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Atomic decompositions of weighted Hardy-Morrey spaces
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Abstract. We obtain the Fefferman-Stein vector-valued maximal inequalities on

Morrey spaces generated by weighted Lebesgue spaces. Using these inequalities, we

introduce and define the weighted Hardy-Morrey spaces by using the Littlewood-Paley

functions. We also establish the non-smooth atomic decompositions for the weighted

Hardy-Morrey spaces and, as an application of the decompositions, we obtain the

boundedness of a class of singular integral operators on the weighted Hardy-Morrey

spaces.

Key words: Vector-valued maximal inequalities, Morrey-Hardy spaces, Atomic decom-
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1. Introduction and Preliminarily results

This paper consists of two main results. The first one is the Fefferman-
Stein vector-valued maximal inequalities on Morrey spaces generated by
weighted Lebesgue spaces. The second one is the atomic decompositions of
weighted Hardy-Morrey spaces.

The classical Fefferman-Stein vector-valued maximal inequalities are es-
tablished in [7]. There are several generalizations of these inequalities. The
weighted vector-valued maximal inequalities are given in [1]. The vector-
valued maximal inequalities associated with Morrey spaces are obtained in
[42]. In addition, the vector-valued maximal inequalities on rearrangement-
invariant quasi-Banach function spaces and their corresponding Morrey type
spaces are provided in [18].

In [8], [9], Frazier and Jawerth offered an application of the vector-valued
maximal inequalities on the study of Triebel-Lizorkin spaces. Precisely, they
show that the vector-valued maximal inequalities for Lebesgue spaces can
be used to assure the boundedness of the φ-ψ transform on Triebel-Lizorkin
spaces and, hence, to establish the Littlewood-Paley characterization of
Triebel-Lizorkin spaces. Moreover, the smooth atomic and molecular de-
compositions are obtained. In [28], [38], [42], [45], Mazzucato, Sawano,
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Tanaka, Tang, Wang and Xu find that a similar approach can be applied to
Morrey spaces. That is, the Triebel-Lizorkin-Morrey spaces (in [42], they are
called as Morrey type Besov-Triebel spaces) are well defined, they admit the
Littlewood-Paley characterization and posses the smooth atomic and molec-
ular decompositions. In particular, Mazzucato obtained the Littlewood-
Paley characterization of Morrey space in [28]. Thus, Triebel-Lizorkin-
Morrey spaces cover Morrey spaces as a special case.

An important special case of the Triebel-Lizorkin-Morrey spaces is the
family of Hardy-Morrey spaces. A study of the Hardy-Morrey spaces by us-
ing the maximal function approach is given in [20] and some applications of
the Hardy-Morrey spaces are given in [21]. The non-smooth atomic decom-
positions for the Hardy-Morrey spaces are established in [20]. The Hardy-
Morrey space is also investigated from the viewpoint of Littlewood-Paley
characterization by Sawano in [40].

Even though the definition of Muckenhoupt weight functions is well
known, for completeness, we state it again in the following.

Let B(z, r) = {x ∈ Rn : |x − z| < r} denote the open ball with center
z ∈ Rn and radius r > 0. Let B = {B(z, r) : z ∈ Rn, r > 0}.
Definition 1.1 For 1 < p < ∞, a locally integrable function ω : Rn →
[0,∞) is said to be an Ap weight if

sup
B∈B

(
1
|B|

∫

B

ω(x)dx

)(
1
|B|

∫

B

ω(x)−p′/pdx

)p/p′

< ∞

where p′ = p
p−1 . A locally integrable function ω : Rn → [0,∞) is said to be

an A1 weight if

1
|B|

∫

B

ω(y)dy ≤ Cω(x), a.e. x ∈ B

for some constant C > 0. We define A∞ =
⋃

p≥1 Ap.

For any ω ∈ A∞, let qω be the infimum of those q such that ω ∈ Aq.
When qω 6= 1, according to the openness property of Ap weight functions
for p > 1, Ap =

⋃
1<r<p Ar, we have ω 6∈ Aqω

.
For any ω ∈ A∞ and any Lebesgue measurable set E, write ω(E) =∫

E
ω(x)dx. We have the following standard characterizations of A∞ and Ap
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weights (see [16, Theorem 9.3.3.(d)] and [16, Proposition 9.1.5.(9)], respec-
tively).

Proposition 1.1 A locally integrable function ω : Rn → [0,∞) belongs to
A∞ if and only if there exist a δω > 0 and a constant C0 > 0 such that for
any B ∈ B and all measurable subsets E of B, we have

ω(E)
ω(B)

≤ C0

( |E|
|B|

)δω

. (1.1)

Proposition 1.2 If ω ∈ Ap, then there exists a constant C > 0 such that
for any x ∈ Rn, r > 0 and λ > 1

ω(B(x, λr)) ≤ Cλnpω(B(x, r)).

In this paper, we use the Fefferman-Stein vector-valued maximal in-
equalities on Morrey spaces generated by A∞-weighted Lebesgue spaces to
define and study the weighted Hardy-Morrey spaces. The family of weighted
Hardy-Morrey spaces is an extension of the weighted Hardy spaces appeared
in [3], [12], [19], [26], [41].

We need a weight function u : Rn × (0,∞) → (0,∞) to define the
weighted Hardy-Morrey spaces (see Definitions 3.1 and 3.2). For the classi-
cal Morrey spaces, it is given by |B|1/p−1/q where 1 ≤ p ≤ q < ∞ and B is
an open ball in Rn. For the weighted Hardy-Morrey spaces, the underlying
measure is an A∞-weighted Lebesgue measure. We introduce the corre-
sponding family of weight functions associated with A∞-weighted Lebesgue
measure for the weighted Hardy-Morrey spaces in Definition 3.1.

In Section 2, we establish the Fefferman-Stein vector-valued maximal
inequalities on Morrey spaces generated by weighted Lebesgue spaces. We
define the weighted Hardy-Morrey spaces via the Littlewood-Paley functions
in Section 3. The non-smooth atomic decomposition for weighted Hardy-
Morrey spaces is given in Section 4. In addition, an application of the non-
smooth atomic decomposition on the boundedness of the singular integral
operator is presented at the end of Section 4. Some technical results for
establishing the non-smooth atomic decomposition are presented in Section
5.
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2. Vector-valued inequalities

The main theme of this section is the Fefferman-Stein vector-valued
maximal inequalities on Morrey spaces generated by weighted Lebesgue
spaces.

