Note on \boldsymbol{H}-separable Frobenius extensions

Kozo Sugano
(Received April 28, 1994)
Throughout this paper A will be a ring with the identity element $1, B$ a subring of A containing $1, C$ the center of A and D will be the centralizer of B in A. We will use the same notation as the author's previous paper [9]. For any subset X of A and any $A-A$-module M we will write

$$
\begin{aligned}
& V_{A}(X)=\{a \varepsilon A \quad \mid \quad a x=x a \text { for any } x \in X\}, \text { and } \\
& M^{A}=\{m \varepsilon M \mid a m=m a \text { for any } a \varepsilon A\}
\end{aligned}
$$

respectively. Thus we have $D=A^{B}=V_{A}(B)$ and $\left(A \otimes_{B} A\right)^{A}=\left\{\Sigma a_{i} \otimes b_{i} \quad \varepsilon\right.$ $A \otimes_{B} A \mid \Sigma x a_{i} \otimes b_{i}=\Sigma a_{i} \otimes b_{i} x$ for any $\left.x \varepsilon A\right\}$.
A is said to be a Frobenius extension of B in the case where A is left $B-f . g$. (finitely generated) projective and there exists a left A and right B-isomorphism of A to $\operatorname{Hom}\left({ }_{B} A,{ }_{B} B\right)$. This is the case if and only if there exist finite $x_{k}, y_{k} \varepsilon A$ and $h \varepsilon \operatorname{Hom}\left({ }_{B} A_{B},{ }_{B} B_{B}\right)$ such that $x=\Sigma h\left(x x_{k}\right) y_{k}=$ $\sum x_{k} h\left(y_{k} x\right)$ hold for each $x \in A$. In this case we call the set $\left\{x_{k}, y_{k}, h\right\}$ a Frobenius system, and the map h a Frobenius homomorphism, of $A \mid B$ respectively.

Now for any $h \varepsilon \operatorname{Hom}\left({ }_{B} A_{B},{ }_{B} B_{B}\right)$ we can define a multiplication among the elements of $A \otimes_{B} A$ by $(a \otimes b)(c \otimes d)=a h(b c) \otimes d$ for any $a, b, c, d \varepsilon$ A (See Proposition 4.1 [2]). This multiplication is well defined, and by this definition we can make $A \otimes_{B} A$ an associative ring which does not always have the identity element. On the other hand we can define the following maps

$$
\begin{array}{ll}
\phi_{r}: & A \otimes_{B} A \longrightarrow \operatorname{Hom}\left(A_{B}, A_{B}\right) \\
\phi_{l}: & A \otimes_{B} A \longrightarrow \operatorname{Hom}\left({ }_{B} A,{ }_{B} A\right)
\end{array}
$$

by $\phi_{r}(a \otimes b)(x)=a h(b x)$ and $\phi_{l}(a \otimes b)(x)=h(x a) b$ for any $a, b, x \varepsilon A$. Direct calculation shows that ϕ_{r} and ϕ_{l} are ring, and opposite ring, homomorphisms respectively. Now we have

Lemma 1 For an $h \varepsilon \operatorname{Hom}\left({ }_{B} A_{B},{ }_{B} B_{B}\right)$ the following conditions are equivalent;
(i) A is a Frobenius extension of B with h a Frobenius homomorphism
(ii) ϕ_{r} defined as above is an isomorphism
(iii) ϕ_{l} defined as above is an isomorphism
(vi) $A \otimes_{B} A$ has the identity element as a ring defined as above.

If $\Sigma x_{k} \otimes y_{k}$ is the identity of $A \otimes_{B} A$, then $\left\{x_{k}, y_{k}, h\right\}$ is a Frobenius system of $A \mid B$.

