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Cram\’er-von Mises-Watson type statistics for testing
normality with censored data
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Abstract. The modified form of the Cram\’er-von Mises-Watson type statistics is em-
ployed for the problem of testing normality with type I censored samples in the presence
of an unknown location parameter \theta . Asymptotic distribution theory is developed for
such statistics when \theta is estimated by its maximum likelihood estimator \hat{\theta} . Small sample
properties of the statistics are also considered.
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1. Introduction

Let x_{1} , x_{2} , \ldots , x_{n} be independent observations on random variable X
with a continuous distribution function F(x) . Suppose that we have an
ordered set of observations x_{1}\leqq x_{2}\leqq\ldots\leqq x_{n} and that we wish to test the
simple null hypothesis

H_{0} : F(x)=F_{0}(x) ,

where F_{0}(x) is a completely specified distribution function. Then a test can
be based on the Cram\’er-von Mises goodness of fit test statistic

W_{n}^{2}=n \int_{-\infty}^{\infty}\{F_{n}(x)-F_{0}(x)\}^{2}dF_{0}(x)

where F_{n}(x) is the empirical distribution function of the sample, that is,
F_{n}(x) is the proportion of x_{1} , x_{2} , \ldots , x_{n} not greater than x , and F_{0}(x) is the
cumulative distribution function assumed under H_{0} .

We also consider the Watson statistic U_{n}^{2} , introduced by Watson [29],
as a goodness of fit statistic on the circle but which can be used also on the
line,

U_{n}^{2}=n \int_{-\infty}^{\infty}[F_{n}(x)-F_{0}(x)-\int_{-\infty}^{\infty}\{F_{n}(y)-F_{0}(y)\}dF_{0}(y)]^{2}dF_{0}(x)
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The distribution of W_{n}^{2} is distribution-free, because it can be seen by
making the probability transformation t_{i}=F_{0}(x_{i})(i=1,2, \ldots, n) and defin-
ing F_{n}(t) to be the proportion of observations t_{i} ’s not greater than t . Under
the transformation above, the null hypothesis H_{0} reduces to the hypothesis
that t_{1}\leqq t_{2}\leqq\ldots\leqq t_{n} is an ordered sample from a uniform population on
[0,1] . Then the test statistics take the forms

W_{n}^{2}=n \int_{0}^{1}\{F_{n}(t)-t\}^{2}dt ,

U_{n}^{2}=n \int_{0}^{1}[F_{n}(t)-t-\int_{0}^{1}\{F_{n}(s)-s\}ds]^{2}dt

Pettitt and Stephens [21] modified the statistics W_{n}^{2} , U_{n}^{2} so that they could
be used to the goodness of fit of a censored sample of N observations 0<
t_{1}< ... <t_{N}\leqq p<1 , when the distribution function F_{0}(x) is known
completely. They considered the asymptotic distribution of the modified
Cram\’er-von Mises statistic

pW_{n}^{2}=n \int_{0}^{p}\{F_{n}(t)-t\}^{2}dt (0<p<1)

and the modified Watson statistic

pU_{n}^{2}=n \int_{0}^{p}\{F_{n}(t)-t-\frac{1}{p}\int_{0}^{p}[F_{n}(s)-s]ds\}^{2}dt .

and obtained the percentiles of the asymptotic distributions of pW_{n}^{2} and
pU_{n}^{2} for various values of p.

In this paper we consider the corresponding composite null hypothesis
H_{0} : F(x)=F_{0}(x;\theta) , where F_{0}(x;\theta) is a known distribution function but \theta

is an unknown location parameter which must be estimated from a censored
sample.

If we denote by \hat{\theta} the estimator for \theta , we may consider \hat{t}_{i}=F_{0}(x_{i}; \hat{\theta})

and \hat{F}_{n}(t) , the sample disribution of the \hat{t}_{i},s . We then modify the statistics
to give

p \hat{W}_{n}^{2}=n\int_{0}^{p}\{\hat{F}_{n}(t)-t\}^{2}dt (1.1)

and

p \hat{U}_{n}^{2}=n\int_{0}^{p}\{\hat{F}_{n}(t)-t-\frac{1}{p}\int_{0}^{p}[\hat{F}_{n}(s)-s]ds\}^{2}dt (1.2)
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as a measure of the discrepancy or ‘distance’ between F_{n}(t) and the uniform
[0,1] distribution. In what follows we employ p\hat{W}_{n}^{2} and p\hat{U}_{n}^{2} for testing
normality when the location parameter \theta in

H_{0} : F_{0}(x)= \int_{0}^{x}\frac{1}{\sqrt{2\pi}} exp \{-\frac{(x-\theta)^{2}}{2}\}dx

is unspecified. We assume the sample is time-truncated, where the trunca-
tion point is p=F_{0}(T;\theta) .

In the next section we consider the maximum likelihood estimator (ab-
breviated to henceforth as MLE) \hat{\theta} and investigate the asymptotic properties
in the censored normal sample. To find the asymptotic distribution of the
statistics, we need to consider the limiting distribution of the empirical pr0-

cess \hat{y}_{n}(t)=\sqrt{n}\{\hat{F}_{n}(t)-t\} , and we consider this situation in section 3. In
section 4, asymptotic distributions of pn\hat{W}^{2} and p\hat{U}_{n}^{2} for testing normality are
studied using the techniques similar to those employed by Durbin, Knott
and Taylor [10], Pettitt and Stephens [21]. Small sample applications are
discussed in final section.

2. MLE and its asymptotic properties in the censored normal
sample

One of the standard sampling procedures used in life testing experiment
is the time-truncated sampling scheme, i.e. type I censoring, where the
failure times 0\leqq x_{1}\leqq x_{2}\leqq\ldots\leqq x_{n}\leqq T of the items which fail prior to a
prefixed time T are recorded.

Let [0, T] be duration of experiment and n be the number of items
being put on test. It is usually assumed that each items on test have an
exponential distribution with probability density function

f(x; \theta)=\frac{1}{\theta} exp (- \frac{x}{\theta}) , (x\geq 0, \theta>0) .

The problem of estimating the scale parameter \theta in such a time trun-
cated sampling has been investigated by many authors such as Epstein -

Sobel [11], Bartholomew [2], [3] and Yang -Sirvanci [30]. Especially based
on the null hypothesis

H_{0} : F(x;\theta)=1- exp (- \frac{x}{\theta}) (x\geq 0, \theta>0) ,
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Pettitt [20] and Sirvanci-Levent [24] have obtained the percentiles of the
asymptotic distribution of the Cram\’er-von Mises statistic pW_{n}^{2} in connec-
tion with finding the covariance function of the limiting Gaussian process
\hat{y}(t) in the censored sample.

Using the failure times and the number of failure N, observed in [0, T] ,
the maximum likelihood estimator \hat{\theta} of \theta under the hypothesis of exponen-
tiality can be formed as explicitely

\hat{\theta}=\frac{1}{N}\{\sum_{i=1}^{N}x_{i}+(n-N)T\}

The object of this section is to give a simple derivation of several asymp-
totic properties of \hat{\theta} , as n - \infty , under the assumption that each item on
test has a normal distribution N(\theta, 1) , therefore the null hypothesis which
is to be considered here can be stated as

H_{0} : F_{0}(x)= \int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}\exp\{-\frac{(x-\theta)^{2}}{2}\}dx

Such a sampling procedures as defined above is of marked interest since it
is frequently assumed in life testing that the logarithum of time to death
is normally distributed. Note that it is not essential to suppose the known
varianceis 1, because if it were \sigma^{2} , values of x/\sigma would be tested to come
from a normal disribution with variance 1.

We will consider situations in which n-N greatest observations are
censored (i.e. not recorded) leaving only x_{1} , x_{2} , \ldots , x_{N} . Best unbiased esti-
mators, based on these order statistic, are particular useful in these circum-
stances, as the MLE of \theta is much more difficult to calculate than they are
for complete samples. We will first, however, discuss maximum likelihood
estimator, and possible approximations thereto.