Let M denote the Hardy-Littlewood maximal operator. For any se-
quence of locally integrable functions, f = {fi}i∈Z, let M(f) = {M(fi)}i∈Z.

We are now ready to establish the main result of this section. Notice
that the generalized Morrey spaces introduced in the next section are not
rearrangement invariant, therefore, some existing results, such as the re-
sults given in [18, Section 4], cannot be applied to the generalized Morrey
spaces. The following theorem is important since it extends the Fefferman-
Stein vector-valued maximal inequalities to generalized Morrey spaces even
though they are not rearrangement invariant. We modify the techniques
developed in [4], [18], [31], [42] to obtain the following theorem.

Theorem 2.1 Let 1 < p, q < ∞, ω ∈ Ap and u : Rn× (0,∞) → (0,∞) be
a Lebesgue measurable function. If there exists a constant C > 0 such that
for any x ∈ Rn and r > 0, u fulfills

∞∑

j=0

(
ω(B(x, r))

ω(B(x, 2j+1r))

)1/p

u(x, 2j+1r) < Cu(x, r), (2.1)

then there exists C > 0 such that for any f = {fi}i∈Z, fi ∈ L1
loc(Rn), i ∈ Z

sup
y∈Rn

r>0

1
u(y, r)

‖χB(y,r)‖M(f)‖lq‖Lp(ω)

≤ C sup
y∈Rn

r>0

1
u(y, r)

‖χB(y,r)‖f‖lq‖Lp(ω). (2.2)

Proof. Let f = {fi}i∈Z ⊂ L1
loc(Rn). For any z ∈ Rn and r > 0,

write fi(x) = f0
i (x) +

∑∞
j=1 f j

i (x), where f0
i = χB(z,2r)fi and f j

i =
χB(z,2j+1r)\B(z,2jr)fi, j ∈ N. Applying the weighted Fefferman-Stein vector
valued inequalities shown in [1] to f0 = {f0

i }i∈Z, we obtain ‖‖M(f0)‖lq‖Lp(ω)

≤ C‖‖f0‖lq ||Lp(ω). We have
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1
u(z, r)

‖χB(z,r)‖M(f0)‖lq‖Lp(ω) ≤ C
1

u(z, 2r)
‖χB(z,2r)‖f‖lq ||Lp(ω)

≤ C sup
y∈Rn

r>0

1
u(y, r)

‖χB(y,r)‖f‖lq‖Lp(ω)

because inequality (2.1) yields u(z, 2r) < Cu(z, r) for some constant C > 0
independent of z ∈ Rn and r > 0 and ω is a doubling measure.

As f j
i = χB(z,2j+1r)\B(z,2jr)fi and dist(B(z, r), B(z, 2j+1r)\B(z, 2jr)) =

(2j − 1)r, there is a constant C > 0 such that, for any j ≥ 1 and i ∈ Z

χB(z,r)(x)(Mf j
i )(x) ≤ C2−jnr−nχB(z,r)(x)

∫

B(z,2j+1r)

|fi(y)|dy.

Since lq is a Banach lattice, we find that

χB(z,r)(x)
∥∥{(Mf j

i )(x)}i∈Z
∥∥

lq

≤ C2−jnr−nχB(z,r)(x)
∫

B(z,2j+1r)

‖{fi(y)}i∈Z‖lqdy.

Since ω ∈ Ap, Hölder inequalities assert that

∫

B(z,2j+1r)

‖{fi(y)}i∈Z‖lqdy

≤
( ∫

B(z,2j+1r)

‖{fi(y)}i∈Z‖p
lqω(y)dy

)1/p( ∫

B(z,2j+1r)

ω−p′/pdy

)1/p′

≤ 2(j+1)nrn

(ω(B(z, 2j+1r)))1/p

( ∫

B(z,2j+1r)

‖{fi(y)}i∈Z‖p
lqω(y)dy

)1/p

.

Subsequently,

χB(z,r)(x)
∥∥{(Mf j

i )(x)}i∈Z
∥∥

lq

≤ CχB(z,r)(x)
1

(ω(B(z, 2j+1r)))1/p
‖χB(z,2j+1r)(y)‖{fi(y)}i∈Z‖lq‖Lp(ω).

Applying the norm ‖ · ‖Lp(ω) on both sides of the above inequality, we have
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‖χB(z,r)‖
{
(Mf j

i )
}

i∈Z‖lq‖Lp(ω)

≤ C

(
ω(B(z, r))

ω(B(z, 2j+1r))

)1/p

‖χB(z,2j+1r)‖{fi}i∈Z‖lq‖Lp(ω).

Thus,

‖χB(z,r)‖Mf j‖lq‖Lp(ω)

≤ C

(
ω(B(z, r))

ω(B(z, 2j+1r))

)1/p
u(z, 2j+1r)
u(z, 2j+1r)

‖χB(z,2j+1r)(y)‖f‖lq‖Lp(ω)

≤ C

(
ω(B(z, r))

ω(B(z, 2j+1r))

)1/p

u(z, 2j+1r) sup
y∈Rn

R>0

1
u(y, R)

‖χB(y,R)‖f‖lq‖Lp(ω).

Hence, using inequality (2.1), we obtain

1
u(z, r)

‖χB(z,r)‖Mf‖lq‖Lp(ω) ≤
1

u(z, r)

∞∑

j=0

‖χB(z,r)‖Mf j‖lq‖Lp(ω)

≤ C sup
y∈Rn

R>0

1
u(y, R)

‖χB(y,R)‖f‖lq‖Lp(ω)

where the constant C > 0 is independent of r and z. Taking the supremum
over z ∈ Rn and r > 0 yields (2.2). ¤

The above theorem includes several Fefferman-Stein type vector-valued
maximal inequalities [1], [22], [31], [42]. When u(x, r) = (ω(B(x, r)))κ/p for
some 0 < κ < 1, inequality (2.2) is the vector-valued version of [22, Theorem
3.2]. If ω ≡ 1, Theorem 2.1 offers a generalization of [31, Theorem 2] to
vector-valued inequality. The above result is an extension of [42, Lemma 2.5]
which is the Fefferman-Stein vector-valued maximal inequalities for classical
Morrey spaces. In addition, the weighted Fefferman-Stein vector-valued
inequalities in [1] is also a special case of Theorem 2.1 when u ≡ 1.

