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Takeshita’s examples for Leray’s Inequality
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Abstract. It is well known that Leray’s Inequality holds under stringent outflow

condition (SOC). But Leray’s Inequality does not hold under general outflow condition

(GOC). This fact has been proved by Takeshita [8]. But, Takeshita’s argument is very

complicated. The author succeeds in giving an alternative proof which is simpler than

Takeshita’s. Moreover, the result is an improvement of Takeshita’s result.
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1. Problem and Main Theorem

We consider a stationary flow of an incompressible viscous fluid with the
Dirichlet boundary conditions. Let Ω be a bounded domain in R2 with a
smooth boundary ∂Ω which has multiply connected components Γ0, Γ1, . . . ,
ΓJ . Γ1, . . . , ΓJ lie inside of Γ0. Ω is filled with an incompressible viscous
fluid. u = (u1(x), u2(x)) is the unknown velocity of the fluid motion and
p = p(x) is the unknown pressure of the fluid in Ω, while ν > 0 is the given
kinematic viscosity. Then the fluid motion governed by the Navier-Stokes
equations is

−ν∆u + u · ∇u +∇p = f in Ω, (1.1)

div u = 0 in Ω (1.2)

with the Dirichlet boundary conditions

u = β on ∂Ω, (1.3)

where f is the prescribed external force and β is the given function defined
on ∂Ω. The boundary condition β satisfies the compatibility condition

∫

∂Ω

β · ndS = 0, (1.4)
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where n is the unit outward normal to ∂Ω. We call the condition (1.4)
“General Outflow Condition”, (GOC) in short. Moreover if the boundary
condition β satisfies

∫

Γj

β · ndS = 0 (j = 0, . . . , J), (1.5)

the condition (1.5) is called “Stringent Outflow Condition”, (SOC) in short.
Let b be an extension of β with divergence free. The proof of existense of

the solution of the Navier-Stokes equations (1.1)–(1.3) depends on whether
there is an extension b of β such that the term ((v · ∇)v, b) is small. For
example, the following Proposition is well known.

Proposition 1.1 Suppose that Ω is a two or three dimensional smooth
and bounded domain and β ∈ H1/2(∂Ω) satisfies (SOC).

Then for any ε > 0, there exists an extension bε ∈ H1(Ω) of β with
divergence free such that bε satisfies

|((v · ∇)v, bε)| < ε‖∇v‖22 (v ∈ H1
0,σ(Ω)). (1.6)

We introduce some function spaces.

C∞0,σ(Ω) =
{
ϕ ∈ C∞0 (Ω); div ϕ = 0 in Ω

}
,

H1
0,σ(Ω) = C∞0,σ(Ω)

‖∇·‖
.

‖ · ‖2 and (·, ·) denotes the usual L2(Ω) norm and inner product on Ω re-
spectively.

We call the estimate (1.6) “Leray’s Inequality”. We refer the proof to
R. Finn [2], H. Fujita [4] or R. Temam [9, chap. II Section 1. Lemma 1.8]. But
in this paper for the convenience of the readers, we define strictly “Leray’s
Inequality”.

Definition 1.1 Suppose that the boundary condition β satisfies (GOC).
We say that β satisfies “Leray’s Inequality” if for any ε > 0, there exists an
extension bε ∈ H1(Ω) of β with divergence free such that the estimate (1.6)
holds true for any v ∈ H1

0,σ(Ω).

If β satisfies (GOC) but not (SOC), A. Takeshita [8] proves that for
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the two dimensional annular domain {x ∈ R2;R1 < |x| < R2}, there exists
a v ∈ H1

0,σ(Ω) such that the value of ((v · ∇)v, b) does not depend on
extensions b of β. Furthermore he obtained the following Proposition.

Proposition 1.2 (A. Takeshita [8, Theorem 2]) Let Ω be a bounded do-
main in RN (N ≥ 2) with a smooth boundary ∂Ω = ∪J

i=0Γi, Γi being the con-
nected component of ∂Ω. Suppose that for each Γi (i = 0, . . . , J) there exists
a diffeomorphism ϕi of SN−1 × [0, 1] into Ω such that ϕi(SN−1 ×{0}) = Γi

and ϕi(SN−1 × {1}) is a sphere contained in Ω and β ∈ C∞(∂Ω) satisfies
(GOC).