The joint probability density functions of x_{1} , x_{2} , \ldots , x_{N} is

p(x_{1}, x_{2}, \ldots, x_{N})=\frac{n!}{(n-N)!}\{1-\Phi(t-\theta)\}^{n-N}\prod_{i=1}^{N}\phi(x_{i}-\theta)

where

\phi(x)=\frac{1}{\sqrt{2\pi}} exp (- \frac{x^{2}}{2})
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and

\Phi(x)=\int_{-\infty}^{x}\phi(y)dy

The maximum likelihood estimator \hat{\theta} satisfies the following equation

\frac{\partial\log L(\theta)}{\partial\theta}=(n-N)\frac{-\frac{\partial}{\partial\theta}\Phi(T-\theta)}{1-\Phi(T-\theta)}+\sum_{i=1}^{N}(x_{i}-\theta)=0

Using the notation T-\theta=\xi and noting the

\frac{\partial\Phi(T-\theta)}{\partial\theta}=-\phi(\xi) ,

we have the equation

(n-N) \frac{\phi(\xi)}{1-\Phi(\xi)}+\sum_{i=1}^{N}(x_{i}-\theta)=0

Bearing in mind the fact in the equation above the censored observation
are replaced by the expected value of the appropriate tail of the normal
distribution truncated at T , we may obtain approximate solution of the
likelihood equation by replacing T-\hat{\theta}=\hat{\xi} by U_{\alpha} with \alpha=N/(n+1) . We
have therefore the approximate equation

\hat{\theta}=\frac{1}{N}\{\sum_{i=1}^{N}x_{i}+(n-N)\mu(\alpha)\}=\overline{x}+\frac{n-N}{N}\mu(\alpha) (2.1)

where

\mu(\alpha)=\frac{\phi(U_{\alpha})}{1-\Phi(U_{\alpha})}

are introduced as the notation for the moment of the tails.
According to Johnson [16], we used here the system defined by \Phi(U_{\alpha})=

\alpha with \alpha=N/(n+1) so that U_{\alpha} is the lower 100\alpha\% point of the standard
normal distribution and the values of \mu(\alpha) can be obtained from the table
of Owen [18] noting the formula

\frac{1-\Phi(U_{\alpha})}{\phi(U_{\alpha})}=\frac{1}{\mu(\alpha)}

In the following, we discuss the asymptotic unbiasedness and consis-
tency of MLE \hat{\theta} of the mean \theta of a normal distribution assuming that at
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least one failure was observed in the interval (-\infty, T] .
First we remark that the total number of failure N is a random variable

and its probability law is a binomial B(n,p) , where p=\Phi(T-\theta) .
The conditional joint density of x_{1} , x_{2} , \ldots , x_{N} given N=m is

g(x_{1}, x_{2}, \ldots, x_{m})=\frac{m!}{\Gamma 2\pi^{m}} exp \{-\frac{1}{2}\sum_{i=1}^{m}(x_{i}-\theta)^{2}\}\frac{1}{\{\Phi(T-\theta)\}^{m}} (2.2)

where x_{1}<x_{2}<\ldots<x_{m}\leqq T and m=1,2 , \ldots , n .
Equation (2.2) shows that x_{1} , x_{2} , \ldots , x_{m} have same joint probability

density as the ordered statistics of a random sample of m observations
u_{1} , u_{2} , \ldots , u_{m} from the density

f(t)= \frac{1}{\sqrt{2\pi}\Phi(T-\theta)}\exp\{-\frac{(t-\theta)^{2}}{2}\} , t \leq T (2.3)

We have directly

E(u_{1})= \int_{-\infty}^{T}tf(t)dt=\theta-\frac{\phi(T-\theta)}{\Phi(T-\theta)}

= \theta-\frac{\phi(T-\theta)}{p}

In the following, the notation E_{c} will be used to denote conditional ex-
pectation conditioned on [N>0] . The condional mean for the maximum
likelihood estimator \hat{\theta} in (2.1) is

E_{c}(\hat{\theta})=E\{E(\hat{\theta}/N=m)/N>0\}

=E \{E(u_{1})+\frac{n-m}{m}\mu(\alpha)/N>0\}

= \theta-\frac{\phi(T-\theta)}{p}-n\mu(\alpha)E_{c}(\frac{1}{N})-\mu(\alpha) . (2.4)

In order to evaluate the conOditional mean, it is necessary to calculate
the conditional expectation E_{c}(1/N) , but it is already obtained by Yang-
Sirvanci [30] in their appendix as follows

E_{c}( \frac{1}{N})=\frac{1}{1-q^{n}}\sum_{k=1}^{n}C_{k}^{n}\frac{p^{k}q^{n-k}}{k}
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= \frac{1}{1-q^{n}}\sum_{k=1}^{n}\frac{q^{n-k}}{k}-\frac{q^{n}}{1-q^{n}}\sum_{k=1}^{n}\frac{1}{k} (2.5)

where q=1-p, and p=\Phi(x-\theta) . The full expression for E_{c}(\hat{\theta}) can be
obtained by substiting (2.5) into (2.4), and it follows from (2.4) that

\lim_{narrow\infty}E_{c}(\hat{\theta})=\theta-\frac{\phi(T-\theta)}{p}-\frac{\phi(T-\theta)}{1-p}-\frac{\phi(T-\theta)}{1-p}\lim_{narrow\infty}E_{c}(\frac{n}{N})

According to the results

\lim_{narrow\infty}E_{c}(\frac{n}{N})=\frac{1}{p}

proved by Yang-Sirvantci [30],

\lim_{narrow\infty}E_{c}(\hat{\theta})=\theta-\frac{\phi(T-\theta)}{p}-\frac{\phi(T-\theta)}{1-p}+\frac{\phi(T-\theta)}{1-p}\frac{1}{p}=\theta

This shows that MLE \hat{\theta} is an asymptotically unbiased estimator for \theta . Next
we shall compute the second moment of u_{1} .

E(u_{1}^{2})= \int_{-\infty}^{r}\frac{t^{2}}{\sqrt{2\pi}\Phi(T-\theta)} exp \{-\frac{(t-\theta)^{2}}{2}\}dt

= \frac{1}{\Phi(T-\theta)}[\int_{-\infty}^{T}\frac{(t-\theta)^{2}}{\sqrt{2\pi}} exp \{-\frac{(t-\theta)^{2}}{2}\}dt

+2 \theta\int_{-\infty}^{T}\frac{t}{\sqrt{2\pi}} exp \{-\frac{(t-\theta)^{2}}{2}\}dt

- \theta^{2}\int_{-\infty}^{T}\frac{1}{\sqrt{2\pi}} exp \{-\frac{(t-\theta)^{2}}{2}\}dt]

= \frac{1}{\Phi(T-\theta)}[I_{1}+I_{2}+I_{3}] ,

say.
Then,

I_{1}=-(T-\theta)\phi(T-\theta)+\Phi(T-\theta) ,
I_{2}=2\theta\{-\phi(T-\theta)+\theta\Phi(T-\theta)\} ,

and

I_{3}=\theta^{2}\Phi(T-\theta) ,
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and the second moment is thus given by

E(u_{1}^{2})= \frac{1}{\Phi(T-\theta)}\{-T\phi(T-\theta)-\theta\phi(T-\theta)

+\theta^{2}\Phi(T-\theta)+\Phi(T-\theta)\} (2.6)

To evaluate Var_{c}(\hat{\theta}) , we make use of the standard decomposition

Var_{c}(\hat{\theta})=E_{c}[Var(\hat{\theta}/N=m)]+Var[E(\hat{\theta}/N=m)] (2.7)

We also need to compute

E( \hat{\theta}^{2}/N=m)=\frac{1}{m^{2}}E\{\sum_{i=1}^{m}x_{i}^{2}+2\sum_{1\leq i<j\leq m}x_{i}x_{j}

+2 (n-m) \mu(\alpha)\sum_{i=1}^{m}x_{i}+(n-m)^{2}\mu^{2}(\alpha)\}

= \frac{1}{m}E(u_{1}^{2})+\frac{m-1}{m}E^{2}(u_{1})+\frac{(n-m)^{2}}{m^{2}}\mu^{2}(\alpha)

+ \frac{2(n-m)}{m}\mu(\alpha)E(u_{1}) (2.8)

Substituting E(u_{1})=\theta-\phi(T-\theta)/p and (2.6) into (2.8), we then have

Var_{c}( \hat{\theta}/N=m)=\frac{1}{m}\{E(u_{1}^{2})-E^{2}(u_{1})\}

= \frac{1}{m}\{1-\frac{T}{p}\phi(T-\theta)+\frac{\theta}{p}\phi(T-\theta)-\frac{\phi^{2}(T-\theta)}{p^{2}}\}

and

E_{c}\{Var(\hat{\theta}/N=m)\}

=E_{c}( \frac{1}{N})\{1-\frac{T}{p}\phi(T-\theta)+\frac{\theta}{p}\phi(T-\theta)-\frac{\phi^{2}(T-\theta)}{p^{2}}\} (2.9)

Now noting the result of E(\hat{\theta}|N=m) , it follows that

Var_{c} \{E(\hat{\theta}/N=m)\}=Var_{c}\{\frac{\phi(T-\theta)}{1-p}\frac{n}{m}+\theta-\frac{\phi(T-\theta)}{p}-\frac{\phi(T-\theta)}{1-p}\}

= \frac{n^{2}\phi^{2}(T-\theta)}{(1-p)^{2}}Var_{c}(\frac{1}{N}) (2.10)
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The variance is thus obtained by substituting (2.9) and (2.10) into (2.7)