Proof. (i) $\mapsto_{(i i) ~ a n d ~(i) ~}^{\text {(iii) are well known (See e.g. the proof of }}$ Theorem 1 on page 94 [5]), and (ii) \Leftrightarrow (vi) and (iii) \Leftrightarrow (vi) are obvious. Let $\Sigma x_{k} \otimes y_{k}$ be the identity of $A \otimes_{B} A$. Then for any $x \varepsilon A$ we have $1 \otimes x$ $=(1 \otimes x)\left(\Sigma x_{k} \otimes y_{k}\right)=\Sigma h\left(x x_{k}\right) \otimes y_{k}$ and $x \otimes 1=\left(\sum x_{k} \otimes y_{k}\right)(x \otimes 1)=\sum x_{k} h\left(y_{k} x\right) \otimes$ 1. Then we have $x=\Sigma h\left(x x_{k}\right) y_{k}=\Sigma x_{k} h\left(y_{k} x\right)$. Thus we have proved (vi) \Leftrightarrow (i) and the last assertion.

There are some special maps as follows

$$
\begin{array}{lll}
\eta: & A \otimes_{B} A \longrightarrow \operatorname{Hom}\left({ }_{c} D,{ }_{c} A\right) & \eta(a \otimes b)(x)=a x b \\
\eta_{t}: & D \otimes_{C} A \longrightarrow \operatorname{Hom}\left({ }_{B} A,{ }_{B} A\right) & \eta_{l}(d \otimes a)(x)=d x a \\
\eta_{t}: & D \otimes_{c} D \longrightarrow \operatorname{Hom}\left({ }_{B} A_{B}{ }_{B} A_{B}\right) & \eta_{t}(d \otimes e)(x)=d x e
\end{array}
$$

for $a, b, x \in A$ and d, e $\varepsilon D . \quad \eta_{r}: A \otimes_{c} D \rightarrow \operatorname{Hom}\left(A_{B}, A_{B}\right)$ is defined similarly. η, η_{l} and η_{r} are $A-A$-maps and η_{t} is a D - D-map. A is an $H-$ separable extension of B if and only if η is an isomorphism and D is $C-f . g$. projective. This is the case if and only if $1 \otimes 1=\sum d_{i} \sum x_{i j} \otimes y_{i j}$ for some $d_{i} \varepsilon D$ and $\Sigma x_{i j} \otimes y_{i j} \varepsilon\left(A \otimes_{B} A\right)^{A}$. We call such set $\left\{d_{i}, \sum x_{i j} \otimes y_{i j}\right\}$ an H-system of $A \mid B$. In the case where A is an H-separable extension of B all the above maps are isomorphisms. The next lemma is an immediate consequence of Corollary 3 [7].

Lemma 2 In the case where A is left $B-f$. g. projective the following conditions are equivalent:
(i) A is an H-separable extension of B
(ii) η_{l} is an isomorphism and D is C-f. g. projective.
(iii) There exists an A-A-split epimorphism of finite direct sum of copies of A to Hom $\left({ }_{B} A,{ }_{B} A\right)$.

Let $\left\{x_{k}, y_{k}, h\right\}$ be a Frobenius system of $A \mid B$ and $\Sigma a_{j} \otimes b_{j}$ an arbitrary in $\left(A \otimes_{B} A\right)^{A}$. For any $x \quad \varepsilon A$ we have $\sum x a_{j} h\left(b_{j}\right)=\sum a_{j} h\left(b_{j} x\right)$ and for any $b \in B \sum b a_{j} h\left(b_{j}\right)=\sum a_{j} h\left(b_{j} b\right)=\sum a_{j} h\left(b_{j}\right) b$. Thus we have $\sum a_{j} h\left(b_{j}\right)$ εD, and $\sum a_{j} \otimes b_{j}=\sum x_{k} h\left(y_{k} a_{j}\right) \otimes h\left(b_{j} x_{l}\right) y_{l}=\sum x_{k} h\left(y_{k} a_{j}\right) h\left(b_{j} x_{l}\right) \otimes y_{l}=$ $\sum x_{k} h\left(y_{k} a_{j} h\left(b_{j} x_{l}\right)\right) \otimes y_{l}=\Sigma a_{j} h\left(b_{j} x_{l}\right) \otimes y_{l}=\Sigma x_{l} a_{i} h\left(b_{j}\right) \otimes y_{l} \varepsilon \Sigma x_{l} D \otimes y_{l}$. Thus we have $\left(A \otimes_{B} A\right)^{A} \subset \Sigma x_{k} D \otimes y_{k}$. Since $\Sigma x_{k} \otimes y_{k} \varepsilon\left(A \otimes_{B} A\right)^{A}$, the converse inclusion is clear. Therefore we have $\left(A \otimes_{B} A\right)^{A}=\sum x_{k} D \otimes y_{k}$ (See page 370 [1]). By this equality we have

