Note on H-separable Frobenius extensions

Kozo SUGANO (Received April 28, 1994)

Throughout this paper A will be a ring with the identity element 1, B a subring of A containing 1, C the center of A and D will be the centralizer of B in A. We will use the same notation as the author's previous paper [9]. For any subset X of A and any A-A-module M we will write

$$V_A(X) = \{ a \in A \mid ax = xa \text{ for any } x \in X \}, \text{ and}$$
$$M^A = \{ m \in M \mid am = ma \text{ for any } a \in A \}$$

respectively. Thus we have $D=A^B=V_A(B)$ and $(A \otimes_B A)^A = \{\sum a_i \otimes b_i \in A \otimes_B A \mid \sum xa_i \otimes b_i = \sum a_i \otimes b_i x \text{ for any } x \in A\}.$

A is said to be a Frobenius extension of B in the case where A is left B-f.g. (finitely generated) projective and there exists a left A and right B-isomorphism of A to Hom($_{B}A$, $_{B}B$). This is the case if and only if there exist finite x_{k} , $y_{k} \in A$ and $h \in \text{Hom}(_{B}A_{B}, _{B}B_{B})$ such that $x = \sum h(xx_{k})y_{k} = \sum x_{k}h(y_{k}x)$ hold for each $x \in A$. In this case we call the set $\{x_{k}, y_{k}, h\}$ a Frobenius system, and the map h a Frobenius homomorphism, of A|B respectively.

Now for any $h \in \text{Hom}(_{B}A_{B}, _{B}B_{B})$ we can define a multiplication among the elements of $A \otimes_{B}A$ by $(a \otimes b)(c \otimes d) = ah(bc) \otimes d$ for any $a, b, c, d \in$ A (See Proposition 4.1 [2]). This multiplication is well defined, and by this definition we can make $A \otimes_{B}A$ an associative ring which does not always have the identity element. On the other hand we can define the following maps

> $\phi_r: A \otimes_{B} A \longrightarrow \operatorname{Hom}(A_B, A_B)$ $\phi_l: A \otimes_{B} A \longrightarrow \operatorname{Hom}({}_{B}A, {}_{B}A)$

by $\phi_r(a \otimes b)(x) = ah(bx)$ and $\phi_l(a \otimes b)(x) = h(xa)b$ for any $a, b, x \in A$. Direct calculation shows that ϕ_r and ϕ_l are ring, and opposite ring, homomorphisms respectively. Now we have

Lemma 1 For an $h \in Hom(_{B}A_{B}, _{B}B_{B})$ the following conditions are equivalent;

(i) A is a Frobenius extension of B with h a Frobenius homomorphism

K. Sugano

- (ii) ϕ_r defined as above is an isomorphism
- (iii) ϕ_i defined as above is an isomorphism
- (vi) $A \otimes_{B} A$ has the identity element as a ring defined as above.

If $\sum x_k \otimes y_k$ is the identity of $A \otimes_B A$, then $\{x_k, y_k, h\}$ is a Frobenius system of A|B.

Proof. (i) \models (ii) and (i) \models (iii) are well known (See e.g. the proof of Theorem 1 on page 94 [5]), and (ii) \models (vi) and (iii) \models (vi) are obvious. Let $\sum x_k \otimes y_k$ be the identity of $A \otimes_B A$. Then for any $x \in A$ we have $1 \otimes x = (1 \otimes x)(\sum x_k \otimes y_k) = \sum h(xx_k) \otimes y_k$ and $x \otimes 1 = (\sum x_k \otimes y_k)(x \otimes 1) = \sum x_k h(y_k x) \otimes 1$. Then we have $x = \sum h(xx_k)y_k = \sum x_k h(y_k x)$. Thus we have proved (vi) \models (i) and the last assertion.