Var_{c}( \hat{\theta})=E_{c}(\frac{1}{N})\{1-\frac{T\phi(T-\theta)}{p}+\frac{\theta\phi(T-\theta)}{p}-\frac{\phi^{2}(T-\theta)}{p^{2}}\}

+ \frac{n^{2}\phi^{2}(T-\theta)}{(1-p)^{2}}Var_{c}(\frac{1}{N}) (2.11)

Note that the result above shows the necessity of evaluation of condi-
tional variance Var_{c}(1/N) adding to the conditional mean E_{c}(1/N) given
by (2.5). As to the derivation of finding the second moment E_{c}(1/N^{2}) ,
we may mention the following formula as in a similar manner employed by
Yang-Sirvanti [30]. The conditional second moment E_{c}(1/N^{2}) is given by

E_{c}( \frac{1}{N^{2}})=\frac{1}{1-q^{m}}\sum_{k=1}^{m}\frac{1}{k}(\sum_{l=1}^{k}\frac{q^{m-1}}{l})-\frac{q^{m}}{1-q^{m}}\sum_{k=1}^{m}\frac{1}{k}(\sum_{l=1}^{k}\frac{1}{l}) ,

where we used the elementary relations

\sum_{k=1}^{m}C_{k}^{m}\frac{\rho^{k}}{k}=\sum_{k=1}^{m}\frac{(1+\rho)^{k}-1}{k}

and

\sum_{k=1}^{m}C_{k}^{m}\frac{\rho^{k}}{k^{2}}=\sum_{k=1}^{m}\frac{1}{k}\{\sum_{l=1}^{k}\frac{(1+\rho)^{l}-1}{l}\}

The consistency of \hat{\theta} will follow ffom verifying the sufficient condi-
tion, Var_{c}(\hat{\theta}) -0, as narrow\infty . It suffies to show for this purpose that
E_{c}(1/N) -0, and n^{2}Var_{c}(1/N^{2}) -, 0 according to (2.11) but it is clear
from the theorem of Yang-Sirvanci [30], observing that

n^{2}Var_{c}( \frac{1}{N})=E_{c}(\frac{n^{2}}{N^{2}})-E_{c}^{2}(\frac{n}{N})arrow\frac{1}{p^{2}}-\frac{1}{p^{2}}=0

Hence we have an important result.

Theorem 1 Let \hat{\theta} be the MLE for the censored normal sample N(\theta, 1) .
Then \hat{\theta} is an asymptotically unbiased estimator for \theta and is a consistent
estimator for \theta .
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3. The limiting distribution of the empirical process

Pettitt and Stephens [21] modified the W_{n}^{2} , U_{n}^{2} so that they could be
used to goodness of fit test of a censored sample of N observations 0<t_{1}<
t_{2}<\ldots<t_{N}\leqq p<1 , when the distribution F_{0}(x) is known completely.
They considered the asymptotic distribution of the modified Cram\’er-von

Mises statistic

pW_{n}^{2}=n \int_{0}^{p}\{F_{n}(t)-t\}^{2}dt (0<p<1)

and the modified Watson’s statistic

pU_{n}^{2}=n \int_{0}^{p}[F_{n}(t)-t-\frac{1}{p}\int_{0}^{p}\{F_{n}(s)-s\}ds]^{2}dt ,

and obtained percentiles of the asymptotic distributions of pW_{n}^{2} and pU_{n}^{2}

for various values of p .
In this section we consider corresponding composite null hypothesis H_{0} :

F(x)=F_{0}(x;\theta) , where F(x;\theta) is a known distribution but \theta is a unknown
location parameter which must be estimated from the censored sample. If
we denote \hat{\theta} the estimator for \theta , we may consider \hat{t}_{i}=F_{0}(x_{i}; \hat{\theta}) and \hat{F}_{n}(t) ,
the empirical distribution of the \hat{t}_{i},s . We then modify the statistics to give

p \hat{W}_{n}^{2}=n\int_{0}^{p}\{\hat{F}_{n}(t)-t\}^{2}dt (0<p<1) , (3.1)

p \hat{U}_{n}^{2}=n\int_{0}^{p}\{\hat{F}_{n}(t)-t-\frac{1}{p}\int_{0}^{p}[\hat{F}_{n}(s)-s]ds\}^{2}dt . (3.2)

as a measure of the discrepancy or “distance” between \hat{F}_{n}(t) and the uniform
(0,1) distribution U(0,1) .

In what follows we employ p\hat{W}_{n}^{2} and p\hat{U}_{n}^{2} for testing normality when the
location parameter \theta in

H_{0} : F_{0}(x)= \int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}} exp \{-\frac{(x-\theta)^{2}}{2}\}dx

is unspecified. We assume that the sample is time-truncated, where the
truncation point is p=F(T;\theta) .

To find the asymptotic distributions of the statistics p\hat{W}_{n}^{2} and p\hat{U}_{n}^{2} , we
need to consider the limiting distribution of the empirical process \hat{y}_{n}(t)=

\sqrt{n}\{\hat{F}_{n}(t)-t\} . We first investigate the convergence of \hat{y}_{n}(t) .
In his excellent paper, Durbin [8] proved that the empirical process \hat{y}_{n}(t)
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converge weakly to a Gaussian process \hat{y}(t) under fairly general conditions.
We now consider the possibility of the applications of his results to our
case when \theta is estimated from censored data. Durbin assumes that the
estimator \hat{\theta} , used in the transformation, which are function of the vector-
valued function l( . ) , so that

\sqrt{n}(\hat{\theta}-\theta)=\frac{1}{n}\sum_{i=1}^{n}l(x_{i} _{;} _{\theta})+\epsilon_{n} . (3.3)

where x_{1} , x_{2} , \ldots , x_{n} is a random samples from a continuous distribution
F(x;\theta) and the function l( . ) is such that, for a random observation x ,
(i) E\{l(x;\theta)\}=0

(ii) E\{l^{2}(x;\theta)\}=V_{\theta} is finite,
and
(iii) \epsilon_{n}arrow 0 in probability as n – \infty .

Durbin’s corollary 1 of Theorem 1 gives that \hat{y}_{n}(t) converges weakly
to the normal process \hat{y}(t) , 0\leqq t\leqq 1 under the asuumption described
above (Assumption A.I. ) with mean function E\{\hat{y}(t)\}=0 and covariance
function

Cov\{\hat{y}(x),\hat{y}(t)\}

= \min(s, t)-st-h’(s)g(t)-h’(t)g(s)+g’(s)V_{\theta}g(t) , (3.4)

where

h(t)= \int_{-\infty}^{x(t;\theta)}l(x;\theta)dF(x;\theta) , g( t)=[\frac{\partial F(x,\theta)}{\partial\theta}.]_{x=x(t;\theta)}

with t=F(x;\theta) and x=x(t;\theta) . The matrix V_{\theta} is given by V_{\theta}=E\{l(x;\theta)

l(x;\theta)’\} .
The maximum likelihood estimator \hat{\theta} given in (2.1) satisfies asymptot-

ically the conditions above for F(x;\theta)=\Phi(x-\theta) . To show this, we may
first write the \sqrt{n}(\hat{\theta}-\theta) in the form (3.3) in terms of the indicator function

I_{T}(x_{i})=1 if x_{i}\leq T

=0 if x_{i}>T

with

l(x_{i})= \frac{1}{p}\{[x_{i}-\mu(\alpha)-\theta]I_{T}(x_{i})+\mu(\alpha)\} .
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\epsilon_{n}=\sqrt{n}(\hat{\theta}-\theta)(1-\frac{N}{np}) , (3.5)

where

p= \Phi(T-\theta)=\int_{-\infty}^{T-\theta}\frac{1}{\sqrt{2\pi}} exp (- \frac{t^{2}}{2})dt ,

x_{1} , x_{2} , \ldots , x_{n} is a random sample from the normal population N(\theta, 1) . We
shall show the condition (i) are verified asymptotically by taking the first
moment of l(x;\theta) in (3.3) as follows.

