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On h-vectors of Buchsbaum Stanley-Reisner rings

Naoki TERAI
(Received April 24, 1995)

Abstract. We give a necessary condition for a sequence of integers to be the h-vector of
a Buchsbaum complex (or equivalently a Buchsbaum Stanley-Reisner ring). We construct
3-dimensional Buchsbaum Stanley-Reisner rings with depth 2 which give lower bounds
of the h-vectors among those of the Buchsbaum Stanley-Reisner rings with the above
conditions.

Key words: Stanley-Reisner ring Buchsbaum complex, f-vector, h-vector, Hilbert func-
tion, O-sequence.

Introduction

It is one of important problems to characterize the h-vectors (or equiva-
lently f-vectors) of good classes of Stanley-Reisner rings (or equivalently sim-
plicial complexes) in combinatorial commutative ring theory. See Bj\"orner-
Kalai [Bj-Ka] to survey this topic.

Let f and i be positive integers. Then f can be uniquely written in the
form

f=(\begin{array}{l}n_{i}i\end{array}) + (\begin{array}{l}n_{i-1}i-1\end{array}) +\cdot\cdot+ (\begin{array}{l}n_{j}j\end{array}) ,

where n_{i}>n_{i-1}> \cdot\tau>n_{j}\geq j\geq 1 . Define

f^{(i)}= (\begin{array}{l}n_{i}i+1\end{array}) + (\begin{array}{l}n_{i-1}i\end{array}) + + (\begin{array}{ll} n_{j}j +1\end{array}) ,

f^{<i>}= (\begin{array}{l}n_{i}+1i+1\end{array}) + (\begin{array}{l}n_{i-1}+1i\end{array}) +\cdot\cdot+ (\begin{array}{ll}n_{j} +1j +1\end{array}) ,

0^{<i>}=0 .

Then the following two results are classical.

Theorem 0.1 (Kruskal [Kr], Katona [Ka]). Let f=(f_{0}, f_{1}, \cdots, f_{d-1}) be
a sequence of integers. Then the following conditions are equivalent:
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(1) The vector f is the f-vector of some (d-1) -dimensional simplicial
complex.

(2) 0<f_{i+1}\leq f_{i}^{(i+1)} for 0\leq i\leq d-2 .

Theorem 0.2 (Macaulay, Stanley [St_{2} , Theorem 6]). Let h=(h_{0}, h_{1} ,
. ., h_{d} ) be a sequence of integers. Then the following conditions are equiv-

alent :
(1) The vector h is the h-vector of some (d-1) -dimensional Cohen-Mac-

aulay simplicial complex over a field.
(2) h_{0}=1 and 0\leq h_{i+1}\leq h_{i}^{<i>}for 1\leq i\leq d-1 .

We say that a sequence h=(h_{0}, h_{1}, \cdots, h_{d}) of integers is an O-sequence
if it satisfies the conditions in Theorem 0.2.

Then the following problem is very natural.

Problem 0.3 (Hibi [Hi_{1} , Open Problem]). Find a combinatorial charac-
terization of the h-vectors of Buchsbaum simplicial complexes.

This paper gives partial results on the above problem. In fact, we give a
necessary condition to be the h-vectors of Buchsbaum simplicial complexes
as follows:

Theorem 0.4 Let \triangle be a(d-1) -dimensional Buchsbaum complex over a
field, where d\geq 2 , and h(\triangle)=(h_{0}, h_{1}, \cdots, h_{d}) its h-vector. Then we have
following inequalities :

dh_{d}+h_{d-1}\geq 0 ,

(\begin{array}{l}d2\end{array}) h_{d}+(d-1)h_{d-1}+h_{d-2}\geq 0 ,

(\begin{array}{l}d3\end{array}) h_{d}+ (\begin{array}{l}d-12\end{array}) h_{d-1}+(d-2)h_{d-2}+h_{d-3}\geq 0 ,

(\begin{array}{l}d+14\end{array}) h_{d}+ (\begin{array}{l}d3\end{array}) h_{d-1}+ (d -12) h_{d-2}+(d-2)h_{d-3}+h_{d-4}\geq 0 ,

.\cdot

.

(2d d-3) h_{d}+ (\begin{array}{l}2d-4d-1\end{array}) h_{d-1}+ \cdot . +(d-2)h_{1}+h_{0}\geq 0 ,
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(\begin{array}{ll}2d -2d+1 \end{array}) h_{d}+ (\begin{array}{l}2d-3d\end{array}) h_{d-1}+ + (\begin{array}{l}d-12\end{array}) h_{1}+(d-2)h_{0}\geq 0 ,

.\cdot

.

In the last section we consider sufficiency of the above condition in
2-dimensional case. We construct some Buchsbaum complexes which give
lower bounds among the h-vectors of 3-dimensional Buchsbaum Stanley-
Reisner rings with depth 2.

1. Preliminaries

We first fix notation. Let N (resp. Z) denote the set of nonnegative
integers (resp. integers). For a real number a , we define

\lceil a\rceil=\min\{n\in Z|n\geq a\} ,
\lfloor a\rfloor=\max\{n\in Z|n\leq a\} .

Let \#(S) denote the cardinality of a set S .
We recall some notation on simplicial complexes and Stanley-Reisner

rings according to [Hi_{2}] and [St_{1}] . We refer the reader to, e.g., [Br-He],
[Hi_{1}] , [Ho] and [St_{1}] for the detailed information about combinatorial and
algebraic background.