There are some special maps as follows

 $\eta : A \otimes_{B} A \longrightarrow \operatorname{Hom}(_{c}D, _{c}A) \qquad \eta(a \otimes b)(x) = axb$ $\eta_{\iota} : D \otimes_{c} A \longrightarrow \operatorname{Hom}(_{B}A, _{B}A) \qquad \eta_{\iota}(d \otimes a)(x) = dxa$ $\eta_{\iota} : D \otimes_{c} D \longrightarrow \operatorname{Hom}(_{B}A_{B}, _{B}A_{B}) \qquad \eta_{\iota}(d \otimes e)(x) = dxe$

for a, b, $x \in A$ and d, $e \in D$. $\eta_r : A \otimes_c D \to \text{Hom}(A_B, A_B)$ is defined similarly. η , η_i and η_r are A-A-maps and η_i is a D-D-map. A is an H-separable extension of B if and only if η is an isomorphism and D is C-f.g. projective. This is the case if and only if $1 \otimes 1 = \sum d_i \sum x_{ij} \otimes y_{ij}$ for some $d_i \in D$ and $\sum x_{ij} \otimes y_{ij} \in (A \otimes_B A)^A$. We call such set $\{d_i, \sum x_{ij} \otimes y_{ij}\}$ an H-system of A|B. In the case where A is an H-separable extension of B all the above maps are isomorphisms. The next lemma is an immediate consequence of Corollary 3 [7].

Lemma 2 In the case where A is left B-f. g. projective the following conditions are equivalent :

- (i) A is an H-separable extension of B
- (ii) η_l is an isomorphism and D is C-f. g. projective.

(iii) There exists an A-A-split epimorphism of finite direct sum of copies of A to Hom $(_{B}A, _{B}A)$.

Let $\{x_k, y_k, h\}$ be a Frobenius system of A|B and $\sum a_j \otimes b_j$ an arbitrary in $(A \otimes_B A)^A$. For any $x \in A$ we have $\sum xa_jh(b_j) = \sum a_jh(b_jx)$ and for any $b \in B \sum ba_jh(b_j) = \sum a_jh(b_jb) = \sum a_jh(b_j)b$. Thus we have $\sum a_jh(b_j)$ εD , and $\sum a_j \otimes b_j = \sum x_kh(y_ka_j) \otimes h(b_jx_l)y_l = \sum x_kh(y_ka_j)h(b_jx_l) \otimes y_l =$ $\sum x_kh(y_ka_jh(b_jx_l)) \otimes y_l = \sum a_jh(b_jx_l) \otimes y_l = \sum x_la_ih(b_j) \otimes y_l \in \sum x_lD \otimes y_l$. Thus we have $(A \otimes_B A)^A \subset \sum x_kD \otimes y_k$. Since $\sum x_k \otimes y_k \in (A \otimes_B A)^A$, the converse inclusion is clear. Therefore we have $(A \otimes_B A)^A = \sum x_kD \otimes y_k$ (See page 370 [1]). By this equality we have

106

Theorem 1 Let A be a Frobenius extension of B with a Frobenius system $\{x_k, y_k, \tilde{h}\}$. Then the following conditions are equivalent;

(i) A is an H-separable extension of B.

(ii) There exist finite d_i , $e_i \in D$ such that $1 \otimes 1 = \sum d_i x_k e_i \otimes y_k$ in $A \otimes_B A$.

If there exist d_i , $e_j \in D$ which satisfy the condition of (ii), then we have the following assertions

(1) $\sum d_i \otimes e_i \in (D \otimes_c D)^D$, and we have $\tilde{h}(x) = \sum d_i x e_i$ for each $x \in A$.

(2) We can obtain a Frobenius system $\{d_i, e_i, h\}$ of D|C, where h is defined by $h(d) = \sum x_k dy_k$ for each d in D.

Proof. Since A is an H-separable extension of B if and only if $1 \otimes 1 \varepsilon$ $D(A \otimes_B A)^A$, we have the equivalence of (i) and (ii) immediately by $(A \otimes_B A)^A = \sum x_k D \otimes y_k$. Assume (ii). Then $\sum x_k e_i \otimes y_k \varepsilon$ $(A \otimes_B A)^A$, and for each x in A we have $1 \otimes x = \sum d_i x_k e_i \otimes y_k x = \sum d_i x x_k e_i \otimes y_k$, and $1 \otimes \tilde{h}(x)$ $= \sum d_i x x_k e_i \otimes \tilde{h}(y_k)$. But $\tilde{h}(y_k) \varepsilon B$ and $e_i \varepsilon D$. Hence we have $\tilde{h}(x) =$ $\sum d_i x x_k e_i \tilde{h}(y_k) = \sum d_i x x_k \tilde{h}(y_k) e_i = \sum d_i x e_i \varepsilon B$. Now for each $d \varepsilon D$ we have $\sum dd_i x e_i = \sum d_i x e_i d$. Then since η_t is an isomorphism by (i), we have $\sum dd_i \otimes e_i = \sum d_i \otimes e_i d$ in $D \otimes_c D$. Thus we have proved (1). Next we will prove (2). The map h defined in (2) is in $\operatorname{Hom}(_cD, cC)$, since $\sum x_k D y_k$ $\subseteq C$. Then since $\sum d_i x e_i \varepsilon V_A(D)$ for each $x \varepsilon A$, we have $\sum d_i h(e_i d) =$ $\sum d_i x_k e_i dy_k = \sum dd_i x_k e_i y_k = d \sum \tilde{h}(x_k) y_k = d$. Similarly we have $\sum \tilde{h}(dd_i) e_i = d$. Thus $\{d_i, e_i, h\}$ is a Frobenius system of D|C.