E \{l(x_{i}, \theta)\}=-\frac{1}{p}\phi(T-\theta)+\frac{1}{p}\mu(\alpha)\{1-\Phi(T-\theta)\}

Thus if we may regard \mu(\alpha) as

\frac{\phi(T-\theta)}{1-\Phi(T-\theta)}=\frac{\phi(U_{\alpha})}{1-\Phi(U_{\alpha})}

with \Phi(U_{\alpha})=\alpha , we then have

\lim_{narrow\infty}E\{l(x_{i}; ^{\theta})\}=0

It is seen after some algebra that the second moment of l(x_{i}; \theta) yields

E \{l^{2}(x_{i}; \theta)\}=\frac{1}{p^{2}}\int_{-\infty}^{T}(x-\theta)^{2}\frac{1}{\sqrt{2\pi}}\{-\frac{(x-\theta)^{2}}{2}\}dx

+ \frac{\mu^{2}(\alpha)}{p^{2}}\int_{T}^{\infty}\frac{1}{\sqrt{2\pi}} exp \{-\frac{(x-\theta)^{2}}{2}\}dx

=- \frac{1}{p^{2}}(T-\theta)\phi(T-\theta)+\frac{1}{p^{2}}\Phi(T-\theta)

+ \frac{\mu^{2}(\alpha)}{p^{2}}\{1-\Phi(T-\theta)\}

Hence the condition (ii) can be written as

\lim_{narrow\infty}E\{l^{2}(x_{i}; \theta)\}=\frac{1}{p^{2}}\{-(T-\theta)\phi(T-\theta)+p+\frac{\phi^{2}(T-\theta)}{1-p}\}

=V_{\theta} (3.6)

To verify the condition (iii), we use a result of Halperin [12] which states
that the first factor \sqrt{n}(\hat{\theta}-\theta) in the expression \epsilon_{n} , converges in distribution.
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Since the second factor 1-N/nparrow 0 in probability, then by a standard
result, such as Rao [22], \epsilon_{n}arrow 0 in probability.

Since assumption A.I of Durbin is satisfied by the maximum likelihood
estimator \hat{\theta} in the censored data as indicated above, convergence of \hat{y}_{n}(t)

to a Gaussian process \hat{y}(t) follows immediately by Theorem 1 of Durbin.
Halperin considered conditions under which the maximum likelihood

estimator for type II censored samples (i.e. the smallest r observations
x_{1} , x_{2} , \ldots , x_{r} are known) is asymptotically normally distributed with mini-
mum variance. For this case the likelihood is given by

L= \frac{n!}{(n-r)!}\{1-F(x_{r}; ^{\theta})\}^{n-r}\prod_{i=1}^{r}f(x_{i}; ^{\theta})

and the MLE, which satisfies \partial log L/\partial\theta=0 , is asymptotically efficient if
the condition of Halperin [12] are satisfied, and we have

\sqrt{n}(\hat{\theta}-\theta)=\frac{1}{\sqrt{n}}K^{-1}\frac{\partial 1ogL}{\partial\theta}+\epsilon_{n} .

where

K=n^{-1}E( \frac{\partial 1ogL}{\partial\theta}\frac{\partial 1ogL}{\partial\theta},)\backslash

,

provided K^{-1} is a finite positive-definite matrix and \epsilon_{n}arrow 0 in probability.
We can apply his result for type I censoring, with observation less than

some fixed point T, and if we write

l(x;\theta) =K^{-1} \frac{\partial}{\partial\theta} log f(x;\theta) (x\leq T)

=-K^{-1} \frac{\partial}{\partial\theta}F(T;\theta)\{1-F(T;\theta)\}^{-1} (x>T).,

then

\sqrt{n}(\hat{\theta}-\theta)=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}l(x_{i}; ^{\theta})+\epsilon_{n} ,

and \theta meets Durbin’s assumptions, with \hat{\theta} satisying (3.3).
Now we see that, for asymptotically efficient estimator for censored

samples satisfying Halperin’s condition,

h( t;\theta)=\int_{-\infty}^{x(t;\theta)}l(x;\theta)dF(x;\theta)=K^{-1}g(t)
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for t\leqq p=F(x;\theta) , and

h(t; \theta)=\int_{-\infty}^{T}l(x;\theta)dF(x;\theta)+\int_{T}^{x(t;\theta)}l(x;\theta)dF(x;\theta)

=K^{-1} \int_{-\infty}^{T}\frac{\partial f(x,\theta)}{\partial\theta}.dx

- \frac{1}{1-p}K^{-1}\frac{\partial}{\partial\theta}\int_{T}^{x(t;\theta)}F(T;\theta)dF(x;\theta)

=K^{-1}g(t)- \frac{t-p}{1-p}K^{-1}\frac{\partial}{\partial\theta}F(T;\theta)

for t>p , and so the covariance function (3.4) reduces to

Cov \{\hat{y}(t),\hat{y}(s)\}=\min(s, t)-st-g’(t)K^{-1}g(s)(0\leq s, t\leq p)

For our normal population case N(\theta, 1) , since the function l( , ) has a single
parameter,

K^{-1}= \frac{1}{p^{2}}\{-(T-\theta)\phi(T-\theta)+p-\frac{\phi^{2}(T-\theta)}{1-p}\}

as indicated in (3.6) and taking the substitution x=J(t)=\Phi^{-1}(t) gives

g(t)=- \phi\{J(t)\}=-\frac{1}{\sqrt{2\pi}} exp \{-\frac{J^{2}(t)}{2}\}

=-B(t) , say.

Hence we obtain the covariance function of the limiting Gaussian pr0-

cess \hat{y}(t) for 0\leqq s, t\leqq p , as

\rho(s, t)=Cov\{\hat{y}(s),\hat{y}(t)\}

= \min(s, t)-st

- \frac{B(s)B(t)}{p^{2}}\{-(T-\theta)\phi(T-\theta)+p-\frac{\phi^{2}(T-\theta)}{1-p}\} (3.7)

Next we shall discuss the covariance function of limiting Gaussian process
\hat{z}(t) defined for the statisic p\hat{U}_{n}^{2} in (3.2). We first note that the modification
to U_{n}^{2} is not straightforward, that is, the integral

\int_{0}^{1}\{F_{n}(s)-s\}ds

can be considered as an estimate of the corresponding integral with F(t) ,
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the distribution function of t_{i} , replacing F_{n}(t) . If only observations are
available which are less than p=F(T;\theta) , then an estimate of this integral
is

\frac{1}{p}\int_{0}^{p}\{F_{n}(s)-s\}ds

For the statistic p\hat{U}_{n}^{2} , modified empirical proces \hat{z}_{n}(t) is considered as

\hat{z}_{n}(t)=\hat{y}_{n}(t)-\frac{1}{p}\int_{0}^{p}\hat{y}_{n}(s)ds

and then we have

p \hat{U}_{n}^{2}=\int_{0}^{p}\hat{z}_{n}^{2}(t)dt

The covariance function of the limiting Gaussian process \hat{z}(t) may be ob-
tained directly through the use of the kernel k(s, t)=\min(s, t)-st by
expanding \hat{y}(t)\hat{y}(s) .

Write

\rho_{1}(s, t)=E\{\hat{z}(s)\hat{z}(t)\}

= \rho(s, t)+\frac{1}{p^{2}}\int\int_{0}^{p}\rho(s, t)dsdt

- \frac{1}{p}\int_{0}^{p}\rho(s, t)ds-\frac{1}{p}\int_{0}^{p}\rho(s, t)dt .

where \rho(s, t) denote the covariance function of \hat{y}(t) obtained as (3.7). Using
this, we have

\rho_{1}(s, t)=k(s, t)-B(s)B(t)V_{\theta}+\frac{1}{p^{2}}\iint_{0}^{p}\{k(s, t)-B(s)B(t)V_{\theta}\}dsdt

- \frac{1}{p}\int_{0}^{p}\{k(s, t)-B(s)B(t)V_{\theta}\}ds

- \frac{1}{p}\int_{0}^{p}\{k(s, t)-B(s)B(t)V_{\theta}\}dt

=k(s, t)+[ \frac{1}{p^{2}}\iint_{0}^{p}k(s, t)dsdt

- \frac{1}{p}\int_{0}^{p}k(s, t)ds-\frac{1}{p}\int_{0}^{p}k(s, t)dt]

- \{B(s)-\frac{1}{p}\int_{0}^{p}B(s)ds\}\{B(t)-\frac{1}{p}\int_{0}^{p}B(t)dt\}V_{\theta}
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Now, for the kernel k(s, t)= \min(s, t) – st , we have well known results as

\frac{1}{p}\int_{0}^{p}k(s, t)ds=t-\frac{pt}{2}-\frac{t^{2}}{2p} , \frac{1}{p^{2}}\iint_{0}^{p}k(s, t)dsdt=\frac{p}{3}-\frac{p^{2}}{4}

Therefore, the integral in the bracket [ ] above is

\frac{p}{3}-\frac{p^{2}}{4}-(s+t)+\frac{p}{2}(s+t)+\frac{1}{2p}(s^{2}+t^{2})=a(s, t) , say

Note that k(s, t)+a(s, t) is the covariance function of z(t) obtained by
Pettitt-Stephens [21] for the test statistic pU_{n}^{2} when F(x;\theta) is completely
specified. Hence, we have

\rho_{1}(s, t)=k(s, t)+a(s, t)

- \{B(s)-\frac{1}{p}\int_{0}^{p}B(s)ds\}\{B(t)-\frac{1}{p}\int_{0}^{1}B(t)dt\}V_{\theta}