Moreover, a similar result of Theorem 2.1 is obtained by Sawano in [39,
Theorem 2.5]. The above theorem also extends the results given in [22,
Theorem 3.2] and [37, Theorem 2.4].
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3. Weighted Hardy-Morrey spaces

We introduce and study the weighted Morrey spaces in this section.
Let 1 < q ≤ p < ∞, the classical Morrey space consists of those Lebesgue
measurable functions f satisfying

‖f‖Mp
q

= sup
B∈B

1
|B|1/q−1/p

( ∫

B

|f(x)|qdx

)1/q

< ∞.

For the study of the classical Morrey spaces, the reader is referred to [30],
[34], [35], [46].

We obtain the weighted Morrey spaces by replacing the Lebesgue mea-
sure dx and the component |B|1/q−1/p by an Ap-weighted Lebesgue measure
and a Morrey weight function defined in Definition 3.1, respectively.

Definition 3.1 Let 0 < p < ∞ and ω ∈ A∞. A Lebesgue measurable
function u : Rn × (0,∞) → (0,∞) is said to be a Morrey weight function
for ω if there exist a 0 ≤ λ < 1

p and constants C1, C2 > 0 so that for any
x ∈ Rn, u(x, r) > C1, r ≥ 1,

u(x, 2r)
u(x, r)

≤
(

ω(B(x, 2r))
ω(B(x, r))

)λ

, r > 0, (3.1)

C−1
2 ≤ u(x, t)

u(y, r)
≤ C2, 0 < r ≤ t ≤ 2r and |x− y| ≤ t. (3.2)

We denote the class of Morrey weight functions for ω by Wω,p.

For any B = B(x, r), x ∈ Rn, r > 0, write u(B) = u(x, r).
The subsequent lemma follows from Proposition 1.1 and (3.1).

Lemma 3.1 Let 1 ≤ p < ∞. If ω ∈ Ap and u ∈ Wω,p, then ω and u

satisfy inequality (2.1).

For any j ∈ Z and k = (k1, k2, . . . , kn) ∈ Zn, Qj,k = {(x1, x2 . . . , xn) ∈
Rn : ki ≤ 2jxi ≤ ki + 1, i = 1, 2, . . . , n}. We write |Q| and l(Q) to be the
Lebesgue measure of Q and the side length of Q, respectively. We denote
the set of dyadic cubes {Qj,k : j ∈ Z, k ∈ Zn} by Q.

For any dyadic cube Q ∈ Q, write u(Q) = u(x, r) where x is the center
of Q and r = l(Q)/2.



138 K.-P. Ho

Definition 3.2 Let 0 < p < ∞, ω ∈ A∞ and u ∈ Wω,p. The weighted
Morrey space Mp

ω,u(Rn) is the collection of all Lebesgue measurable func-
tions f satisfying

‖f‖Mp
ω,u(Rn) = sup

z∈Rn,R>0

1
u(z, R)

‖χB(z,R)f‖Lp(ω) < ∞.

The family of weighted Morrey spaces in the above definition covers the
classical Morrey spaces and the weighted Morrey spaces considered in [22,
Definition 2.1].

Condition (3.2) ensures that

‖f‖Mp
ω,u(Q) = sup

Q∈Q

1
u(Q)

‖χQf‖Lp(ω) (3.3)

is an equivalent quasi-norm of ‖ · ‖Mp
ω,u(Rn). Moreover, the conditions im-

posed on u in Definition 3.1 guarantee that χB(x,r) ∈Mp
ω,u(Rn).

Lemma 3.2 For any x ∈ Rn and r > 0, χB(x,r) ∈Mp
ω,u(Rn).

Proof. For any k ∈ Z, write Bk = B(z, 2k). When k < 0, B(z, 2k) ∩
B(x, r) = ∅ if |z − x| > r + 2. Thus, we find that

‖χB(x,r)∩Bk
‖Lp(ω)

u(z, 2k)
≤

(
ω(B(z, 1))
ω(B(z, 2k))

)λ (ω(B(z, 2k)))1/p

u(z, 1)

≤
(

ω(B(z, 1))
ω(B(z, 2k))

)λ(
ω(B(z, 2k))
ω(B(z, 1))

)1/p (ω(B(z, 1)))1/p

u(z, 1)

≤ C(ω(B(x, r + 2)))1/p

because u(z, 1) ≥ C and λ < 1
p . For k ≥ 0, we have

‖χB(x,r)∩Bk
‖Lp(ω)

u(z, 2k)
≤ C−1

1 ‖χB(x,r)‖Lp(ω).

In view of (3.2), the above inequalities guarantee that χB(x,r) ∈Mp
ω,u(Rn).

¤

Lemma 3.2 plays an important role on the study of Morrey type spaces.
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In addition, the reader is referred to [6] for some similar ideas used to study
Morrey spaces.

We now ready to define the Hardy-Morrey space via the Littlewood-
Paley functions. For the development of the Littlewood-Paley characteriza-
tion of function spaces, the reader is referred to [8], [9], [10], [13], [18], [24],
[38], [44], [45].

Let S(Rn) and S ′(Rn) denote the classes of tempered functions and
Schwartz distributions, respectively. Let P denote the class of polynomials
in Rn.

Definition 3.3 Let 0 < p ≤ 1, ω ∈ A∞ and u ∈ Wω,p. The weighted
Hardy-Morrey spaces Hp

ω,u(Rn) consists of those f ∈ S ′(Rn)/P such that

‖f‖Hp
ω,u(Rn) =

∥∥∥∥
( ∑

ν∈Z
|ϕν ∗ f |2

)1/2∥∥∥∥
Mp

ω,u(Rn)

< ∞

where P denotes the set of polynomials on Rn and ϕν(x) = 2νnϕ(2νx),
ν ∈ Z and ϕ ∈ S(Rn) satisfies

supp ϕ̂ ⊆ {x ∈ Rn : 1/2 ≤ |x| ≤ 2} and

|ϕ̂(ξ)| ≥ C, 3/5 ≤ |x| ≤ 5/3 (3.4)

for some C > 0.

In fact, we can also define and study the corresponding local version
of weighted Hardy-Morrey spaces. For brevity, we leave the details to the
reader. The reader may consult [15] for the definition of local Hardy space.

As demonstrated in [8], any function space having the Littlewood-Paley
characterization is associated with a sequence space. This sequence space is
introduced in order to study the φ-ψ transform.

Definition 3.4 Let 0 < p ≤ 1, ω ∈ A∞ and u ∈ Wω,p. The sequence
space hp

ω,u is the collection of all complex-valued sequences s = {sQ}Q∈Q
such that

‖s‖hp
ω,u

=
∥∥∥∥
( ∑

Q

(|sQ|χ̃Q)2
)1/2∥∥∥∥

Mp
ω,u(Rn)

< ∞,
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where χ̃Q = |Q|−1/2χQ.