Theorem 2 Assume $B = V_A(D)$, and let D be a Frobenius C-algebra with a Frobenius system $\{d_i, e_i, h\}$. Then the following three conditions are equivalent

(i) A is an H-separable extension of B.

(ii) There exist finite x_k , $y_k \in A$ such that $1 \otimes 1 = \sum d_i \otimes x_k e_i y_k$ in $D \otimes_c A$.

(iii) There exists $\sum x_k \otimes y_k \in (A \otimes_B A)^A$ such that $1 \otimes 1 = \sum d_i x_k e_i \otimes y_k$ in $A \otimes_B A$.

In the case where there exist x_k , $y_k \in A$ which satisfy the condition of (ii), we have the following assertions;

(1) $\sum x_k \otimes y_k \in (A \otimes_B A)^A$ and $h(d) = \sum x_k dy_k$ holds for any $d \in D$.

(2) A is a Frobenius extension of B with a Frobenius system $\{x_k, y_k, \tilde{h}\}$, where \tilde{h} is defined by $\tilde{h}(x) = \sum d_i x e_i$ for each $x \in A$.

Proof. (iii) \Rightarrow (i) is obvious, since $\sum x_k e_i \otimes y_k$ is contained in $(A \otimes_B A)^A$. Assume A is an H-separable extension of B, and consider the isomorphism η introduced above. η induces the isomorphism $(A \otimes_B A)^A \cong$