Theorem 1 Let A be a Frobenius extension of B with a Frobenius system $\left\{x_{k}, y_{k}, \tilde{h}\right\}$. Then the following conditions are equivalent;
(i) A is an H-separable extension of B.
(ii) There exist finite $d_{i}, e_{i} \varepsilon D$ such that $1 \otimes 1=\sum d_{i} x_{k} e_{i} \otimes y_{k}$ in $A \otimes_{B} A$.

If there exist $d_{i}, e_{j} \varepsilon D$ which satisfy the condition of (ii), then we have the following assertions
(1) $\sum d_{i} \otimes e_{i} \varepsilon\left(D \otimes_{c} D\right)^{D}$, and we have $\tilde{h}(x)=\sum d_{i} x e_{i}$ for each $x \in A$.
(2) We can obtain a Frobenius system $\left\{d_{i}, e_{i}, h\right\}$ of $D \mid C$, where h is defined by $h(d)=\sum x_{k} d y_{k}$ for each d in D.

Proof. Since A is an H-separable extension of B if and only if $1 \otimes 1 \varepsilon$ $D\left(A \otimes_{B} A\right)^{A}$, we have the equivalence of (i) and (ii) immediately by $\left(A \otimes_{B} A\right)^{A}=\sum x_{k} D \otimes y_{k}$. Assume (ii). Then $\sum x_{k} e_{i} \otimes y_{k} \varepsilon\left(A \otimes_{B} A\right)^{A}$, and for each x in A we have $1 \otimes x=\sum d_{i} x_{k} e_{i} \otimes y_{k} x=\sum d_{i} x x_{k} e_{i} \otimes y_{k}$, and $1 \otimes \tilde{h}(x)$ $=\sum d_{i} x x_{k} e_{i} \otimes \tilde{h}\left(y_{k}\right)$. But $\tilde{h}\left(y_{k}\right) \varepsilon B$ and $e_{i} \varepsilon D$. Hence we have $\tilde{h}(x)=$ $\sum d_{i} x x_{k} e_{i} \tilde{h}\left(y_{k}\right)=\sum d_{i} x x_{k} \tilde{h}\left(y_{k}\right) e_{i}=\sum d_{i} x e_{i} \varepsilon B$. Now for each $d \varepsilon D$ we have $\sum d d_{i} x e_{i}=\sum d_{i} x e_{i} d$. Then since η_{t} is an isomorphism by (i), we have $\sum d d_{i} \otimes e_{i}=\sum d_{i} \otimes e_{i} d$ in $D \otimes_{c} D$. Thus we have proved (1). Next we will prove (2). The map h defined in (2) is in $\operatorname{Hom}\left({ }_{c} D,{ }_{c} C\right)$, since $\sum x_{k} D y_{k}$ $\subset C$. Then since $\sum d_{i} x e_{i} \varepsilon V_{A}(D)$ for each $x \in A$, we have $\sum d_{i} h\left(e_{i} d\right)=$ $\sum d_{i} x_{k} e_{i} d y_{k}=\sum d d_{i} x_{k} e_{i} y_{k}=d \sum \tilde{h}\left(x_{k}\right) y_{k}=d$. Similarly we have $\sum \tilde{h}\left(d d_{i}\right) e_{i}=d$. Thus $\left\{d_{i}, e_{i}, h\right\}$ is a Frobenius system of $D \mid C$.
Theorem 2 Assume $B=V_{A}(D)$, and let D be a Frobenius C-algebra with a Frobenius system $\left\{d_{i}, e_{i}, h\right\}$. Then the following three conditions are equivalent
(i) A is an H-separable extension of B.
(ii) There exist finite $x_{k}, y_{k} \varepsilon A$ such that $1 \otimes 1=\sum d_{i} \otimes x_{k} e_{i} y_{k}$ in $D \otimes_{c} A$.
(iii) There exists $\sum x_{k} \otimes y_{k} \varepsilon\left(A \otimes_{B} A\right)^{A}$ such that $1 \otimes 1=\sum d_{i} x_{k} e_{i} \otimes y_{k}$ in $A \otimes_{B} A$.