Then the necessary and sufficient condition that β satisfies “Leray’s
Inequality” is β satisfies (SOC).

In this paper we use the following condition.

Definition 1.2 (Domain Condition) We call a domain Ω satisfies
“Domain Condition” if there exists at least one inner boundary Γj of Ω such
that for a certain P ∈ R2 and l > 0, Γj is contained in the ball B(P, l)(:=
{x ∈ R2; |x−P | < l}) and the sphere ∂B(P, l)(:= {x ∈ R2; |x−P | = l}) ⊂ Ω.

Hereafter we represent this condition as (DC).

Theorem 1.1 Let Ω be a smooth and bounded domain with two boundaries
Γ0 and Γ1 in R2. Suppose that Ω satisfies (DC) and β ∈ H1/2(∂Ω) satisfies
(GOC).

Then β satisfies “Leray’s Inequality” if and only if β fulfills (SOC).

Corollary 1.1 Let Ω be a smooth and bounded domain in R2 with several
boundaries Γ0, Γ1, . . . , ΓJ . Suppose that Ω satisfies (DC), that is to say,
Γ1, . . . , ΓN are contained in B(P, l) for a certain P ∈ R2, l > 0 in such a
way that ∂B(P, l) ⊂ Ω and rests Γ0, ΓN+1, . . . , ΓJ lie outside of B(P, l),
and that β ∈ H1/2(∂Ω) satisfies (GOC).

If β satisfies “Leray’s Inequality”, then

N∑

i=1

∫

Γi

β · ndS = 0 (1.7)

holds true.

Corollary 1.2 Let Ω be a smooth and bounded domain in R2 with sev-
eral boundaries Γ0, Γ1, . . . , ΓJ . Suppose that there are J balls B(P1, l1),
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. . . , B(PJ , lJ) such that each B(Pi, li) contains only one Γi and such that
∂B(Pi, li) ⊂ Ω for all i = 1, . . . , J , β ∈ H1/2(∂Ω) satisfies (GOC).

Then β satisfies “Leray’s Inequality” if and only if β fulfills (SOC).

Remark 1.1 From the condition of Corollary 1.2, each of the inner bound-
aries Γj(j = 1, . . . , J) satisfies (DC).

Remark 1.2 From Definition 1.2, for a two dimensional bounded domain
we slightly loosen the condition of the boundaries Γ0, Γ1, . . . , ΓJ for Propo-
sition 1.2. A domain Ω may not be necessarily smooth. For example, the
boundaries are C1 class or locally lipschitzian, because Gauss-Green Theo-
rem holds true. Definition 1.2 is useful if Γ1, . . . , ΓJ are smooth but not
diffeomorphically formed to the sphere.

Remark 1.3 Corollary 1.1 and Corollary 1.2 hold true for various un-
bounded domains. For example, extrior domains, perturbed half spaces,
infinite channels, etc. But “Domain Condition” are slightly different from
respective domains.

Remark 1.4 Although Theorem 1.1 does not directly imply non-existence
of solutions of the Navier-Stokes equations under (GOC), it suggests us
to find an essentially new approach which is different from such a usual
technique as subtracting solenoidal extensions of β.

Remark 1.5 In a certain two dimensional symmetric bounded domain,
C. J. Amick [1] proved that there exist the symmetric solutions of the Navier-
Stokes equations with the symmetric Dirichlet boundary conditions which
satisfy (GOC). Under the same conditions, H. Fujita [3] proved that any
symmetric function defined on the boundary with (GOC) has the extensions
which satisfy symmetric types of “Leray’s Inequality”. For two or three di-
mensional bounded domains, H. Fujita and H. Morimoto [5] proved that
there exist a weak solution of the stationary Navier-Stokes equations with
the special boundary conditions. H. Kozono and T. Yanagisawa [7] proved
that in three dimensional bounded domains there exist stationary solutions
of the Navier-Stokes equations with the Dirichlet boundary conditions satis-
fying (GOC), using Helmholtz-Weyl decomposition and the harmonic part
of the solenoidal extension of the given boundary data which is sufficiently
small in the L3 space compared with the viscosity constant ν.
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2. Proof

2.1. Proof of Theorem 1.1
First of all, let us prove Theorem 1.1 for the following domain. For

certain l and l′ with 0 < l < l′

Ω = B(O, l′)\B(O, l)

holds true, where O is the origin. Γ0 equals ∂B(O, l′) and Γ1 equals ∂B(O, l).
We use the basis in the polar coordinate. Since β ∈ H1/2(∂Ω) satisfies
(GOC), we set

µ1 :=
∫

Γ1

β · ndS(6= 0).