Hom (cD, cC). Therefore there exists $\sum x_k \otimes y_k \in (A \otimes BA)^A$ such that $\eta (\sum x_k \otimes y_k) = h$. Then since $1 = \sum d_i h(e_i) = \sum d_i x_k e_i y_k$ and $\sum d_i x_k e_i \in V_A(D)$ =B, we have in $A \otimes_{B} A$ that $1 \otimes 1 = 1 \otimes \sum d_{i} x_{k} e_{i} y_{k} = \sum d_{i} x_{k} e_{i} \otimes y_{k}$, while in $D \otimes_{c} A$ we have $1 \otimes 1 = \sum d_{i} x_{k} e_{i} y_{k} \otimes 1 = \sum d_{i} \otimes x_{k} e_{i} y_{k}$, since $\sum x_{k} e_{i} y_{k} \in C$. Thus we have (i) \Rightarrow (ii) and (i) \Rightarrow (iii). Now assume (ii). Since $\sum d_i \otimes e_i \in$ $(D \otimes cD)^{D}$, we have also $\sum d_{i}ax_{k}e_{i} \in B$ for each $a \in A$ and k. Hence we can obtain left B-homomorphisms f_k of A to B defined by $f_k(a) =$ $\sum d_i a x_k e_i$ for each $a \in A$, which satisfy $a = \sum d_i a x_k e_i y_k = \sum f_k(a) y_k$ for each $a \in A$. Thus $\{y_k, f_k\}$ forms a dual basis for _BA. Now consider the map η_l of $D \otimes_{c} A$ to $\operatorname{Hom}({}_{B}A, {}_{B}A)$ introduced above. For any $f \in \operatorname{Hom}({}_{B}A, {}_{B}A)$ and $a \in A$ we have $\eta_i(\sum d_i \otimes x_k e_i f(y_k))(a) = \sum d_i a x_k e_i f(y_k) = \sum f_k(a) f(y_k) = \sum f_$ $f(\sum f_k(a)y_k) = f(a)$. Hence we have $\eta_l(\sum d_i \otimes x_k e_i f(y_k)) = f$, which means that η_i is an epimorphism. Next suppose $\sum c_j \otimes a_j \in \text{Ker } \eta_i$. Then $\sum c_j y_k a_j = 0$ and $\sum d_i \otimes x_k e_i \in (D \otimes_c A)^D$ for each k, and we have $\sum c_j \otimes a_j = 0$ $\sum c_j d_i \otimes x_k e_i y_k a_j = \sum d_i \otimes x_k e_i c_j y_k a_j = 0$. Thus η_l is a monomorphism, and we see that η_l is an isomorphism. But D is C-f. g. projective, and A is left B-f. g. projective. Therefore A is an H-separable extension of B by Lemma 2. Thus we have proved (ii) \Rightarrow (i). Now we will prove (1) and (2) of the second assertion under the condition of (ii). For any $d \in D$ we have $d \otimes 1 = \sum dd_i \otimes x_k e_i y_k$, and $h(d) = \sum h(dd_i) x_k e_i y_k = \sum x_k h(dd_i) e_i y_k =$ $\sum x_k dy_k \in C$. Then since $\sum x_k Dy_k \subset C$, we have $h = \eta$ ($\sum x_k \otimes y_k$) ϵ Hom $(_{c}D, _{c}C) \cong (A \otimes_{B}A)^{A}$. Therefore we have $\sum x_{k} \otimes y_{k} \in (A \otimes_{B}A)^{A}$. Since $\sum d_i \otimes e_i \in (D \otimes_c D)^D$, we can define the map \tilde{h} of A to $B (= V_A(D))$ by $\tilde{h}(x) =$ $\sum d_i x e_i$ for each $x \in A$. Then $\sum h(ax_k)y_k = \sum d_i ax_k e_i y_k = \sum d_i x_k e_i y_k a = a$. Similarly we have $\sum x_k h(y_k a) = a$. Thus $\{x_k, y_k, \tilde{h}\}$ is a Frobenius system of A|B.

Proposition 1 Let A be a Frobenius extension of B with a Frobenius system $\{x_k, y_k, \tilde{h}\}$. Consider the following two conditions;

- (i) A is an H-separable extension of B.
- (ii) There exists $\sum d_i \otimes e_i \ \varepsilon (D \otimes cD)^D$ with $1 \otimes 1 = \sum d_i \otimes x_k e_i y_k$ in $D \otimes cA$
- (i) always implies (ii). If $V_A(D)=B$, (i) and (ii) are equivalent.

Proof. Assume (i). By Theorem 1 there exists $\sum d_i \otimes e_i \in (D \otimes_c D)^p$ such that $1 \otimes 1 = \sum d_i x_k e_i \otimes y_k$ holds in $A \otimes_B A$. Then since $\sum x_k e_i y_k \in C$, we have $\sum d_i \otimes x_k e_i y_k = \sum d_i x_k e_i y_k \otimes 1 = 1 \otimes 1$ in $D \otimes_c A$. Thus we have (i) \mapsto (ii). Next let $B = V_A(D)$, and assume (ii). Then for the completely same reason as the proof of (ii) \mapsto (i) of Theorem 2 we see that the map η_l of $D \otimes_c A$ to End($_B A$) is an isomorphism. On the other hand we have d $= \sum dd_i x_k e_i y_k = \sum d_i x_k e_i dy_k$ for each $d \in D$, since $1 = \sum d_i x_k e_i y_k$ and $\sum d_i x_k e_i$ $\varepsilon V_A(D)$. But $\sum x_k e_i dy_k \varepsilon C$, since $\sum x_k \otimes y_k \varepsilon (A \otimes_B A)^A$. Therefore if we define maps g_i by $g_i(d) = \sum x_k e_i dy_k$ for each $d \varepsilon D$ and each i, we have $g_i \varepsilon \operatorname{Hom}(_{c}D, _{c}C)$ and $d = \sum d_i g_i(d)$ for each $d \varepsilon D$. Hence D is C - f.g.projective. Then by Lemma 2 we have (i).