We recall the definition of the φ-ψ transform introduced by Frazier and
Jawerth in [8], [9], [10]. Let ϕ,ψ ∈ S(Rn) satisfy

supp ϕ̂, supp ψ̂ ⊆ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2}, (3.5)

|ϕ̂(ξ)|, |ψ̂(ξ)| ≥ C if 3/5 ≤ |ξ| ≤ 5/3 for some C > 0, (3.6)
∑

ν∈Z
ϕ̂(2−νξ)ψ̂(2−νξ) = 1 if ξ 6= 0 (3.7)

where ϕ̂ denote the Fourier transform of ϕ and similarly for ψ̂.
Write ϕ̃(x) = ϕ(−x). We set ϕν(x) = 2νnϕ(2νx), ψν(x) = 2νnψ(2νx)

and

ϕQ(x) = |Q|−1/2ϕ(2νx− k), ψQ(x) = |Q|−1/2ψ(2νx− k), ν ∈ Z, k ∈ Zn

for Q = Qν,k ∈ Q. For any f ∈ S ′(Rn)/P and for any complex-valued
sequences s = {sQ}, we define

Sϕ(f) = {(Sϕf)Q}Q∈Q = {〈f, ϕQ〉}Q∈Q and Tψ(s) =
∑

Q

sQψQ.

We find that Tψ ◦ Sϕ = id in Hp
ω,u(Rn) because Hp

ω,u(Rn) is a subspace of
S ′(Rn)/P (see [8, Theorem 2.2]). The following theorem is a special case of
[18, Theorem 3.1]. Thus, for the sake of brevity, we omit the detail.

Theorem 3.3 The weighted Hardy-Morrey space Hp
ω,u(Rn) is independent

of the function ϕ in Definition 3.3. The operators Sϕ and Tψ are bounded
operators on Hp

ω,u(Rn) and hp
ω,u, respectively. Moreover, we have constants

C1 > C2 > 0 such that, for any f ∈ Hp
ω,u(Rn),

C2‖f‖Hp
ω,u(Rn) ≤ ‖Sϕ(f)‖hp

ω,u
≤ C1‖f‖Hp

ω,u(Rn). (3.8)

As Lr(ω) and lq satisfy (2.2) when 1 < q, r < ∞ and ω ∈ Ar, the
pair (l2,Mp

ω,u(Rn)) is so-called a-admissible with 0 < a < 1
p , in [18]. Thus,

in view of Lemma 3.1, Theorem 3.3 is a special case of [18, Theorem 3.1].
Notice that the use of the condition u ∈ Wω,p is given in the general result
in [18]. In particular, the reader may consult [18, Theorem 5.5] on the use of
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the above condition for the study of the Littlewood-Paley characterization
of Morrey type spaces.

We recall the definition of smooth atoms from [10, p. 46]. For each
dyadic cube Q, AQ is a smooth N -atom for Hp

ω,u(Rn), N ∈ N, if it satisfies

∫
xγAQ(x)dx = 0 for 0 ≤ |γ| ≤ N, γ ∈ Nn, (3.9)

suppAQ ⊆ 3Q, (3.10)

and for γ ∈ Nn,

|∂γAQ(x)| ≤ Cγ |Q|−1/2−|γ|/n. (3.11)

The validity of the following smooth atomic decomposition follows from
the boundedness of the φ-ψ transform and the Fefferman-Stein vector-valued
maximal inequalities on weighted Morrey spaces. For simplicity, we only
provide an outline of the proof for the following result. For the detail of the
establishment of the smooth atomic decomposition of function spaces, the
reader is referred to [10, p. 46–p. 48].

Theorem 3.4 (Smooth Atomic Decomposition) Let 0 < p ≤ 1, ω ∈ A∞
and u ∈ Wω,p. For any N ≥ [n(qω/p−1)] and N ∈ N, if f ∈ Hp

ω,u(Rn), then
there exist a sequence s = {sQ}Q∈Q ∈ hp

ω,u and a family of smooth N -atoms
{AQ}Q∈Q such that f =

∑
Q∈Q sQAQ and ‖s‖hp

ω,u
≤ C‖f‖Hp

ω,u(Rn) for some
constant C > 0.

Proof. According to [10, Lemma 5.12], for any f ∈ S ′(Rn)/P, we have
f =

∑
Q∈Q sQaQ, where each aQ is a smooth N -atom and sQ satisfy

∑

|Q|=2−jn

|sQ|χ̃Q(x) ≤ C
(
M(|ϕ̃j ∗ f |h)(x)

)1/h

for some ϕ ∈ S(Rn) fulfilling (3.3) and some positive h sufficiently close to
zero. Thus, the inequality ‖s‖hp

ω,u
≤ C‖f‖Hp

ω,u(Rn) follows from Theorem
2.1. ¤

Theorem 3.4 can be considered as a special case of [36, Theorem 5.8].
Notice that the size of N given by the above decomposition reduces to the
usual vanishing moment condition imposed on the smooth atoms for Hardy
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spaces when ω ≡ 1 and u ≡ 1, see [8, Section 4].

4. Non-smooth atomic decompositions

One of the remarkable features of the Hardy type spaces is the non-
smooth atomic decompositions [5], [8], [9], [17], [25]. The non-smooth atomic
decompositions have profound applications on the boundedness of singular
integral operators, the reader may refer to [16, Section 6.7] for detail.

We use the approach given in [9] to obtain the non-smooth atomic de-
compositions for the weighted Hardy-Morrey spaces. We recall some defini-
tions and modify some notations from [9]. For any sequence s = {sQ}Q∈Q,
we call

g(s) =
( ∑

Q∈Q
(|sQ|χ̃Q)2

)1/2

the Littlewood-Paley function of s. So, ‖s‖hp
ω,u

= ‖g(s)‖Mp
ω,u(Rn). We first

define the atoms for the sequence spaces hp
ω,u.

Definition 4.1 A sequence r = {rQ}Q∈Q is an ∞-atom for hp
ω,u if there

exists a dyadic cube P ∈ Q such that rQ = 0 if Q 6⊂ P and ‖g(r)‖L∞ ≤
ω(P )−1/p.

We call P the support of r and write supp(r) = P .

The reader is referred to [9, p. 403] for the definition of ∞-atom for
Hardy space.

Definition 4.2 A family of ∞-atoms indexed by Q, {rJ}J∈Q, is called an
∞-atomic family for hp

ω,u if supp(rJ) = J .