In the case where there exist $x_{k}, y_{k} \varepsilon A$ which satisfy the condition of (ii), we have the following assertions;
(1) $\sum x_{k} \otimes y_{k} \varepsilon\left(A \otimes_{B} A\right)^{A}$ and $h(d)=\sum x_{k} d y_{k}$ holds for any $d \varepsilon D$.
(2) A is a Frobenius extension of B with a Frobenius system $\left\{x_{k}, y_{k}, \tilde{h}\right\}$, where \tilde{h} is defined by $\tilde{h}(x)=\sum d_{i} x e_{i}$ for each $x \in A$.

Proof. (iii) $\nRightarrow($ i $)$ is obvious, since $\sum x_{k} e_{i} \otimes y_{k}$ is contained in $\left(A \otimes_{B} A\right)^{A}$. Assume A is an H-separable extension of B, and consider the isomorphism η introduced above. η induces the isomorphism $\left(A \otimes_{B} A\right)^{A} \cong$

Hom $\left({ }_{c} D,{ }_{c} C\right)$. Therefore there exists $\sum x_{k} \otimes y_{k} \quad \varepsilon\left(A \otimes{ }_{B} A\right)^{A}$ such that $\eta\left(\sum x_{k} \otimes y_{k}\right)=h$. Then since $1=\sum d_{i} h\left(e_{i}\right)=\sum d_{i} x_{k} e_{i} y_{k}$ and $\sum d_{i} x_{k} e_{i} \varepsilon V_{A}(D)$ $=B$, we have in $A \otimes_{B} A$ that $1 \otimes 1=1 \otimes \sum d_{i} x_{k} e_{i} y_{k}=\sum d_{i} x_{k} e_{i} \otimes y_{k}$, while in $D \otimes{ }_{c} A$ we have $1 \otimes 1=\sum d_{i} x_{k} e_{i} y_{k} \otimes 1=\sum d_{i} \otimes x_{k} e_{i} y_{k}$, since $\sum x_{k} e_{i} y_{k} \varepsilon C$. Thus we have (i) \Rightarrow (ii) and (i) $\Rightarrow(\mathrm{iii})$. Now assume (ii). Since $\sum d_{i} \otimes e_{i} \varepsilon$ $\left(D \otimes_{c} D\right)^{D}$, we have also $\sum d_{i} a x_{k} e_{i} \varepsilon B$ for each $a \varepsilon A$ and k. Hence we can obtain left B-homomorphisms f_{k} of A to B defined by $f_{k}(a)=$ $\sum d_{i} a x_{k} e_{i}$ for ecah $a \varepsilon A$, which satisfy $a=\sum d_{i} a x_{k} e_{i} y_{k}=\sum f_{k}(a) y_{k}$ for each $a \in A$. Thus $\left\{y_{k}, f_{k}\right\}$ forms a dual basis for ${ }_{B} A$. Now consider the map η_{l} of $D \otimes_{c} A$ to $\operatorname{Hom}\left({ }_{B} A,{ }_{B} A\right)$ introduced above. For