The substitution x=J(t) , with J(t)=\{x;t=\Phi(x)\} , gives, after some
algebra,

\int_{0}^{p}B(t)dt=\int_{0}^{p}\frac{1}{\sqrt{2\pi}} exp \{-\frac{J^{2}(t)}{2}\}dt=\frac{1}{2\sqrt{\pi}}\Phi\{\sqrt{2}(T-\theta)\} ,

and finally we have

\rho_{1}(s, t)=k(s, t)+a(s, t)-\{B(s)-\frac{1}{2p\sqrt{\pi}}\Phi[\sqrt{2}(T-\theta)]\}

\{B(t)-\frac{1}{2p\sqrt{pi}}\Phi[\sqrt{2}(T-\theta)]\}V_{\theta}

= \min(s, t)-st+\frac{p}{3}-\frac{p^{2}}{4}-(s+t)+\frac{p}{2}(s+t)+\frac{1}{2p}(s^{2}+t^{2})

+ \{B(s)-\frac{1}{2p\sqrt{\pi}}\Phi[\sqrt{2}(T-\theta)]\}

\{B(t)-\frac{1}{2p\sqrt{\pi}}\Phi[\sqrt{2}(T-\theta)]\}V_{\theta} , (3.8)

where V_{\theta} is given by

V_{\theta}= \frac{1}{p^{2}}\{-(T-\theta)\phi(T-\theta)+p-\frac{\phi^{2}(T-\theta)}{1-p}\}
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In his paper [19], Pettitt gave the value of \rho_{1}(s, t) as

\min(s, t)-st-\{c-g(s)\}’K^{-1}\{c-g(t)\} , (3.9)

where

c= \frac{1}{p}\int_{0}^{p}g(t)dt ,

for the distribution F(x;\theta) , but his result for p\hat{U}_{n}^{2} seems to be incorrect.
\min(s, t)-st in (3.9) should replace as

\min(s, t)-st+\frac{p}{3}-\frac{p^{2}}{4}-(s+t)+\frac{p}{2}(s+t)+\frac{1}{2p}(s^{2}+t^{2})

Therefore we arrive at the following theorem.

Theorem 2 The empirical process \hat{y}_{n}(t) converges weakly to a zero mean
normal process \hat{y}(t) , 0\leqq t\leqq 1 in the metric space (D, d) with covariance

function
\rho(s, t)=\min(s, t)-st

- \frac{B(s)B(t)}{p^{2}}\{-(T-\theta)\phi(T-\theta)+p-\frac{\phi^{2}(T-\theta)}{1-p}\}’.

and the modified empirical process \hat{z}_{n}(t) converges weakly also to a normal
process \hat{z}(t) in the same metric space (D, d) with mean 0 and covariance

\rho_{1}(s, t)=\min(s, t)-st+\frac{p}{3}-\frac{p^{2}}{4}-(s+t)

+ \frac{p}{2}(s+t)+\frac{1}{2p}(s^{2}+t^{2})

+ \{B(s)-\frac{1}{2p\sqrt{\pi}}\Phi[\sqrt{2}(T-\theta)]\}

\{B(t)-\frac{1}{2p\sqrt{\pi}}\Phi[\sqrt{2}(T-\theta)]\}V_{\theta}

4. Asymptotic distribution theory of the test statistics

4.1. Convergences of \hat{{}_{p}W}_{n}^{2} and \hat{{}_{p}U}_{n}^{2}

Our basic space will be the space D of right-continuous functions with
left-hand limits on [0,1] . On D we use the Skorohod metric defined on pages
111 of Billingsley [4]. It follows from the treatment of Billingsley that pU_{n}^{2}arrow
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ppU^{2},W_{n}^{2}arrow pW^{2} whenever pW_{n}^{2} is continuous in metric d . Because of weak
convergence of \hat{y}_{n}(t) to \hat{y}(t) , where \hat{y}(t) is a normal process in the metric
space (D, d) with mean function zero and covariance function E\{\hat{y}(s)\hat{y}(t)\} ,
we observe if h(\hat{y}_{n}(t)) is a functional of \hat{y}_{n}(t) which is continuous in metric
d , then h(\hat{y}_{n}(t)) converges weakly to h(\hat{y}(t)) by the arguments of Billingsley.

Let

p \hat{W}^{2}=\int_{0}^{p}\hat{y}^{2}(t)dt

and

p \hat{U}^{2}=\int_{0}^{p}\hat{z}^{2}(t)dt

where \hat{y}(t) and \hat{z}(t) are Gaussian processes given in section 3 with means 0
and covariance functions \rho(s, t) and \rho_{1}(s, t) respectively defined by (3.7) and
(3.8). We shall show that these two statistics pp\hat{W}_{n}^{2},\hat{U}_{n}^{2} converge in distri-
bution to p\hat{W}^{2} and p\hat{U}^{2} respectively. This means that continuous functional
of the empirical process \hat{y}_{n}(t) converge weakly to the same functionals of
\hat{y}(t) .

To begin, we consider the asymptotic distributions of the statistics in
(3.1) and (3.2), where p=\Phi(T-\theta) is replaced by the estimate \hat{p}=\Phi(T-\hat{\theta}) ,
that is

\hat{p}n\hat{W}^{2}=\int_{0}^{\hat{p}}\hat{y}_{n}^{2}(t)dt (4.1)

and,

\hat{p}n\hat{U}^{2}=\int_{0}^{\hat{p}}\hat{z}_{n}^{2}(t)dt (4.2)

since in any application, \hat{p} is to be used for the unkown value p.
As to the weak convergence of \hat{p}\hat{W}_{n}^{2} to \hat{p}\hat{W}^{2} , Sirvanti-Levent [24] con-

sidered a method by employing two steps, i.e. first step is to show that \hat{p}\hat{W}_{n}^{2}

is asymptotically equivalent to p\hat{W}_{n}^{2} and then second is to show that the
asymptotic distribution of p\hat{W}_{n}^{2} is same as the distribution of p\hat{W}^{2} . To show
the first step, they partitioned the \hat{p}n\hat{W}^{2} into two parts, i.e.

\hat{p}n\hat{W}^{2}=\int_{0}^{p}\hat{y}_{n}^{2}(t)dt+\int_{p}^{\hat{p}}\hat{y}_{n}^{2}(t)dt , (4.3)

and they showed the second term on the right hand side of (4.3) is asymp-
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totically negligible by observing the evaluation of the bound of

\sqrt{n}\int_{p}^{\hat{p}}\{F_{n}(t)-t\}^{2}dt

We now show here the direct proof of \hat{p}\hat{W}_{n}^{2}arrow p\hat{W}^{2} (in D).
Together with what we have obtained in section 2 that \hat{\theta} is a consistent

estimator of \theta , it is obvious that \hat{p} converges to p in probability since \hat{p} is
a continuous function of \theta . On the other hand, we have shown that the
limiting distribution of \hat{y}_{n}(t) is a continuous Gaussian process \hat{y}(t) with
covariance function given by \rho(s, t) . An immediate consequence of theorem
4.4 of Billingsley [4] gives us that (\hat{p},\hat{y}_{n}(t))arrow(p,\hat{y}(t)) in distribution in
R\cross D , the product space of real numbers and the space of functions on
D[0,1] that are right continuous and have left limits.

We are going to discuss that if (\hat{p},\hat{y}_{n}(t)) is a sequence converging to
(p,\hat{y}(t)) in R\cross D , then

\int_{0}^{\hat{p}}\hat{y}_{n}^{2}(t)dt - \int_{0}^{p}\hat{y}^{2}(t)dt

We see that, for \hat{p}>p ,

| \int_{0}^{\hat{p}}\hat{y}_{n}^{2}(t)dt-\int_{0}^{p}\hat{y}^{2}(t)dt|\leq\int_{0}^{1}|\hat{y}_{n}^{2}(t)-\hat{y}^{2}(t)|dt+|\int_{p}^{\hat{p}}\hat{y}^{2}(t)dt|

and we note that Skorohod convergence does imply \hat{y}_{n}^{2}(t)arrow\hat{y}^{2}(t) for conti-
nuity pointst of \hat{y}^{2}(t) , and if \hat{y}_{n}^{2}(t) is continuous on all of [0,1] , then Skorohod
convergence implies uniform convergence, so that

\sup_{t}|\hat{y}_{n}^{2}(t)-\hat{y}^{2}(t)|arrow 0

as narrow\infty , and so the first term on the right-hand side above inequal-
ity tends to zero. Since \hat{y}^{2}(t) is continuous, the second term on the right
converges to zero and so the convergence of

\int_{0}^{\hat{p}}\hat{y}_{n}^{2}(t)dt

to

\int_{0}^{p}\hat{y}^{2}(t)dt

is established.



202 T. Hashimoto

It is quite natural to talk about that the same method works for \hat{p}n\hat{U}^{2} .
As we have seen the asymptotic distribution of p\hat{W}_{n}^{2} and p\hat{U}_{n}^{2} are the

same as the distributions of p\hat{W}^{2} and p\hat{U}^{2} respectively, we can now concen-
trate on the processes \hat{y}(t) and \hat{z}(t) , and then attempt to find the distribu-
tions of p\hat{W}^{2} and p\hat{U}^{2} with 0<p<1 .