We now give the sequence spaces associated with the weighted Morrey
spaces.

Definition 4.3 Let 0 < p ≤ 1, ω ∈ A∞ and u ∈ Wω,p. The sequence space
mp

ω,u consists of those complex-valued sequence t = {tQ}Q∈Q satisfying

‖t‖mp
ω,u

= sup
Q∈Q

1
u(Q)

( ∑

J⊆Q

|tJ |p
)1/p

< ∞.
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We follow the idea in [9, Theorem 7.3] to establish the atomic decom-
positions for the sequence spaces hp

ω,u.

Theorem 4.1 Let 0 < p ≤ 1, ω ∈ A∞ and u ∈ Wω,p. For any s ∈
hp

ω,u, there exist an ∞-atomic family for hp
ω,u, {rJ}J∈Q and a sequence t =

{tJ}J∈Q ∈ mp
ω,u such that s =

∑
J∈Q tJrJ and ‖t‖mp

ω,u
≤ C‖s‖hp

ω,u
for some

constants C > 0.

Proof. For any P ∈ Q, write

gP (s) =
( ∑

Q∈Q,P⊆Q

(|Q|−1/2|sQ|)2
)1/2

.

We find that whenever P1 ⊆ P2, 0 ≤ gP2(s) ≤ gP1(s). In addition, for any
given x ∈ Rn, gP (s) satisfies the following properties

lim
l(P )→∞,x∈P

gP (s) = 0, (4.1)

lim
l(P )→0,x∈P

gP (s) = g(s)(x). (4.2)

For any k ∈ Z, write

Ak = {P ∈ Q : gP (s) > 2k}.

Identity (4.2) assures that

{x ∈ Rn : g(s)(x) > 2k} =
⋃

P∈Ak

P. (4.3)

Moreover, we have

( ∑

P∈Q\Ak

(|sP |χ̃P (x))2
)1/2

≤ 2k, ∀x ∈ Rn. (4.4)

We prove (4.4). Whenever g(s)(x) ≤ 2k, the above inequality is ob-
viously valid. Therefore, we only need to consider g(s)(x) > 2k. We first
show that maximal dyadic cubes exist in Ak. If not, there exists a family of
dyadic cubes {Pj}j∈N ⊂ Ak such that Pi ⊂ Pl, i < l and limi→∞ l(Pi) = ∞.
Thus, for any x ∈ P0, we have lim infi→∞,x∈Pi

gPi
(s) > 2k which contradicts
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(4.1).
Whenever g(s)(x) > 2k, (4.3) and the above arguments assert that there

exists a maximal dyadic cube Pmax ∈ Ak such that x ∈ Pmax. Thus, we have
the unique dyadic cube R ∈ Q satisfying Pmax ⊆ R and 2l(Pmax) = l(R).
The left hand side of (4.4) is precisely gR(s) and, hence, it is less than 2k

because R 6∈ Ak.
For any k ∈ Z, let Bk denote the set of maximal dyadic cubes in

Ak\Ak+1. As maximal dyadic cubes exist in Ak, Bk is well defined. Accord-
ing to the proof of [9, Theorem 7.3], for any J ∈ Bk, the family of sequences
βJ = {(βJ)Q}Q∈Q defined by

(βJ)Q =

{
sQ, Q ⊆ J and Q ∈ Ak\Ak+1,

0, otherwise,

satisfy s =
∑

J∈Q βJ and |g(βJ)| ≤ 2k+1.
Let rJ = ω(J)−1/p2−k−1βJ and tJ = ω(J)1/p2k+1. As

Q =
( ∞⋃

k=−∞

( ⋃

J∈Bk

{Q ∈ Q : Q ⊂ J}
)) ⋃

{Q ∈ Q : sQ = 0}

is a disjoint union, we find that s =
∑

J∈Q tJrJ and {rJ}J∈Q is an∞-atomic
family for hp

ω,u. Furthermore, we find that for any R ∈ Q,

∑

J⊆R

|tJ |p =
∑

k∈Z
2(k+1)p

∑

J∈Bk,J⊆R

ω(J) ≤ 2p
∑

k∈Z
2kpω

( ⋃

J∈Ak,J⊆R

J

)

≤ 2p
∑

k∈Z
2kpω({x ∈ R : 2k < g(s)(x)}) ≤ C‖χRg(s)‖p

Lp(ω).

On both sides, taking the pth root, multiplying by 1
u(R) and, then, taking

the supremum over R ∈ Q, we obtain

‖t‖mp
ω,u

= sup
R∈Q

1
u(R)

( ∑

J⊆R

|tJ |p
)1/p

≤ C sup
R∈Q

1
u(R)

‖χRg(s)‖Lp(ω) = C‖s‖hp
ω,u

. ¤
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Corollary 4.2 Let 0 < p ≤ 1, ω ∈ A∞ and u ∈ Wω,p. Then,

‖s‖hp
ω,u

≈ inf
{
‖t‖mp

ω,u
: s =

∑

J∈Q
tJrJ , t = {tJ}J∈Q and

{rJ}J∈Q is an ∞-atomic family for hp
ω,u

}
.

Proof. It remains to show that for any t = {tJ}J∈Q ∈ mp
ω,u and any

∞-atomic family {rJ}J∈Q, we have ‖∑
J∈Q tJrJ‖hp

ω,u
≤ ‖t‖mp

ω,u
.

Since each rJ is an ∞-atom for hp
ω,u, we have ‖g(rJ)‖Lp(ω) ≤ 1. Hence,

for any R ∈ Q, by the p-triangle inequality, we assert that

∥∥∥∥χRg

( ∑

J∈Q
tJrJ

)∥∥∥∥
p

Lp(ω)

≤
∑

J∈Q,J⊆R

|tJ |p
∫
|g(rJ)|pω(x)dx

≤
∑

J∈Q,J⊆R

|tJ |p.

Our desired inequality follows by taking the pth root, multiplying 1
u(R) and,

then, taking the supremum over R ∈ Q on both sides. ¤

In order to present the main result of this section, we recall the definition
of non-smooth atoms on weighted function spaces [3], [11], [20], [26], [41].

Definition 4.4 Let 0 < p ≤ 1 < r < ∞ and ω ∈ A∞. For any N ≥
[n(r/p− 1)] and N ∈ N, a family of functions {aQ}Q∈Q is called a (p, r,N)-
atomic family with respect to ω if

supp aQ ⊆ 3Q, ∀Q ∈ Q,
∫

xγaQ(x)dx = 0, ∀γ ∈ Nn with 0 ≤ |γ| ≤ N,

‖aQ‖Lr(ω) ≤ ω(Q)1/r−1/p.