any $f \varepsilon \operatorname{Hom}\left({ }_{B} A,{ }_{B} A\right)$ and $a \varepsilon A$ we have $\eta_{l}\left(\sum d_{i} \otimes x_{k} e_{i} f\left(y_{k}\right)\right)(a)=\sum d_{i} a x_{k} e_{i} f\left(y_{k}\right)=\sum f_{k}(a) f\left(y_{k}\right)=$ $f\left(\sum f_{k}(a) y_{k}\right)=f(a)$. Hence we have $\eta_{l}\left(\sum d_{i} \otimes x_{k} e_{i} f\left(y_{k}\right)\right)=f$, which means that η_{l} is an epimorphism. Next suppose $\sum c_{j} \otimes a_{j} \varepsilon$ Ker η_{l}. Then $\sum c_{j} y_{k} a_{j}=0$ and $\sum d_{i} \otimes x_{k} e_{i} \varepsilon\left(D \otimes_{c} A\right)^{D}$ for each k, and we have $\sum c_{j} \otimes a_{j}=$ $\sum c_{j} d_{i} \otimes x_{k} e_{i} y_{k} a_{j}=\sum d_{i} \otimes x_{k} e_{i} c_{j} y_{k} a_{j}=0$. Thus η_{l} is a monomorphism, and we see that η_{l} is an isomorphism. But D is $C-f$. g. projective, and A is left $B-f$. g. projective. Therefore A is an H-separable extension of B by Lemma 2. Thus we have proved (ii) \Rightarrow (i). Now we will prove (1) and (2) of the second assertion under the condition of (ii). For any $d \varepsilon D$ we have $d \otimes 1=\sum d d_{i} \otimes x_{k} e_{i} y_{k}$, and $h(d)=\sum h\left(d d_{i}\right) x_{k} e_{i} y_{k}=\sum x_{k} h\left(d d_{i}\right) e_{i} y_{k}=$ $\sum x_{k} d y_{k} \varepsilon C$. Then since $\sum x_{k} D y_{k} \subset C$, we have $h=\eta\left(\sum x_{k} \otimes y_{k}\right) \varepsilon$ Hom $\left({ }_{c} D,{ }_{c} C\right) \cong\left(A \otimes_{B} A\right)^{A}$. Therefore we have $\sum x_{k} \otimes y_{k} \quad \varepsilon\left(A \otimes_{B} A\right)^{A}$. Since $\sum d_{i} \otimes e_{i} \varepsilon\left(D \otimes_{C} D\right)^{D}$, we can define the map \tilde{h} of A to $B\left(=V_{A}(D)\right)$ by $\tilde{h}(x)=$ $\sum d_{i} x e_{i}$ for each $x \in A$. Then $\sum \tilde{h}\left(a x_{k}\right) y_{k}=\sum d_{i} a x_{k} e_{i} y_{k}=\sum d_{i} x_{k} e_{i} y_{k} a=a$. Similarly we have $\sum x_{k} \tilde{h}\left(y_{k} a\right)=a$. Thus $\left\{x_{k}, y_{k}, \tilde{h}\right\}$ is a Frobenius system of $A \mid B$.

