}(z_{)}) in the classical sense.

Proof Since F=0 is completely integrable at zo , there exists a complete
solution \Gamma_{F} of F=0 such that (F, \Gamma_{F})\in CS^{(n,d)}(z_{0}) . By Lemma 2. 2 there
exist an integer l and subsets J_{i} (i=1, \cdots, l) such that 0\leq l\leq 2^{n}-1 , J_{i}\subset

\{1, \cdots, n\} , J_{i}\neq J_{j} (i\neq j) and (F, \Gamma_{F})\in CS\mathfrak{l}_{\{f_{1},\cdots,f\iota\}(z_{0})}^{n,d)}, . Since 0\leq l\leq 2^{n}-1 ,

there exists a subset I\subset\{1, \cdots, n\} such that I\neq J_{i} for any i=1 , \cdots , l . By
Theorem 2. 4 we have

D\}^{n,d)}(F, \Gamma_{F})=(F_{I}, L_{I}\circ\Gamma_{F})\in D\}^{n,d)}(CS\mathfrak{l}_{t\int^{d}}^{n},’ 1),\cdots,J\iota\}(a))

=*CS\downarrow_{\{tI,f_{1}l,\cdots,[I,J\iota]\}(Z_{0})}^{nd)}, .

Since [I, J]=\phi if and only if I=J, we get [I, J_{i}]\neq\phi for any i=1 , \cdots , l .
Therefore by Lemma 2. 3 F_{I}=0 is completely integrable at Z_{0} in the classi-
cal sense.

Conversely suppose that there exists a subset I\subset\{1, \cdots, n\} such that
F_{I}=0 has a complete solution \Gamma_{F} , of F_{I}=0 at Z_{0} such that (F_{I}, \Gamma_{F},)\in

*CS^{(n,d)}(Z_{0}) . By Theorem 2. 4 we get *D\}^{n,d)}(F_{I}, \Gamma_{F_{1}})\in CS^{(n,d)}(z_{0}) . Since
*D\}^{n,d)}(F_{I}, \Gamma_{F_{I}})=(F_{I}\circ(L_{I}^{*})^{-1}. L_{I}^{*}\circ\Gamma_{F_{J}})=(F\circ(L_{I}^{*}\circ L_{I})^{-1}. L_{I}^{*}\circ\Gamma_{F},)=(F, L_{I}^{*}\circ\Gamma_{F},) ,
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the equation F=0 is completely \overline{1}ntegrable at z_{0} . Q. E. D.

A characterization of completely integrable equations in the classical
sense is given by Izumiya [7] as follows:

An equation F=0 is said to be Clairaut type at zO if there exist smooth
function germs B_{ji} , A_{ik}^{l} : (J^{1}(R^{n}, R) , z_{)}) - R for i , j=1 , \cdots , n;k, l=1 , \cdots , d
such that

\partial F_{l}/\partial x_{i}+p_{i}\partial F_{l}/\partial y=\Sigma_{j=1}^{n}B_{ji}\partial F_{l}/\partial p_{j}+\Sigma_{k=1}^{d}A_{ik}^{l}F_{k}

( i=1 , \cdots , n and l=1 , \cdots , d )

and satisfy that

(1) B_{ji}=B_{ij}

(2) \partial B_{jk}/\partial x_{i}+p_{i}\partial B_{jk}/\partial y+\sum_{l=1}^{n}B_{li}\partial B_{jk}/\partial p_{l}=\partial B_{ji}/\partial x_{h}+p_{k}\partial B_{ji}/\partial y+

\sum_{l=1}^{n}B_{lk}\partial B_{ji}/\partial p_{l} at any z\in(F^{-1}(0), z_{)}) for i , j , k=1 , \cdots , n .

Then we have the following

Theorem 2. 7 ([7]). For an equation germ F=0, the followings are equiv-
alent.

(1) F=0 is Clairaut type at Zo .
(2) F=0 is completely integrable at z_{0} in the classical sense.
Therefore by Corollary 2. 6 and Theorem 2. 7 we have the following.

Corollary 2. 8 Let F be an equation at z_{0} . Then F=0 is completely
integrable at Zo if and only if there exists a subset I\subset\{1, \cdots, n\} such that
F_{I}=0 is Clairaut type at Z_{0}=L_{I}(z_{0}) .