We now transfer our results of non-smooth atomic decompositions for
the sequence spaces hp

ω,u to the corresponding results for function spaces
Hp

ω,u(Rn). It consists of two results. The first one, Theorem 4.3, is a de-
composition theorem and the second one, Theorem 4.4, is a reconstruction
theorem.
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Theorem 4.3 Let 0 < p ≤ 1, ω ∈ A∞, qω < q < ∞ and u ∈ Wω,p.
For any f ∈ Hp

ω,u(Rn) and any positive integer satisfying N ≥ [n(q/p− 1)],
there exist a (p, q, N)-atomic family with respect to ω, {aQ}Q∈Q, and a
sequence t = {tQ}Q∈Q ∈ mp

ω,u such that f =
∑

Q∈Q tQaQ and ‖t‖mp
ω,u

≤
C‖f‖Hp

ω,u(Rn) for some C > 0.

Proof. As given by Theorem 3.4, for any f ∈ Hp
ω,u(Rn) and N ≥ [n(q/p−

1)], there exist a family of smooth N -atoms {AQ}Q∈Q and a sequence s =
{sQ}Q∈Q ∈ hp

ω,u so that f =
∑

Q∈Q sQAQ and ‖s‖hp
ω,u

≤ C‖f‖Hp
ω,u(Rn).

According to Corollary 4.2, we have t = {tJ}J∈Q ∈ mp
ω,u and an ∞-

atomic family for hp
ω,u, {rJ}J∈Q, such that s =

∑
J∈Q tJrJ and ‖t‖mp

ω,u
≤

2‖s‖hp
ω,u

. Thus, f can be rewritten as

f =
∑

Q∈Q
sQAQ =

∑

Q∈Q

( ∑

J∈Q
tJrJ

)

Q

AQ =
∑

J∈Q
tJaJ

where aJ =
∑

Q⊆J(rJ)QAQ. Since suppAQ ⊆ 3Q and Q ⊆ J , we have
supp aJ ⊆ 3J .

In view of the Littlewood-Paley characterization of weighted Lebesgue
spaces Lq(ω) = Ḟ 02

q (ω), ω ∈ Aq, 1 < q [24, Theorem 3.1], the boundedness
of the ϕ-transform from Ḟ 02

q (ω) to ḟ02
q (ω) and the boundedness of the ψ-

transform from ḟ02
q (ω) to Ḟ 02

q (ω) [8, Proposition 10.14], we obtain

‖aJ‖Lq(ω) ≤ C‖g(rJ)‖Lq(ω) ≤ Cω(J)1/q−1/p

for some C > 0. The vanishing moment conditions for aJ are inherited from
the corresponding conditions from {AQ}Q∈Q. Thus, {aJ}J∈Q is a (p, q, N)-
atomic family with respect to ω and ‖t‖mp

ω,u
≤ C‖f‖Hp

ω,u(Rn). ¤

We find that for the reconstruction theorem of the atomic decomposi-
tions for Hp

ω,u(Rn), we need an extra condition for u(x, r).

Definition 4.5 Let 0 < p ≤ 1, 0 ≤ κ < 1
p and ω ∈ A∞. A weight function

u belongs to Wω,p,κ if and only if u ∈ Wω,p and for any P, Q ∈ Q with
P ⊆ Q,

(
ω(P )
ω(Q)

)κ

≤ u(P )
u(Q)

. (4.5)
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Roughly speaking, (3.1) controls the “growth of u” in term of ω while
(4.5) imposes a restriction on the “decay of u”.

Condition (4.5) is related to a technical difficulty generated by the Mor-
rey weight functions. For details, the reader is referred to Lemma 5.4 in
Section 5.

Theorem 4.4 Let 0 < p ≤ 1, ω ∈ A∞ and qω < q. Suppose that u ∈
Wω,p,κ and t = {tQ}Q∈Q ∈ mp

ω,u. If {aQ}Q∈Q is a (p, q, N)-atomic family
with respect to ω and q satisfying 1

q < 1
p − κ, then f =

∑
Q∈Q tQaQ ∈

Hp
ω,u(Rn) and ‖f‖Hp

ω,u(Rn) ≤ C‖t‖mp
ω,u

for some C > 0.

Proof. Let f =
∑

Q∈Q tQaQ where t = {tQ}Q∈Q ∈ mp
ω,u and {aQ}Q∈Q be

a (p, q, N)-atomic family with respect to ω.
For any ϕ ∈ S(Rn) satisfying the conditions in Definition 3.3 and for

any h ∈ S ′(Rn), define the Lebesgue measurable function G(h) by

G(h) =
( ∑

ν∈Z
|(h ∗ ϕν)|2

)1/2

.

When x ∈ Rn\4Q, we use the vanishing moment condition satisfied by
aQ to obtain

|(aQ ∗ ϕν)(x)| ≤
∫

Rn

∣∣∣∣aQ(y)
(

ϕν(x− y)−
∑

|γ|≤N

(y − xQ)γ

γ!
∂γϕν(x− xQ)

)∣∣∣∣dy.

By using the reminder terms of the Taylor expansion of ϕν , we have

|(aQ ∗ ϕν)(x)| ≤
∫

Rn

|aQ(y)|
∑

|γ|=N+1

∣∣∣∣
(y − xQ)γ

γ!
∂γϕν(x− y + θ(y − xQ))

∣∣∣∣dy

for some 0 ≤ θ ≤ 1. Since y ∈ Q, we have |y − xQ|γ ≤ |Q|N+1
n for any

|γ| = N + 1. Moreover, for any y ∈ Q,

|x− y + θ(y − xQ)| ≥ |x− xQ| − (1− θ)|y − xQ| ≥ 1
2
|x− xQ|.

We obtain
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|(aQ ∗ ϕν)(x)| ≤ C2(N+n+1)ν |Q|(N+1)/n(1 + 2ν |x− xQ|)−M

∫

3Q

|aQ(y)|dy

for some sufficient large M > 0. The Hölder inequality and the definition of
Aq yield

∫

3Q

|aQ(y)|dy ≤
( ∫

3Q

|aQ(y)|qω(y)dy

)1/q( ∫

3Q

ω−q′/q(y)dy

)1/q′

≤ Cω(Q)1/q−1/p|Q|ω(Q)−1/q = Cω(Q)−1/p|Q| (4.6)

where q′ is the conjugate of q.
Let K ∈ Z satisfy (log2 |x− xQ|−1)− 1 < K ≤ log2 |x− xQ|−1. We find

that
∑

ν∈Z
2(N+n+1)ν(1 + 2ν |x− xQ|)−M

=
K∑

ν=−∞
2(N+n+1)ν(1 + 2ν |x− xQ|)−M

+
∞∑

ν=K+1

2(N+n+1)ν(1 + 2ν |x− xQ|)−M

≤ C

( K∑
ν=−∞

2(N+n+1)ν +
∞∑

ν=K+1

2(N+n+1−M)ν |x− xQ|−M

)

≤ C|x− xQ|−N−n−1.