Proposition 1 Let A be a Frobenius extension of B with a Frobenius system $\left\{x_{k}, y_{k}, \tilde{h}\right\}$. Consider the following two conditions;
(i) A is an H-separable extension of B.
(ii) There exists $\sum d_{i} \otimes e_{i} \varepsilon\left(D \otimes{ }_{C} D\right)^{D}$ with $1 \otimes 1=\sum d_{i} \otimes x_{k} e_{i} y_{k}$ in $D \otimes_{c} A$
(i) always implies (ii). If $V_{A}(D)=B$, (i) and (ii) are equivalent.
Proof. Assume (i). By Theorem 1 there exists $\sum d_{i} \otimes e_{i} \varepsilon\left(D \otimes_{c} D\right)^{D}$ such that $1 \otimes 1=\sum d_{i} x_{k} e_{i} \otimes y_{k}$ holds in $A \otimes_{B} A$. Then since $\sum x_{k} e_{i} y_{k} \varepsilon C$, we have $\sum d_{i} \otimes x_{k} e_{i} y_{k}=\sum d_{i} x_{k} e_{i} y_{k} \otimes 1=1 \otimes 1$ in $D \otimes_{C} A$. Thus we have (i) \Leftrightarrow (ii). Next let $B=V_{A}(D)$, and assume (ii). Then for the completely same reason as the proof of (ii) \Leftrightarrow (i) of Theorem 2 we see that the map η_{l} of $D \otimes_{c} A$ to $\operatorname{End}\left({ }_{B} A\right)$ is an isomorphism. On the other hand we have d $=\sum d d_{i} x_{k} e_{i} y_{k}=\sum d_{i} x_{k} e_{i} d y_{k}$ for each $d \varepsilon D$, since $1=\sum d_{i} x_{k} e_{i} y_{k}$ and $\sum d_{i} x_{k} e_{i}$
$\varepsilon V_{A}(D)$. But $\sum x_{k} e_{i} d y_{k} \varepsilon C$, since $\sum x_{k} \otimes y_{k} \varepsilon\left(A \otimes_{B} A\right)^{A}$. Therefore if we define maps g_{i} by $\mathrm{g}_{i}(d)=\sum x_{k} e_{i} d y_{k}$ for each $d \varepsilon D$ and each i, we have $g_{i} \varepsilon \operatorname{Hom}\left({ }_{c} D,{ }_{c} C\right)$ and $d=\sum d_{i} g_{i}(d)$ for each $d \varepsilon D$. Hence D is C-f.g. projective. Then by Lemma 2 we have (i).

As is introduced in [9] when we write $\{A / B, S / T\}$, we mean that S is a ring containing A as subring with the common identity, and T is a subring of S containing B. In this case we will always write $\tilde{D}=V_{s}(T)$ and $\tilde{C}=V_{s}(S)$, the center of S. There exists also the canonical homomorphism $\tilde{\eta}$ of $S \otimes_{T} S$ to $\operatorname{Hom}(\tilde{c} \tilde{D}, \bar{c} S)$ defined by $\tilde{\eta}(s \otimes t)(\tilde{d})=s \tilde{d} t$ for $s, t \varepsilon$ S and $\tilde{d} \varepsilon \tilde{D} .\{A / B, S / T\}$ is said to have the centralizer property in the case where $V_{s}(A)=\tilde{C}, V_{s}(B)=\tilde{D}$ and $T=V_{s}(\tilde{D})$ hold. By the same argument as is stated on page 602 [8] we have the next lemma
Lemma 3 Let $\{A / B, S / T\}$ have the centralizer property, and assume that A is an H-separable extension of B. Then we have
(1) The canonical map $i \otimes i$ of $A \otimes_{B} A$ to $S \otimes_{T} S$ is a monomorphism, where i is the inclusion map of A to S.
(2) If $\tilde{\eta}$ is a monomorphism, then S is an H-separable extension of T, and we have $(i \otimes i)\left[\left(A \otimes_{B} A\right)^{A}\right] \subset\left(S \otimes_{T} S\right)^{S}$.