As is introduced in [9] when we write $\{A/B, S/T\}$, we mean that S is a ring containing A as subring with the common identity, and T is a subring of S containing B. In this case we will always write $\tilde{D}=V_s(T)$ and $\tilde{C}=V_s(S)$, the center of S. There exists also the canonical homomorphism $\tilde{\eta}$ of $S \otimes_T S$ to $\operatorname{Hom}(\tilde{c}\tilde{D}, \tilde{c}S)$ defined by $\tilde{\eta}$ $(s \otimes t)(\tilde{d})=s\tilde{d}t$ for $s, t \in$ S and $\tilde{d} \in \tilde{D}$. $\{A/B, S/T\}$ is said to have the centralizer property in the case where $V_s(A)=\tilde{C}, V_s(B)=\tilde{D}$ and $T=V_s(\tilde{D})$ hold. By the same argument as is stated on page 602 [8] we have the next lemma

Lemma 3 Let $\{A|B, S|T\}$ have the centralizer property, and assume that A is an H-separable extension of B. Then we have

(1) The canonical map $i \otimes i$ of $A \otimes_B A$ to $S \otimes_T S$ is a monomorphism, where *i* is the inclusion map of *A* to *S*.

(2) If $\tilde{\eta}$ is a monomorphism, then S is an H-separable extension of T, and we have $(i \otimes i)[(A \otimes_{B} A)^{A}] \subset (S \otimes_{T} S)^{S}$.

Proof. We will give the proof very briefly following the same lines as page 602 [8]. Since $D \otimes_c \tilde{C} \cong \tilde{D}$ via $d \otimes \tilde{c} \to d\tilde{c}$ for $d \in D$ and $\tilde{c} \in \tilde{C}$ we have the natural isomorphism ϕ of $\operatorname{Hom}(_{\tilde{c}}\tilde{D}, _{\tilde{c}}S)$ to $\operatorname{Hom}(_{c}D, _{c}S)$ such that $\phi(f)(d) = f(d)$ for $f \in \operatorname{Hom}(_{\tilde{c}}\tilde{D}, _{\tilde{c}}S)$ and $d \in D$ and the following commutaive diagram;

$$A \otimes_{B} A \xrightarrow{\eta} \operatorname{Hom}(cD, cA)$$

$$\downarrow i \otimes i \qquad \qquad \downarrow i_{*} = \operatorname{Hom}(D, i)$$

$$S \otimes_{T} S \xrightarrow{\tilde{\eta}} \operatorname{Hom}(\tilde{c}\tilde{D}, \tilde{c}S) \xrightarrow{\psi} \operatorname{Hom}(cD, cS)$$

Since $i_*\eta$ is a monomorphism, so is $i \otimes i$. On the other hand we have

$$i_*\eta \ [(A \otimes_B A)^A] = i_*[(\operatorname{Hom}(_{c}D, _{c}A))^A] \subset [\operatorname{Hom}(_{c}D, _{c}S)]^A \\ = \operatorname{Hom}(_{c}D, _{c}V_s(A)) = \operatorname{Hom}(_{c}D, _{c}\tilde{C}) = \phi[\operatorname{Hom}(_{\tilde{c}}\tilde{D}, _{\tilde{c}}\tilde{C})].$$

Therefore if $\tilde{\eta}$ is a monomorphism, we have $(i \otimes i)[A \otimes_B A)^A] \subset (S \otimes_T S)^S$. Then since $D \subset \tilde{D}$, each *H*-system of *A*/*B* is an *H*-system of *S*/*T*. Thus we have (2).

Theorem 3 Let $\{A/B, S/T\}$ have the centralizer property, and assume that A is an H-separable Frobenius extension of B with a Frobenius system

K. Sugano

 $\{x_k, y_k, \tilde{h}\}$. Then S is also an H-separable Frobenius extension of T with a Frobenius system $\{x_k, y_k, \tilde{h}^*\}$ such that $\tilde{h}^*|A = \tilde{h}$.