Since l1 ↪→ l2, we have

( ∑

ν∈Z
|aQ ∗ ϕν(x)|2

)1/2

≤ C|x− xQ|−N−n−1ω(Q)−1/p|Q|(1+(N+1)/n)

≤ Cω(Q)−1/p

(
1 +

|x− xQ|
l(Q)

)−N−n−1

for some C > 0 independent of the family {aQ}Q∈Q.
Therefore,
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G(aQ)(x) ≤ G(aQ)(x)χ4Q(x) + Cω(Q)−1/pχRn\4Q

(
1 +

|x− xQ|
l(Q)

)−N−n−1

= XQ(x) + YQ(x)

and

G(f) ≤
∑

Q∈Q
|tQ|XQ +

∑

Q∈Q
|tQ|YQ = X + Y.

For any P ∈ Q, the p-triangle inequality yields

‖χP X‖p
Lp(ω) ≤

∑

Q∈Q
|tQ|p

∫

P∩4Q

|G(aQ)|pdω.

We use the Hölder inequality and the Littlewood-Paley characterization
of Lq(ω) to obtain

∫

P∩4Q

|G(aQ)|pdω ≤
( ∫

Rn

|G(aQ)|qdω

)p/q

ω(P ∩ 4Q)1−p/q

≤ C‖aQ‖p
Lq(ω)ω(P ∩ 4Q)1−p/q ≤ C

(
ω(P ∩ 4Q)

ω(Q)

)1−p/q

for some C > 0 independent of Q. Thus, Lemma 5.4, given in the next
section, assures that

‖X‖Mp
ω,u(Rn) ≤ C‖t‖mp

ω,u
. (4.7)

For the function Y , we have

Y ≤
∑

Q∈Q
|tQ|ω(Q)−1/p

(
1 +

|x− xQ|
l(Q)

)−N−n−1

≤ C
∑

µ∈Z

(
M

( ∑

l(Q)=2−µ

|tQ|ω(Q)−1/pχQ

)1/h)h

for some h > 1 satisfying hp > qω. We have such h because p(N+n+1) > nq.
Hence, for any P ∈ Q,
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1
u(P )

‖χP Y ‖Lp(ω)

≤ C

(
1

(u(P ))1/h

( ∫

P

( ∑

µ∈Z

(
M

( ∑

l(Q)=2−µ

|tQ|

× ω(Q)−1/pχQ

)1/h)h)(1/h)ph

dω

)1/ph)h

.

We are allowed to apply Theorem 2.1 for the pair (lh, Lph(ω)) because u ∈
Wω,p implies u1/h ∈ Wω,ph ⊂ Wω,qω

. Consequently, we find that

‖Y ‖Mp
ω,u(Rn) ≤ C sup

P∈Q

1
u(P )

( ∫

P

∑

Q∈Q
|tQ|pω(Q)−1χQdω

)1/p

≤ C‖t‖mp
ω,u

.

The above inequality and (4.7) establish our desired result. ¤

Theorem 4.4 shows that the atomic series
∑

Q∈Q tQaQ belongs to
Hp

ω,u(Rn) provided that the family of atoms {aQ}Q∈Q satisfies a sufficiently
high order of integrability.

More precisely, for any Hp
ω,u(Rn), there exists a q0 > 1 such that when-

ever the family of atoms {aQ}Q∈Q are elements in Lq(ω) for q0 < q < ∞,
then, for any {tQ}Q∈Q ∈ mp

ω,u,
∑

Q∈Q tQaQ belongs to f ∈ Hp
ω,u(Rn).

For the classical Hardy spaces, we have u ≡ 1 and, hence, (4.5) is
obviously satisfied. Thus, the non-smooth atomic decompositions for the
classical Hardy spaces are valid for any (p, q, N)-atomic family with 1 <

q < ∞. In addition, Theorem 4.4 matches with the result in [20] since the
atoms used in [20, Definition 1.4] are elements in L∞. Furthermore, it is also
consistent with the results given in Theorem 4.3 because the atoms obtained
at there are indeed elements in Lq(ω) for any qω < q < ∞.

We now present an application of the above atomic decomposition to the
study of singular integral operator on Hp

ω,u(Rn). We call a linear operator
T a Calderón-Zygmund type operator for Hp

ω,u(Rn) if its Schwartz kernel
K(x, y) satisfying for all x, z ∈ Rn with x 6= z,

∣∣(∂γ
y K)(x, z)

∣∣ ≤ C|x− z|−n−|γ|, ∀γ ∈ Nn, |γ| ≤ [n(r/p− 1)] + 1 (4.8)

for some C > 0.
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The above definition includes those singular integrals on Hardy spaces
studied in [16, Section 6.7.3]. In particular, the Schwartz kernel of the
Hilbert transform satisfies (4.8). For the details of the definition of non-
convolution type Calderón-Zygmund operators and theirs action on function
spaces, the reader is referred to [43].

Theorem 4.5 Let 0 < p ≤ 1, 0 ≤ κ < 1
p , ω ∈ A∞ and u ∈ Wω,p,κ. If T

is a Calderón-Zygmund type operator for Hp
ω,u(Rn), then T is bounded from

Hp
ω,u(Rn) to Mp

ω,u(Rn).

Proof. For simplicity, we just sketch the proof. Define L ∈ N by L =
[n(r/p − 1)]. Pick q > qω. For any f ∈ Hp

ω,u(Rn), Theorem 4.3 yields f =∑
Q∈Q tQaQ and ‖t‖mp

ω,u
≤ C‖f‖Hp

ω,u(Rn) for some C > 0 where {aQ}Q∈Q
is a (p, q, N)-atomic family with respect to ω and t = {tQ}Q∈Q ∈ mp

ω,u.
For any x ∈ Rn\4Q, the definition of Schwartz kernel and the vanishing

moment condition satisfied by aQ conclude that

T (aQ)(x) =
∫

3Q

aQ(y)K(x, y)dy

=
∫

3Q

aQ(y)
[
K(x, y)−

∑

|γ|≤L

(∂γ
y K)(x, xQ)

(y − xQ)γ

γ!