Proof. We will give the proof very briefly following the same lines as page 602 [8]. Since $D \otimes_{c} \tilde{C} \cong \tilde{D}$ via $d \otimes \tilde{c} \rightarrow d \tilde{c}$ for $d \varepsilon D$ and $\tilde{c} \varepsilon \tilde{C}$ we have the natural isomorphism ϕ of $\operatorname{Hom}(\tilde{c} \tilde{D}, \tilde{c} S)$ to $\operatorname{Hom}\left({ }_{c} D,{ }_{c} S\right)$ such that $\phi(f)(d)=f(d)$ for $f \varepsilon \operatorname{Hom}(\tilde{c} \tilde{D}, \tilde{c} S)$ and $d \varepsilon D$ and the following commutaive diagram ;

Since $i_{*} \eta$ is a monomorphism, so is $i \otimes i$. On the other hand we have

$$
\begin{aligned}
i_{*} \eta\left[\left(A \otimes_{B} A\right)^{A}\right] & =i_{*}\left[\left(\operatorname{Hom}\left({ }_{c} D, c A\right)\right)^{A}\right] \subset\left[\operatorname{Hom}\left({ }_{c} D, c S\right)\right]^{A} \\
& =\operatorname{Hom}\left({ }_{c} D, c V_{s}(A)\right)=\operatorname{Hom}\left({ }_{c} D, c \widetilde{C}\right)=\phi\left[\operatorname{Hom}\left(\tilde{c}^{(} \tilde{D}, \tilde{c} \tilde{C}\right)\right] .
\end{aligned}
$$

Therefore if $\tilde{\eta}$ is a monomorphism, we have $\left.(i \otimes i)\left[A \otimes_{B} A\right)^{A}\right] \subset\left(S \otimes_{T} S\right)^{s}$. Then since $D \subset \tilde{D}$, each H-system of A / B is an H-system of S / T. Thus we have (2).

Theorem 3 Let $\{A / B, S / T\}$ have the centralizer property, and assume that A is an H-separable Frobenius extension of B with a Frobenius system
$\left\{x_{k}, y_{k}, \tilde{h}\right\}$. Then S is also an H-separable Frobenius extension of T with a Frobenius system $\left\{x_{k}, y_{k}, \tilde{h}^{*}\right\}$ such that $\tilde{h}^{*} \mid A=\tilde{h}$.
Proof. Since A is left (and right) $B-f$. g. projective, S is an H-separable extension of T by Theorem 1.1 [9]. By Theorem 1] there exists $\sum d_{i} \otimes e_{i} \varepsilon\left(D \otimes_{c} D\right)^{D}$ such that $1 \otimes 1=\sum d_{i} x_{k} e_{i} \otimes y_{k}$ in $A \otimes_{B} A$, and $\left\{d_{i}, e_{i}, h\right\}$ is a Frobenius system of $D \mid C$, where h is defined by $h(d)=\Sigma x_{k} d y_{k}$ for $d \varepsilon$ D. Then since $\tilde{D}=D \tilde{C}$ and $\sum x_{k} \otimes y_{k} \varepsilon\left(A \otimes_{B} A\right)^{A} \subset\left(S \otimes_{T} S\right)^{s}$ by Lemma 3, if we define a map h^{*} by $h^{*}(\tilde{d})=\sum x_{k} \tilde{d} y_{k}$ for $\tilde{d} \varepsilon \tilde{D}$, we have $h^{*} \varepsilon$ $\operatorname{Hom}(\tilde{c} \tilde{D}, \tilde{c} \tilde{C})$ with $h^{*} \mid D=h$, and $\left\{d_{i}, e_{i}, h^{*}\right\}$ forms a Frobenius system of $\tilde{D} \mid \widetilde{C}$. On the other hand we have $1 \otimes 1=\Sigma d_{i} \otimes x_{k} e_{i} y_{k}$ in $D \otimes_{c} A$ by the proof of (i) \Rightarrow (ii) Proposition 1. The same equality holds also in $\tilde{D} \otimes_{\tilde{c}} S$. Then by Theorem 2 we see that $\left\{x_{k}, y_{k}, \tilde{h}^{*}\right\}$ is a Frobenius system of $S \mid T$, where $\tilde{h}^{*}(x)=\sum d_{i} x e_{i}$ for any $x \in S$. We have $\tilde{h}^{*} \mid A=\widetilde{h}$, since $\tilde{h}(x)=\sum d_{i} x e_{i}$ for $x \in A$ by Theorem 1 (2).