Let l < r < l′ and ωr = B(0, r)\B(0, l). Since b ∈ H1(Ω) is an arbitrary
extension of β with divergence free, we see

0 =
∫

ωr

div bdx =
∫

Γ0

β · ndS +
∫

|x|=r

b · ndS.

Since n = x
|x| for x ∈ Γ1, it should be

µ1 =
∫ 2π

0

b(r, θ) · errdθ.

We take a vector v which has the form

v = vθ(r)eθ.

If vθ ∈ C∞0 (l, l′), then v ∈ H1
0,σ(Ω). For such a v, we obtain

v · ∇v = −1
r
v2

θer

by easy computations. Then for such a v, we obtain

((v · ∇)v, b) = −µ1

∫ l′

l

1
r
v2

θdr. (2.1)
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Lastly, let Ω be a bounded domain satisfying (DC).
We suppose that the inner boundary Γ1 is contained in B(P, l) and

∂B(P, l) is included in Ω for a certain P ∈ R2 and l > 0. Then we can find
a certain l′ > 0 such that B(P, l) ⊂ B(P, l′) and ∂B(P, l′) is contained in Ω.
Here we set

µ1 :=
∫

Γ1

β · ndS.

Using the polar coordinate of the origin P , then we can check easily that

((v · ∇)v, b) = −µ1

∫ l′

l

v2
θ(r)
r

dr, (2.2)

where v = vθ(r)eθ, vθ ∈ C∞0 (l, l′).
From (2.1) and (2.2) if the boundary condition β satisfies “Leray’s In-

equality”, then for v = vθ(r)eθ, vθ ∈ C∞0 (l, l′) we have

∣∣∣∣µ1

∫ l′

l

v2
θ(r)
r

dr

∣∣∣∣ < ε‖∇v‖22.

Therefore β fulfills (SOC). ¤

2.2. Proof of Corollary 1.1 and 1.2
Let us prove Corollary 1.1.
Let Ω be a bounded domain satisfying (DC).
We suppose that the several inner boundaries Γ1, . . . , ΓN (N ≤ J) are

contained in B(P, l) and ∂B(P, l) is included in Ω for a certain P ∈ R2 and
l > 0. Then we can find a certain l′ > 0 such that B(P, l) ⊂ B(P, l′) and
∂B(P, l′) is contained in Ω. Here we set

µj :=
∫

Γj

β · ndS (j = 1, . . . , N).

Let use the polar coordinate of the origin P . We suppose that v = vθ(r)eθ

with vθ ∈ C∞0 (l, l′). Then v ∈ H1
0,σ(Ω) and we obtain

((v · ∇)v, b) = −
N∑

j=1

µj

∫ l′

l

v2
θ(r)
r

dr. (2.3)
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Therefore if the boundary condition β satisfies “Leray’s Inequality”,

N∑

i=1

µi = 0

holds true.
Let us prove Corollary 1.2.
Suppose that there are J balls B(P1, l1), . . . , B(PJ , lJ) such that each

B(Pi, li) contains only one Γi and such that ∂B(Pi, li) ⊂ Ω for all i =
1, . . . , J . Then we can find a certain l′i > 0 such that B(Pi, li) ⊂ B(Pi, l

′
i)

and ∂B(Pi, l
′
i) is contained in Ω. Let us use the polar coordinate of the origin

Pi. We suppose that vi = vi
θ(r)e

i
θ with vi

θ ∈ C∞0 (li, l′i). Then vi ∈ H1
0,σ(Ω)

and we obtain

((vi · ∇)vi, b) = −µi

∫ l′i

li

(vi
θ(r))

2

r
dr. (2.4)

Therefore if the boundary condition β satisfies “Leray’s Inequality”, then β

fulfills (SOC). ¤
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