3. The principle of duality for holonomic equations

In the special case of holonomic equations(i.e. d=n) we can show the
following local uniqueness theorem by using the uniqueness of codimension
one foliations, so that we have the principle of duality among the com-
pletely integrable equations themselves.

Proposition 3. 1 Let F:(J^{1}(R^{n}. R), z_{)}) -arrow(R^{n}. 0) be a completely integra-
ble holonomic equation. Let \Gamma_{i} : (R\cross R^{n}, 0)arrow(J^{1}(R^{n}. R), z_{1}) , i=1 , 2 , be
complete solutions of F=0 . Then there exists a diffeomorphism germ \Phi :
(R\cross R^{n}0)arrow(R\cross R^{n}. 0) of the form \Phi(c, t)=(\phi_{1}(c), \phi_{2}(c, t)) such that
\Gamma_{1}\circ\Phi=\Gamma_{2} .

So we naturally introduce the following equivalence relation among
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complete solutions. Let F:(J^{1}(R^{n}. R), z_{)}) - (R^{n}, 0) be a completely inte-
grable holonomic equation. Let \Gamma_{i} : (R\cross R^{n}, 0)arrow(J^{1}(R^{n}, R), a) , i=1,2 ,

be complete solutions of F=0. We say that \Gamma_{1} and \Gamma_{2} are equivalent if
there exists a diffeomorphism germ \Phi:(R\cross R^{n}, 0)arrow(R\cross R^{n}, 0) of the
form \Phi(c, t)=(\phi_{1}(c), \phi_{2}(c, t)) such that \Gamma_{1^{\circ}}\Phi=\Gamma_{2} .

Let CIH^{(n)}(z_{)})=CI^{(n,n)}(z_{0}) , which is the set of complete integrable
holonomic equations at zo . By using the equivalence relation CIH^{(n)}(z_{0})

can be identified with CS^{(n,n)}(z_{1}) from the local uniqueness theorem. Then
we can define 2^{2^{n}}-1 subsets CIH_{0}^{(n)}(z_{)}) and CIH\}_{\{\}_{1},\cdots,J_{l}\}}^{n},(a) of CIH^{(n)}(z_{0}) in
the similar way as the definition of the subsets CSA^{n.d)}(z_{0}) and
CSt^{n},\{’ J1)d,\cdots,J\iota\}(a) of CS^{(n,d\rangle}(z_{I}) .

We denote *CIH^{(n)}(Z_{0}) the set of complete integrable holonomic equa-
tions (J^{1}(R^{n}, R) , Z_{0}) -arrow(R^{n}, 0) in the coordinate system (X, Y. P). We
also define 2^{2^{n}}-1 subsets *CIH_{0}^{(n)}(Z_{0}) and *CIHl_{\{}^{n},41,\cdots.J_{J}I(Z_{0})of*CIH^{(n)}(Z_{0})

in exactly the same definition as those of the above.
Then by Lemma 2. 2 we have the following

Lemma 3. 2 (1) CIH^{(n\rangle}(z_{0}) is a disjoint union of CIH_{0}^{(n)}(z_{0}) and
CIH\}_{\{}^{n},\}_{1J\iota\}},\cdots,(z_{0}) , where l=1 , \cdots , 2^{n}-1 , J_{i}\subset\{1, \cdots, n\} and J_{i}\neq J_{j}(i\neq j) .

(2) *CIH^{(n)}(Z_{0}) is a disjoint union of *CIH_{0}^{(n)}(Z_{0}) and *CIH1_{t}^{n},\}_{1J\iota\}},\cdots, (Z_{0}) ,

where l=1, \cdots , 2^{n}-1 , J_{i}\subset\{1, \cdots, n\} and J_{i}\neq Jj(i\neq j) .

As for the set of completely integrable holonomic equations in the
classical sense we can get the following by Lemmas 2. 3. and 3. 2.

Lemma 3. 3 (1) {F\in CIH^{(n\rangle}(z_{)})|F=0 is completely integrable at Zo in the
classical sense} =CIH_{0}^{(n)}(z_{0}) \cup(\bigcup_{\phi\not\in t\acute{J}_{1},,J_{l}I}l=1,2^{n}-1CIH\}_{\{}^{n},41,\cdots,J\iota\}(z_{)})) .