4.2. Moments of \hat{{}_{p}W}^{2} and \hat{{}_{p}U}^{2}

By approach of Kac-Siegert [17] and Anderson-Darling [1] which are
used for finding the asymptotic theory of the simpler goodness of fit statistics
when testing completely spedified hypothesis with uncensored samples, we
can show that p\hat{W}^{2} and p\hat{U}^{2} are infinite sums of identically disributed chi-
squared random variables

\sum_{j=1}^{\infty}\frac{c_{j}}{\lambda_{j}} (4.4)

In (4.4) c_{1} , c_{2} , \ldots are independent \chi^{2} random variables with one degree
of freedom and 0<\lambda_{1}<\lambda_{2}<\ldots are eigenvalues of the integral equations

\lambda\int_{0}^{p}\rho(s, t)f(s)ds=f(t) (0\leq t\leq p) (4.5)

for p\hat{W}^{2} and

\lambda\int_{0}^{p}\rho_{1}(s, t)f(s)ds=f(t) (0\leq t\leq p) (4.6)

for p\hat{U}^{2} , where \rho(s, t) and \rho_{1}(s, t) are covariance functions of the limiting
processes \hat{y}(t) and \hat{z}(t) and f( . ) are the eigenfunctions of the corresponding
integral equations above. Thus the eigenvalues \{\lambda_{j}\} in (4.4) are to be
determined from (4.5) or (4.6), where the expression (3.7) or (3.8) is used
for the covariance function \rho(s, t) or \rho_{1}(s, t) . Sukhatme [28] and Darling
[5] give details of the integral equation of the form (4.5), for the general
positive definite kernel \rho(s, t) , and the method may be applied to our case.

Now, it would be more convenient, for a better understanding, to begin
with the treatment of the cumulants of p\hat{W}^{2} . This may be obtained directly
from (4.5) through the use of covariance function of the empirical process
\hat{y}(t) as

\kappa_{j}=2^{j-1}(j-1)!\int_{0}^{p}\rho^{(j)}(s, s)ds . (4.7)
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where
\rho^{(j)}(s, t) = \int_{0}^{p}\rho^{(j-1)}(s, u)\rho(u, t)du (j\geq 2) ,

=\rho(s, t) (j=1) ,

with \rho(s, t) being the covariance function given in (3.7). This result follows
from a straightforward extension of those of Anderson-Darling [1]. Hence
the value of the cumulants can be computed exactly from (4.7), but in
practice, after the first two, the integral calculation becomes extremely long
and only the means and variances have been calculated, as shown below.

First of all we need to keep in mind that the expressions for E(_{p}W^{2}) ,
Var(_{p}W^{2}) with censored data, are given by Pettitt-Stephens [21] as

E(_{p}W^{2})= \kappa_{1}(_{p}W^{2})=\frac{p^{2}}{2}-\frac{p^{3}}{3} ,

Var(_{p}W^{2})= \kappa_{2}(_{p}W^{2})=\frac{p^{4}}{3}-\frac{8p^{5}}{15}+\frac{2p6}{9}

For p\hat{W}^{2} ,
\rho(s, t)=\min(s, t)-st

- \frac{B(s)B(t)}{p^{2}}\{-(T-\theta)\phi(T-\theta)+p-\frac{\phi^{2}(T-\theta)}{1-p}\}’.

and so

E(_{p} \hat{W}^{2})=\int_{0}^{p}(t-t^{2})dt

- \frac{1}{p^{2}}\{-(T-\theta)\phi(T-\theta)+p-\frac{\phi^{2}(T-\theta)}{1-p}\}\int_{0}^{p}B^{2}(t)dt

= \frac{1}{2}p^{2}-\frac{1}{3}p^{3}-\frac{\Phi\{\sqrt{3}(T-\theta)\}}{2\pi\sqrt{3}}V_{\theta} (4.8)

The variance is

\kappa_{2}(_{p}\hat{W}^{2})=Var(_{p}\hat{W}^{2})=2\iint_{0}^{p}\{k(s, t)-B(s)B(t)V_{\theta}\}^{2}dsdt

=2(K^{2}-2KB+B^{2}) ,

where
2K^{2}=2 \iint_{0}^{p}\{\min(s, t)-st\}^{2}dsdt=\frac{2}{9}p^{6}-\frac{8}{15}p^{5}+\frac{1}{3}p^{4}

=Var(_{p}W^{2})
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and

2B^{2}=2 \iint_{0}^{p}B^{2}(s)B^{2}(t)V_{\theta}^{2}dsdt=2\{\int_{0}^{p}B^{2}(t)dt\}^{2}

=2\{E(_{p}W^{2})-E(_{p}\hat{W}^{2})\}^{2} ,

thus 4KB must be found.
The substitution x=J(s) , i.e., J(.) is the inverse of \Phi(.) , gives, after

much algebra,

KB= \iint_{0}^{p}k(s, t)B(s)B(t)V_{\theta}dsdt

=2V_{\theta} \int_{0}^{p}(1-t)B(t)\{\int_{0}^{1}sB(s)\}dt

= \frac{1}{\pi}V_{\theta}\int_{0}^{p}(1-t)B(t)\{\int_{-\infty}^{J(t)}[\frac{1}{2}+\frac{1}{2\pi}\int_{-\infty}^{\infty}

exp (-2u^{2}) \frac{\sin 2xu}{u}du] exp (-x^{2})dx\}dt

=2V_{\theta} \int_{0}^{p}(1-t)B(t)\{\int_{-\infty}^{J(t)}[1-\Phi(x)] exp (-x^{2})dx\}dt

The resulting integral does not seem to be tractable by analytic method,
and so the KB has to be found numerically.

Finally, we have

Var(_{p}\hat{W}^{2})=Var(_{p}W^{2})+\{E(_{p}W^{2})-E(_{p}\hat{W}^{2})\}^{2}-4KB

= \frac{1}{3}p^{4}-\frac{8}{15}p^{5}+\frac{2}{9}p^{6}+\frac{\Phi^{2}[\sqrt{3}(T-\theta)]}{6\pi^{2}}V_{\theta}^{2}-4KB (4.9)

For \hat{U}_{p}^{2} ,

\rho_{1}(s, t)=k_{1}(s, t)-C(s)C(t)V_{\theta}

where

k_{1}(s, t)=\min(s, t)-st+\frac{1}{3}p-\frac{1}{4}p^{2}-(s+t)

+ \frac{1}{2}p(s+t)+\frac{1}{2p}(s^{2}+t^{2}) ,

C(s)=B(s)- \frac{1}{2p\sqrt{\pi}}\Phi\{\sqrt{2}(T-\theta)\} .



Crame’r-von Mises-Watson statistics for censored data 205

and so,

\kappa_{1}(_{p}\hat{U}^{2})=E(_{p}\hat{U}^{2})=\int_{0}^{p}(s-s^{2}+\frac{p}{3}-\frac{p^{2}}{4}-2s+ps+\frac{s^{2}}{p})ds

- \int_{0}^{p}\{B^{2}(s)-\frac{\Phi[\sqrt{2}(T-\theta)]}{p\sqrt{\pi}}B(s)+\frac{\Phi^{2}[\sqrt{2}(T-\theta)]}{4p\pi 2}\}V_{\theta}ds

The integral of the first term on the right-hand side is p^{2}/6-p^{3}/12 and
this value corresponds exactly to E(_{p}U^{2}) obtained by Pettitt-Stephens [21].
Concerning the second term, we are going to make use of the results

\int_{0}^{p}B(s)ds=\frac{\Phi\{\sqrt{2}(T-\theta)\}}{2\sqrt{\pi}} , \int_{0}^{p}B^{2}(s)ds=\frac{\Phi^{2}\{\sqrt{3}(T-\theta)\}}{2\sqrt{3}\pi} ,

hence the mean is

E(_{p} \hat{U}^{2})=E(_{p}U^{2})-V_{\theta}\{\frac{\Phi[\sqrt{3}(T-\theta)]}{2\pi\sqrt{3}}-\frac{\Phi^{2}[\sqrt{2}(T-\theta)]}{4p\pi}\} (4.10)

Furthermore, the variance is given in a similar manner by

\kappa_{2}(_{p}\hat{U}^{2})=Var(_{p}\hat{U}^{2})=2\iint_{0}^{p}\{k(s, t)-C(s)C(t)V_{\theta}\}^{2}dsdt

=2(K_{1}^{2}-2K_{1}C+C^{2}) , say.