The next proposition which is the improvement of Theorems 4 and 5 [6] is a modification of Theorems 1 and 2 [4] which were proved by using H-system.

Proposition 2 Let A be an H-separable extension of B. Then we have
(1) Assume that A is a Frobenius extension of B with a Frobenius system $\left\{x_{k}, y_{k}, \tilde{h}\right\}$, and define a map h by $h(d)=\Sigma x_{k} d y_{k}$ for any $d \varepsilon D$. Then for any $d_{i}, e_{i} \varepsilon D$ such that $\eta_{t}\left(\sum d_{i} \otimes e_{i}\right)=\tilde{h}\left\{d_{i}, e_{i}, h\right\}$ is a Frobenius system of $D \mid C$.
(2) Assume that D is a Frobenius C-algebra with a Frobenius system $\left\{d_{i}, e_{i}, h\right\}$, and define a map \tilde{h} by $\tilde{h}(x)=\sum d_{i} x e_{i}$ for each $x \in A$. Then for any $x_{k}, y_{k} \in A$ such that $\eta\left(\sum x_{k} \otimes y_{k}\right)=h,\left\{x_{k}, y_{k}, \tilde{h}\right\}$ is a Frobenius system of $A \mid B^{\prime}$, where $B^{\prime}=V_{A}\left(V_{A}(B)\right)$.

Proof. (1). Let $d \in D$. We have $\sum d_{i} h\left(e_{i} d\right)=\sum d_{i} x_{k} e_{i} d y_{k}=\sum d d_{i} x_{k} e_{i} y_{k}=$ $\sum d \tilde{h}\left(x_{k}\right) y_{k}=d$. Similarly we have $d=\sum h\left(d d_{i}\right) e_{i}$. (2). Let $x \in A$. Then we have $\sum x_{k} \tilde{h}\left(y_{k} x\right)=\sum x_{k} d_{i} y_{k} x e_{i}=\sum x x_{k} d_{i} y_{k} e_{i}=\sum x h\left(d_{i}\right) e_{i}=x$. Similarly we have $x=\Sigma \tilde{h}\left(x x_{k}\right) y_{k}$. Obviously \tilde{h} is a $B^{\prime}-B^{\prime}-\operatorname{map}$ of A to B^{\prime}.

References

[1] K. Hirata and K. Sugano; On semisimple extensions and separable extensions over non comutative rings, J. Math. Soc. Japan, 18 (1966), 360-373.
[2] L. KADISON ; Global dimension, tower of algebras, and Jones index of split separable subalgebras with unitality condition, preprint.
[3] Y. Miyashita; On Galois extensions and crossed products, Journal Fac. Sci. Hokkaido Univ., 21 (1970), 97-121.
[4] T. NAKAMOTO; On $Q F$-extensions in an H-separable exension, Proc. Japan Accad., 50 (1974), 440-443.
[5] T. OnODERA; Some studies on projective Frobenius extensions, J. Fac. Sci. Hokkaido University, 18 (1964), 89-107.
[6] K. SUGANO ; Separable extensions and Frobenius extensions, Osaka J. Math., 7 (1970), 291-299.
[7] K. SUGANO ; Note on separability of endomorphism rings, J. Fac. Sci. Hokkaido University, 21 (1971), 196-208.
[8] K. SUGANO; On bicommutators of modules over H-separable extension rings II, Hokkaido Math. J., 20 (1991), 601-608.
[9] K. SUGANO; On bicommutators of modules over H-separable extension rings III, Hokkaido Math. J., 23 (1994), 277-289.

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060
Japan