]
dy.

The reminder form of the Taylor expansion and (4.8) yield

|T (aQ)(x)| ≤ C

|x− xQ|L+1+n

∫

3Q

|aQ(y)||y − xQ|L+1dy

≤ C

|x− xQ|L+1+n
|Q|(L+1)/n

∫

3Q

|aQ(y)|dy.

By using (4.6), for any x ∈ Rn\4Q, we obtain

|T (aQ)(x)| ≤ Cω(Q)−1/p

(
1 +

|x− xQ|
l(Q)

)−L−n−1

.

Therefore,



152 K.-P. Ho

|T (aQ)(x)| ≤ |T (aQ)(x)|χ4Q(x)

+ Cω(Q)−1/pχRn\4Q(x)
(

1 +
|x− xQ|

l(Q)

)−L−n−1

.

As T is bounded on Lp(ω), 1 < p < ∞ (see [16, Corollary 9.4.7]), we find
that the rest of the proof is similar to the proof of Theorem 4.4. Thus, for
the sake of brevity, we leave it to the reader. ¤

The boundedness result may not only consider at the level of atoms, see
[2]. Even though Theorem 4.3 only imposes a weaker condition on u, we
need a stronger requirement on u for the validity of the preceding theorem
because Lemma 5.4 is involved in the proof of Theorem 4.5.

5. Technical Results

In this section, we state and prove an important technical result for our
non-smooth atomic decompositions for Hp

ω,u(Rn). We need this technical
lemma as the supports of the non-smooth atoms are the dilated dyadic
cubes 3Q where Q ∈ Q. The family of dilated dyadic cubes has a serious
drawback. It does not possess the nested property. That is, for any arbitrary
Q,P ∈ Q, we have neither 3P ⊂ 3Q nor 3P ∩ 3Q = ∅. Furthermore, for any
Q ∈ Q, there exists a P ∈ Q such that

P 6⊂ 3Q and P ∩ 3Q 6= ∅.

To overcome this obstacle, we consider the λ-neighborhood of the dyadic
cubes.

For any λ > 1 and any Q ∈ Q, we call a family of dyadic cubes {Qk}2n

k=1

the λ-neighborhood of Q if

λQ ∩Qk 6= ∅, 1 ≤ k ≤ 2n (5.1)

l(Qj) = l(Qi), 1 ≤ i, j ≤ 2n (5.2)

λQ ⊆
2n⋃

k=1

Qk (5.3)

and for any family of dyadic cubes {P k}2n

k=1 satisfying (5.1)–(5.3),
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l(Qk) ≤ l(P k), 1 ≤ k ≤ 2n. (5.4)

We use Nλ(Q) to denote the λ-neighborhood of Q.
The following results are straightforward consequences of the definition

of the λ-neighborhood of Q. For brevity, we leave the proof to the reader.

Lemma 5.1 Let λ > 1 and Q ∈ Q. For any Qk ∈ Nλ(Q), we have

1 ≤ l(Qk)
l(Q)

≤ λ, 1 ≤ k ≤ 2n (5.5)

|cQ,i − cQk,i| ≤
λ + 1

2
l(Q), 1 ≤ k ≤ 2n, 1 ≤ i ≤ n (5.6)

where cQ = (cQ,1, . . . cQ,n) and cQk = (cQk,1, . . . cQk,n) are the centers of Q

and Qk, respectively.

The following lemma is obtained by using Propositions 1.1 and 1.2.

Lemma 5.2 Let λ > 1, Q ∈ Q and ω ∈ A∞. For any Qk ∈ Nλ(Q), we
have a constant C > 0 such that

C−1ω(Q) ≤ ω(Qk) ≤ Cω(Q), 1 ≤ k ≤ 2n. (5.7)

Lemma 5.3 Let λ > 1 and Q ∈ Q. We have

card({P ∈ Q : Q ∈ Nλ(P )}) ≤ 2n(1 + [log2 λ]).

Lemma 5.3 follows from (5.4) and (5.5). Lemma 5.4 is crucial to for-
mulate and establish the non-smooth atomic decompositions of weighted
Hardy-Morrey spaces, it is inspired by [20, Proposition 3.1].

Lemma 5.4 Let 0 < p ≤ 1 and qω < q. Suppose that ω and u satisfy the
conditions given in Theorem 4.4. Then, for any λ > 1 and t = {tQ}Q∈Q ∈
mp

ω,u, we have

sup
P∈Q

1
(u(P ))p

∑

Q∈Q
|tQ|p

(
ω(P ∩ λQ)

ω(Q)

)1−p/q

≤ C‖t‖p
mp

ω,u

for some C > 0 independent of t.
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Proof. For any P ∈ Q, the (1− p
q )-inequality and (5.7) guarantee that

∑

Q∈Q
|tQ|p

(
ω(P ∩ λQ)

ω(Q)

)1−p/q

≤
∑

Q∈Q

∑

Qk∈Nλ(Q)

|tQ|p
(

ω(P ∩Qk)
ω(Qk)

)1−p/q

.

Thus, Lemma 5.3 ensures that

∑

Q∈Q
|tQ|p

(
ω(P ∩ λQ)

ω(Q)

)1−p/q

≤ 2n(1 + [log2 λ])
∑

Q∈Q
|tQ|p

(
ω(P ∩Q)

ω(Q)

)1−p/q

≤ 2n(1 + [log2 λ])
( ∑

Q⊆P

|tQ|p +
∑

P⊂Q

|tQ|p
(

ω(P )
ω(Q)

)1−p/q)
.

Since |tQ| ≤ ‖t‖mp
ω,u

u(Q) for any Q ∈ Q, by using (4.5), we have

1
u(P )p

∑

P⊂Q

|tQ|p
(

ω(P )
ω(Q)

)1−p/q

≤ ‖t‖p
mp

ω,u

∑

P⊂Q

(
ω(Q)
ω(P )

)pκ(
ω(P )
ω(Q)

)1−p/q

.

As for any l ∈ N there exists an unique Q ∈ Q with P ⊂ Q and 2nl|P | = |Q|
and κ < 1

p − 1
q , by using Proposition 1.1, we find that

sup
P∈Q

1
(u(P ))p

∑

Q∈Q
|tQ|p

(
ω(P ∩ λQ)

ω(Q)

)1−p/q

≤ C‖t‖mp
ω,u

. ¤
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