(2) {F\in CIH^{(n)}(z_{0})|F=0 is not completely integrable at Zo in the classi-
cal sense} =\cup l \phi\in\{J_{1},,J_{l}\}’ J=1,,,2^{n}{}_{-1}CIH1_{t}^{n}\}_{1},\cdots,\iota\}(z_{)}) .

Now we have the following duality theorem by Theorem 2. 4.

Theorem 3. 4 Let n be an integer. For any subset I\subset\{1, \cdots, n\} , we
have one-tO-One correspondences

DH4^{n)} : CIH^{(n)}(z_{)})arrow*CIH^{(n)}(Z_{0}) and
*DH4^{n)} : *CIH^{(n)}(Z_{0})arrow CIH^{(n)}(z_{\}})

defined by

DH\}^{n)}(F)=F_{I}, *DH\}^{n)}(F)=F_{I}^{*} and Z_{0}=L_{I}(a) ,

which satisfy *DH\}^{n)}\circ DH\}^{n)}=id and DH\}^{n)}\circ*DH\}^{n)}=id.
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Furthermore there exist disjoint unions of 2^{2^{n}}-1 subsets

CIH^{(n)}( a)=CIH_{0}^{(n)}(a)\cup(\bigcup_{l=1,J_{\iota}\subset} _{(1,\cdot\cdot nI,J_{t}\neq J_{j}(i\neq j)}^{2^{n},-1}\cdot\cdot,"’\cdots,JCIH\}_{\{}^{n}\}_{1}\iota\}(a))

and

*CIH^{tn)}(Z_{0})=*CIH_{0}^{(n)}(Z_{0})\cup(\cup J_{t}\subset l=,\{\begin{array}{lll}1 ,2 1, \prime n\end{array}\}..-,1^{*CIHl_{\{}^{n}4\cdots,J\iota\}(Z_{0}))}" 1l

such that

DH4^{n)}(CIH_{0}^{(n)}(a))=*CIH_{0}^{(n)}(Z_{0}) ,
DH 4^{n)}(CIH1_{t}^{n},\}_{1},\cdots,\int_{l}\}(a))=*CIH1_{t}^{n},lI,f_{1}l,\cdots,[I,J\iota]\}(Z_{0})

and

*DH4^{n)}(*CIH_{0}^{(n)}(Z_{0}))=CIH_{0}^{(n)}(a) ,
*DH4^{n)}(*CIHl_{t}^{n},41,\cdots,f_{l}\}(Z_{0}))=CIH1_{\{}^{n},lI,f_{1}l,\cdots,[I,f\iota]\}(a) ,

where [I, J]=(I\cup J)\backslash (I\cap J) .

Proof We only have to check that DH\}^{n)} and *DH\}^{n)} are well-defined
maps. By the difinition DH4^{n)}(F)=F_{I}=F\circ L_{I-}^{-1} For any F\in CIH^{(n)}(z_{0}) ,
L_{I}\circ\Gamma_{F} is the unique complete solution of F_{I}=0 by Lemma 2. 1 and Proposi-
tion 3. 1. Then F_{I}\in*CIH^{(n)}(Z_{0}) . Then DH\}^{n)} is well-defined. *DH4^{n)} is
also a well-defined in exactly the same reason. Q. E. D.

Finally we show an example.

Example 3. 5 Consider the following holonomic equation:

F=(x_{1}-x_{2}, p_{1}+p_{2}-2x_{1}) : (J^{1}(R^{2}, R), 0)arrow(R^{2},0) .

The complete solution is given by

\Gamma_{F}(c, t_{1}, t_{2})=((t_{1}+t_{2})/2, (t_{1}+t_{2})/2, ((t_{1}+t_{2})/2)^{2}+c , t_{1} , t_{2}) ,

where c is parameter. Then (F, \Gamma_{F})\in CSf^{22)},\{\emptyset\}(0) and hence F\in CIH_{1,\{\phi\}}^{(2)}(0) .

Therefore F=0 is not completely integrable at 0 in the classical sense
and F_{\{1\}}=0 , F_{\{2\}}=0 and F_{\{1,2\}}=0 are completely integrable at 0 in the clas-
sical sense by Lemma 3. 3 and Theorem 3. 4.
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