This again needs only straightforward but tedious algebra, and with the
notation k(s, t) and a(s, t) introduced in section 8, the variance for p\hat{U}^{2} can
be calculated as shown below. Write

K_{1}^{2}= \iint_{0}^{p}k^{2}(s, t)dsdt+2\iint_{0}^{p}k(s, t)a(s, t)dsdt+\iint_{0}^{p}a^{2}(s, t)dsdt

=E_{1}+E_{2}+E_{3} , say.

We then have

2E_{1}= \frac{1}{3}p^{4}-\frac{8}{15}p^{5}+\frac{2}{9}p^{6}=Var(_{p}W^{2})

as before. Straightforward but cumbersome algebra give

4E_{2}=- \frac{28}{45}p^{4}+p^{5}-\frac{5}{16}p^{6}

and

2E_{3}= \frac{14}{15}p^{4}-\frac{1}{2}p^{5}+\frac{4}{24}p^{6}



206 T. Hashimoto

Hence we get

2K_{1}^{2}= \frac{1}{45}p^{4}-\frac{1}{30}p^{5}+\frac{1}{72}p^{6}

Use of (4.10) gives us for the third integral,

2C^{2}=2\{E(_{p}U^{2})-E(_{p}\hat{U}^{2})\}^{2}

=2V_{\theta}^{2} \{\frac{\Phi[\sqrt{2}(T-\theta)]}{2\sqrt{3}\pi}-\frac{\Phi^{2}[\sqrt{2}(T-\theta)}{4p\pi}\}^{2}

Therefore K_{1}C must be found. Let

\alpha=\frac{1}{2p\sqrt{\pi}}\Phi\{\sqrt{2}(T-\theta)\} ,

then we may write

K_{1}C=V_{\theta} \{\iint_{0}^{p}k(s, t)B(s)B(t)dsdt-2\alpha\iint_{0}^{p}k(s, t)B(s)dsdt

+ \alpha^{2}\iint_{0}^{p}k(s, t)dsdt+\iint_{0}^{p}a(s, t)B(s)B(t)dsdt

-2 \alpha\iint_{0}^{p}a(s, t)B(s)dsdt+\alpha^{2}\iint_{0}^{p}a(s, t)dsdt\}

=V_{\theta}\{E_{1}-2\alpha E_{2}+\alpha^{2}E_{3}+E_{4}-2\alpha E_{5}+\alpha^{2}E_{6}\} , say.

Using the similar algebra as before, we then see that
1 3 1 4

E_{3}=-p3--p4 ,

and
1 4 1 3

E_{6}=\overline{4}^{p}--p3

As for the rest, we meet again the difficulty of integral evaluation as
was shown in the case of p\hat{W}^{2} . However, it turns out to be possible to get
a fairly explicit formula for the integrals, and we have

E_{1}=KB , E_{5}=( \frac{1}{2}p^{2}-p)\alpha\beta_{1}(p)+\frac{1}{2}\beta_{2}(p) ,

E_{4}=( \frac{1}{3}p^{3}-\frac{1}{4}p^{4})\alpha^{2}+(p^{2}-2p)\alpha\beta_{1}(p)+\alpha\beta_{2}(p) ,

E_{2}= \frac{1}{2}\alpha p^{3}-\frac{1}{2}p^{2}\beta_{1}(p)+\int_{0}^{p}\beta_{1}(t)dt-\int_{0}^{p}t\{\int_{0}^{1}B(s)ds\}dt
:
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where

\beta_{1}(t)=\int_{0}^{t}sB(s)ds , \beta_{2}(t)=\int_{0}^{t}s^{2}B(s)ds

Thus we have

K_{1}C=V_{\theta} \{KB+\alpha p^{2}\beta_{1}(p)-(\frac{2}{3}p^{3}+\frac{1}{4}p^{3})\alpha^{2}

-2 \alpha\int_{0}^{p}\beta_{1}(t)dt+2\alpha\int_{0}^{p}t[\int_{0}^{t}B(s)ds]dt\}

and

Var(_{p} \hat{U}^{2})=\frac{1}{45}p^{4}-\frac{1}{30}p^{5}+\frac{1}{72}p^{6}

+2V_{\theta}^{2} \{\frac{\Phi[\sqrt{3}(T-\theta)]}{2\pi\sqrt{3}}-\frac{\Phi^{2}[\sqrt{2}(T-\theta)]}{4p\pi}\}^{2}-4K_{1}C (4.11)

which will also be found numerically. Therefore to state the theorem for-
mally,

Theorem 3 Asymptotic distribution of_{p}\hat{U}_{n}^{2} is the same as the distribution
of p\hat{U}^{2} , where p is estimate p=F(T-\theta) . As for the moments of p\hat{U}^{2} , we
have

E(_{p} \hat{U}^{2})=E(_{p}U^{2})-V_{\theta}\{\frac{\Phi[\sqrt{3}(T-\theta)]}{2\pi\sqrt{3}}-\frac{\Phi^{2}[\sqrt{2}(T-\theta)]}{4p\pi}\} ,

Var(_{p} \hat{U}^{2})=\frac{1}{45}p^{4}-\frac{1}{30}p^{5}+\frac{1}{72}p^{6}

+2V_{\theta}^{2} \{\frac{\Phi[\sqrt{3}(T-\theta)]}{2\pi\sqrt{3}}-\frac{\Phi^{2}[\sqrt{2}(T-\theta)]}{4p\pi}\}^{2}-4K_{1}C

4.3. Solution of the integral equations
To find the percentiles of the distributions of p\hat{W}^{2} and p\hat{U}^{2} , the integral

equations (4.5) and (4.6) must be solved by using the procedure of Darling
[5]. This method was suucessfully used by Stephens [25] in determining
the distribution of \hat{W}^{2} for the completely sample. Since it is not feasible
to compute all the eigenvalues \{\lambda_{j}\} , the sum is usually truncated after a
finite number of terms and the limiting random variable p\hat{W}^{2} or p\hat{U}^{2} is
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approximated by

S= \sum_{j=1}^{k}\frac{c_{j}}{\lambda_{j}}+\lambda\chi_{\beta}2 , (4.12)

where k is the number of known eigenvalues being suitably large integers,
the c_{j} (j=1,2, \ldots, k) are independent chi-squared random variables with
one degree of freedom, and \chi_{\beta}^{2} is an also \chi^{2} random variable with \beta degree
of freedom. The weights \lambda and the constant \beta are chosen so that S and the
respective statistic p\hat{W}^{2} or p\hat{U}^{2} have the same mean and variance.

The cumlants of S are given by

\kappa_{*j}=2^{j-1}(j-1) ! \{\sum_{i=1}^{k}(\frac{1}{\lambda_{i}})^{j}+\lambda^{j}\beta\} , (4.13)

the values of the constants \lambda and \beta are determined by comparing the true
cumulants with those given by \kappa_{*j} . Hence to determine \lambda and \beta , the first
two moment of the statistics which are already obtained are needed. From
well-known relation for characteristic function of S , we have

\psi_{s}(t)=\prod_{j=1}^{k}(1-\frac{2it}{\lambda_{j}})^{-1/2}(1-2i\lambda t)^{-\frac{\beta}{2}}

The disribution of the statistic S can be found accurately by inverting
the characteristic function of S , using the technique of Imhof [15]. These
method have been used successfully before ( Durbin,Knott and Taylor [10],
Sirvanci and Levent [24], Pettitt [20] ) for approximating to the asymptotic
distribution of a Cram\’er-von Mises type statsitic.

In computations for finding the percentiles of the statistic S , it is nec-
essary firstly to compute \kappa_{1} and \kappa_{2} exactly from (4.8) and (4.9), then to
compute the first k eigenvalues \{\lambda_{j}\} for each values of censoring levels p

(0<p<1) utilizing the results of Darling [5], Stephens [27]. For this
purpose, we now discuss the solutions of the integral equations (4.5) and
(4.6).