Proof. Since A is left (and right) B-f.g. projective, S is an H-separable extension of T by Theorem 1.1 [9]. By Theorem 1 there exists $\sum d_i \otimes e_i \ \epsilon (D \otimes_c D)^p$ such that $1 \otimes 1 = \sum d_i x_k e_i \otimes y_k$ in $A \otimes_B A$, and $\{d_i, e_i, h\}$ is a Frobenius system of D|C, where h is defined by $h(d) = \sum x_k dy_k$ for $d \in D$. Then since $\tilde{D} = D\tilde{C}$ and $\sum x_k \otimes y_k \in (A \otimes_B A)^A \subset (S \otimes_T S)^S$ by Lemma 3, if we define a map h^* by $h^*(\tilde{d}) = \sum x_k \tilde{d}y_k$ for $\tilde{d} \in D$, we have $h^* \in Hom(\tilde{c}\tilde{D}, \tilde{c}\tilde{C})$ with $h^*|D=h$, and $\{d_i, e_i, h^*\}$ forms a Frobenius system of $\tilde{D}|\tilde{C}$. On the other hand we have $1 \otimes 1 = \sum d_i \otimes x_k e_i y_k$ in $D \otimes_c A$ by the proof of (i) \models (ii) Proposition 1. The same equality holds also in $\tilde{D} \otimes \tilde{c}S$. Then by Theorem 2 we see that $\{x_k, y_k, \tilde{h}^*\}$ is a Frobenius system of S|T, where $\tilde{h}^*(x) = \sum d_i x e_i$ for any $x \in S$. We have $\tilde{h}^*|A=\tilde{h}$, since $\tilde{h}(x) = \sum d_i x e_i$ for $x \in A$ by Theorem 1 (2).

The next proposition which is the improvement of Theorems 4 and 5 [6] is a modification of Theorems 1 and 2 [4] which were proved by using H-system.

Proposition 2 Let A be an H-separable extension of B. Then we have

(1) Assume that A is a Frobenius extension of B with a Frobenius system $\{x_k, y_k, \tilde{h}\}$, and define a map h by $h(d) = \sum x_k dy_k$ for any $d \in D$. Then for any d_i , $e_i \in D$ such that $\eta_t(\sum d_i \otimes e_i) = \tilde{h} \{d_i, e_i, h\}$ is a Frobenius system of D|C.

(2) Assume that D is a Frobenius C-algebra with a Frobenius system $\{d_i, e_i, h\}$, and define a map \tilde{h} by $\tilde{h}(x) = \sum d_i x e_i$ for each $x \in A$. Then for any x_k , $y_k \in A$ such that η ($\sum x_k \otimes y_k$)=h, $\{x_k, y_k, \tilde{h}\}$ is a Frobenius system of A|B', where $B' = V_A(V_A(B))$.

Proof. (1). Let $d \in D$. We have $\sum d_i h(e_i d) = \sum d_i x_k e_i dy_k = \sum dd_i x_k e_i y_k = \sum d\tilde{h}(x_k)y_k = d$. Similarly we have $d = \sum h(dd_i)e_i$. (2). Let $x \in A$. Then we have $\sum x_k \tilde{h}(y_k x) = \sum x_k d_i y_k x e_i = \sum xx_k d_i y_k e_i = \sum xh(d_i)e_i = x$. Similarly we have $x = \sum \tilde{h}(xx_k)y_k$. Obviously \tilde{h} is a B'-B'-map of A to B'.

References

- [1] K. HIRATA and K. SUGANO; On semisimple extensions and separable extensions over non comutative rings, J. Math. Soc. Japan, 18 (1966), 360-373.
- [2] L. KADISON; Global dimension, tower of algebras, and Jones index of split separable subalgebras with unitality condition, preprint.
- [3] Y. MIYASHITA; On Galois extensions and crossed products, Journal Fac. Sci. Hokkaido Univ., 21 (1970), 97-121.

- [4] T. NAKAMOTO; On QF-extensions in an H-separable exension, Proc. Japan Accad., 50 (1974), 440-443.
- [5] T. ONODERA; Some studies on projective Frobenius extensions, J. Fac. Sci. Hokkaido University, 18 (1964), 89-107.
- [6] K. SUGANO; Separable extensions and Frobenius extensions, Osaka J. Math., 7 (1970), 291-299.
- [7] K. SUGANO; Note on separability of endomorphism rings, J. Fac. Sci. Hokkaido University, 21 (1971), 196-208.
- [8] K. SUGANO; On bicommutators of modules over H-separable extension rings II, Hokkaido Math. J., 20 (1991), 601-608.
- [9] K. SUGANO; On bicommutators of modules over H-separable extension rings III, Hokkaido Math. J., 23 (1994), 277-289.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060 Japan