For the statistic p\hat{W}^{2} , the kernel is given by

\rho(s, t)=k(s, t)-B(s)B(t)V_{\theta} .

where

k(s, t)= \min(s, t) – st , (0\leq s, t\leq p)
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and

V_{\theta}= \frac{1}{p^{2}}\{-(T-\theta)\phi(T-\theta)+p-\frac{\phi^{2}(T-\theta)}{1-p}\}

In order to solve (4.5), knowledges of the eigenfunction of the integral
equation

\lambda\int_{0}^{p}k(s, t)f(s)ds=f(t) , (0\leq t<p) (4.14)

are required. The details of the solution of this kernel k(s, t) are given by
Pettitt-Stephens [21]. The normalized eigenfunction associated with (4.14)
is given by

f(t)=

and the corresponding eigenvalues \sqrt{\lambda_{j}} must satisfy

\tan(p^{\sqrt{\lambda}})=-\sqrt{\lambda}(1-p)

For p\hat{U}^{2} , this also requires knowledge of the eigenfunctions of the inte-
gral equation

\lambda\int_{0}^{p}k_{1}(s, t)f(s)ds=f(t) , (0\leq t<p) , (4.15)

where

k_{1}(s, t)=\min(s, t)-st-(s+t)

+ \frac{p}{2}(s+t)+\frac{1}{2p}(s^{2}+t^{2})+\frac{p}{3}-\frac{p^{2}}{4}

The discussion is slightly more complicated. If we denote the eigenvalues
for pW^{2} by \{_{w}\lambda_{j}\} , that is the solution of (4.14), and \{\lambda_{j}\} , \{\lambda_{j}^{*}\} denote

the eigenvalues for pU^{2} , \lambda_{j} solution of \sin(\sqrt{\lambda}/2)p=0 and \lambda_{j}^{*} solution of

tan ( \frac{\sqrt{\lambda}}{2})p=-\frac{\sqrt{\lambda}}{2}(1-p) , then

\lambda_{j}=\frac{4\pi^{2}j^{2}}{p^{2}} , \lambda_{j}^{*}=4_{w}\lambda_{j} (j=1,2, \ldots)
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with corresponding eigenfunctions, suitably normalized,

f_{j}(t)=\cos(\sqrt{\lambda_{j}}t)

and

f_{j}^{*}(t)= \sin(\sqrt{\lambda_{j}^{*}}t)+\frac{1}{2}\sqrt{\lambda_{j}^{*}}(1-p)\cos(\sqrt{\lambda_{j}^{*}}t)

Suppose that k(s, t) has Fredholm determinant D_{0}(\lambda) , whose simple
roots are 0\leqq\lambda_{1}\leqq\lambda_{2}\leqq\ldots , and let the corresponding eigenfunctions be
f_{1}(x) , f_{2}(x) , \ldots .

Define

a_{j}= \int_{0}^{p}f_{j}(x)\psi(x)dx , S( \lambda)=1+\lambda\sum_{i=1}^{\infty}\frac{a_{i}^{2}}{1-\lambda/\lambda_{i}}

where \psi(x) is a function already found as \psi(x)=B(x)V_{\theta} .
Darling [5] showed that the Fredholm determinant for the kernel \rho(s, t)

is

D(\lambda)=D_{0}(\lambda)S(\lambda)

The weight \lambda_{j} in the representation

S= \sum_{j=1}^{k}\frac{C_{j}}{\lambda_{j}}+\lambda\chi_{\beta}2

have to be found, and these are the solutions of the relevant Fredholm
determinant equation D(\lambda)=0 .

Let the weight \lambda_{j} obtained for D_{0}(\lambda)=0 be called the standard weight.
Then the weights consists of a subset of the standards, plus a new set \lambda_{j}

’

labelled with a dash. For p\hat{W}^{2} , the zeros of D_{0}(\lambda) are simple zeros, and will
not be the zero of D(\lambda) unless, in S(\lambda) , the corresponding Fourier coefficient
a_{j} is zero. The other zeros \lambda_{j}

’ are solution of S(\lambda)=0 .
Similar method may be applied for p\hat{U}^{2} , but the discussion is slightly

more complicated.
Suppose a_{j} and a_{j}^{*} are the Fourier coefficients obtained using normalized

eigenfunctions

f_{j}(x)= \sqrt{\frac{2}{p}}\cos\frac{2\pi jx}{p}
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and

f_{j}^{*}(x)=d\{\sin(2\sqrt{wj\lambda}x)+\sqrt{wj\lambda}(1-p)\cos(2\sqrt{wj\lambda}x)\} ,

where

d= \{\frac{p+1+2p(1-p)_{w}^{2}\lambda_{j}}{4}-\frac{1-p}{4}\cos(4p\sqrt{w\lambda j})

+ \frac{(1-p)_{w}^{2}\lambda_{j}^{-1}}{8\sqrt{wj\lambda}}\sin(4p\sqrt{w\lambda j})\}^{-1/2}

respectively. Then S(\lambda) becomes

S( \lambda)=1+\lambda\sum_{j=1}^{\infty}\frac{a_{j}^{2}}{1-\lambda/\lambda_{j}}+\lambda\sum_{j=1}^{\infty}\frac{a_{j}^{*2}}{1-\lambda/\lambda_{j}}

The function D(\lambda) is such that no a_{j} is now zero. This means that no
standard weight is a zero of D(\lambda) , and hence the \lambda_{j}

’ are those of S(\lambda) .
Thus for each case, numerical values of the first k smallest eigenvalues

of the integral equation are found for each censoring level p(0<p<1) .
Finally, we talk about a property of p\hat{W}_{n}^{2} or p\hat{U}_{n}^{2} test which will be a

matter of central interest. As is shown implicitely in Sirvanci-Levent [24],
the p\hat{W}_{n}^{2} test of exponentiahty with type I censored samples in the presence
of an unknown scale parameter has distribution-free property.

Further, this test is parameter-free since \psi(u)=(1-u)\log(1-u)/\sqrt{p}

does not depend on the parameter \theta . On the other hand, Darling [5] pointed
out that the \hat{W}_{n}^{2} test of normality with no censoring is parameter-free when
\theta is a location or scale unknown parameter. Unlike these case, the situation
considered in this paper is quite different. For our test, we see that

\psi(u)=B(u)\sqrt{V_{\theta}}

for p\hat{W}^{2} , and

\psi(u)=\sqrt{V_{\theta}}\{B(u)-\frac{\Phi[\sqrt{2}(T-\theta)]}{2p\sqrt{\pi}}\}

for p\hat{U}^{2} , and in each case this clearly depends on the parameter \theta in F(x;\theta) ,
hence our test is not even parameter-free. This result seems to reflect the
complication of the situation for censored data.
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5. Small-sample case

In this section we shall study the explicit expressions for the statistics
involving the observations \hat{t}_{1},\hat{t}_{2} , \ldots , \hat{t}_{n} . If

\hat{t}_{1}<\hat{t}_{2}<\ldots<\hat{t}_{N}\leq\hat{p}<\hat{t}_{N+1}\leq\ldots\leq\hat{t}_{n} ,

that is, N observation are less than \hat{p} with the censored n-N largest
observations, then we can find

\hat{p}\hat{W}_{n}^{2}=\sum_{i=1}^{N}(\hat{t}_{i}-\frac{2i-1}{2n})^{2}-\frac{N^{3}}{3n^{2}}+\frac{N}{12n^{2}}+\frac{\hat{p}N^{2}}{n}

- \hat{p}^{2}N+\hat{p}^{2}n-\hat{p}n+\frac{n}{3} (5.1)

This shows that the exact value of \hat{p}\hat{W}_{n}^{2} may be simply calculated when
the transformed individual sample values are known.

Similarly \hat{p}n\hat{U}^{2} is given by

\hat{p}\hat{U}_{n}^{2}=\hat{W}_{n}^{2}-\hat{p}n(2\hat{p}-1)\{\frac{1}{n\hat{p}}\sum_{i=1}^{N}\hat{t}_{i}+1-\frac{N}{n}-\frac{1}{2\hat{p}}\}^{2} (5.2)

The statistics p\hat{W}_{n}^{2} and p\hat{U}_{n}^{2} are clearly defined for type I censoring when
only the observations in the fixed interval [0, p] are available. For type II
censoring, when a fixed number of observations are censored, we may replace
\hat{p} by \hat{t}_{r} in the integration, to obtain the statistics r\hat{W}_{n}^{2} and r\hat{U}_{n}^{2} . Then the
statistics

r \hat{W}_{n}^{2}=n\int_{0}^{\hat{t}_{r}}\{\hat{F}_{n}(t)-t)\}^{2}dt ,

r \hat{U}_{n}^{2}=n\int_{0}^{\hat{t}_{r}}\{\hat{F}_{n}(t)-t-\frac{1}{\hat{t}_{r}}\int_{0}^{\hat{t}_{r}}[\hat{F}_{n}(s)-s]ds\}^{2}dt

where \hat{t}_{i}=F(x_{i} ; \theta) and \hat{F}_{n}(t) is the empirical distribution function of the
\hat{t}_{i},s for t\leq\hat{t}_{r} , can be used to test the null hypothesis.

The statistics r\hat{W}_{n}^{2} or r\hat{U}_{n}^{2} can then be calculated using the formula
(5.1) or (5.2) by replacing \hat{p} by \hat{t}_{r} and N by r . Empirical percentage points
of r\hat{W}_{n}^{2} and r\hat{U}_{n}^{2} may be found for r=pn with each p(0<p<1) and n .

On the other hand, the statistic r\hat{W}_{n}^{2} also converges to p\hat{W}^{2} provided
r/n -arrow p as narrow\infty . Similarly r\hat{U}_{n}^{2} converges to p\hat{U}^{2} . As for the speed of
covergence of r\hat{W}_{n}^{2} to p\hat{W}^{2} , Monte Carlo experiment will be useful tool.
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