(1.1) A simplicial complex \triangle on the vertex set V=\{x_{1}, x_{2}, \ldots, x_{v}\}

is a collection of subsets of V such that (i) \{x_{i}\}\in\triangle for every 1\leq i\leq v

and (ii) \sigma\in\triangle , \tau\subset\sigma\Rightarrow\tau\in\triangle . Each element \sigma of \triangle is called a face of
\triangle . We call \sigma\in\triangle i face if \#(\sigma)=i+1 We set d= \max\{\#(\sigma)|\sigma\in\triangle\} and
define the dimension of \triangle to be dim \triangle=d-1 . We say that \triangle is pure if
every maximal face has the same cardinality.

We say that a simplicial complex \triangle is spanned by \{\sigma_{1}, \cdots, \sigma_{s}\} if \triangle=

2^{\sigma_{1}}\cup\cdots\cup 2^{\sigma_{s}} , where 2^{\sigma} is the family of all subsets of \sigma .
Let f_{i}=f_{i}(\triangle) , 0\leq i\leq d-1 , denote the number of i-faces in \triangle . We

define f_{-1}=1 . We call f(\triangle)=(f_{0}, f_{1}, \cdots , f_{d-1}) the f-vector of \triangle . Define
the h-vector h(\triangle)=(h_{0}, h_{1}, \cdots, h_{d}) of \triangle by

\sum_{i=0}^{d}f_{i-1}(t-1)^{d-i}=\sum_{i=0}^{d}t^{d-i}-
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If \sigma is a face of \triangle , then we define a subcomplex 1ink_{\triangle}(\sigma) as follows:

1ink_{\triangle}(\sigma)=\{\tau\in\triangle|\sigma\cap\tau=\emptyset, \sigma\cup\tau\in\triangle\} .

Let \tilde{H}_{i}(\triangle;k) denote the i-th reduced simplicial homology group of \triangle

with the coefficient field k . Note that \tilde{H}_{-1}(\triangle;k)=0 if \triangle\neq\{\emptyset\} and

\tilde{H}_{i}(\{\emptyset\};k)=\{

0 (i\geq 0)

k (i=-1) .

(1.2) Let R=k[x_{1}, x_{2}, \ldots, x_{v}] be the polynomial ring in v-variables
over a field k . Here, we identify each x_{i}\in V with the indeterminate x_{i} of R.
Define I_{\triangle} to be the ideal of R which is generated by square-free monomials
x_{i_{1}}x_{i_{2}}\cdot\cdot x_{i_{r}} , 1\leq i_{1}<i_{2}< \cdot . <i_{r}\leq v , with \{x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{r}}\}\not\in\triangle . We
say that the quotient algebra k[\triangle]:=R/I_{\triangle} is the Stanley-Reisner ring of
\triangle over k . We consider k[\triangle] as the graded algebra k[\triangle]=\oplus_{n\geq 0}k[\triangle]_{n} with
the standard grading, i.e., each deg x_{i}=1 .

Let k be a field and A a neotherian graded k algebra with A_{0}=k . The
Hilbert series of A is defined by

F(A, t)= \sum_{n\geq 0}(\dim_{k}A_{n})t^{n}
,

where \dim_{k}A_{n} denotes the dimension of A_{n} as a k-vector space. When A
is generated by A_{1} as a k-algebra, it is well known that the Hilbert series
F(A, t) of A can be written in the form

F(A, t)= \frac{h_{0}+h_{1}t+\cdot 1+h_{s}t^{s}}{(1-t)^{\dim A}} ,

where h_{0}(=1) , h_{1} , \cdots , h_{s} are integers with h_{s}\neq 0 . The vector h(A)=
(h_{0}, h_{1}, \cdot , h_{s}) is called the h-vector of A .

The Hilbert series F(k[\triangle], t) of a Stanley-Reisner ring k[\triangle] can be writ-
ten as follows:

F(k[ \triangle], t)=1+\sum_{i=1}^{d-1}\frac{f_{i}t^{i+1}}{(1-t)^{i+1}}

= \frac{h_{0}+h_{1}t+1\cdot+h_{d}t^{d}}{(1-t)^{d}} ,

where dim \triangle=d-1 , (f_{0}, f_{1}, \cdots, f_{d-1}) is the f-vector of \triangle , and (h_{0}, h_{1} , \cdot\cdot ,
h_{d}) is the h-vector of \triangle .
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(1.3) A simplicial complex \triangle is called Buchsbaum over a field k if it
satisfies one of the following equivalent conditions:
(1) The Stanley-Reisner ring k[\triangle] of \triangle is Buchsbaum.
(2) (a) For every \sigma(\neq\emptyset)\in\triangle , and for every i<\dim 1ink_{\triangle}(\sigma) ,

\tilde{H}_{i}(1ink_{\triangle}(\sigma);k)=0

(b) \triangle is pure.
See St\"ucklad-Vogel [St-Vo] for detailed information on Buchsbaum com-

plexes.

2. H-vectors of Buchsbaum complexes

We give a necessary condition for h-vectors of Buchsbaum complexes.

Theorem 2.1 Let \triangle be a(d-1) -dimensional Buchsbaum complex over a

field, where d\geq 2 , and h(\triangle)=(h_{0}, h_{1}, \cdot\cdot , h_{d}) its h-vector. Then we have
the following inequalities :

dh_{d}+h_{d-1}\geq 0 ,

(\begin{array}{l}d2\end{array}) h_{d}+(d-1)h_{d-1}+h_{d-2}\geq 0 ,

(\begin{array}{l}d3\end{array}) h_{d}+ (\begin{array}{l}d-12\end{array}) h_{d-1}+(d-2)h_{d-2}+h_{d-3}\geq 0 ,

(\begin{array}{l}d+14\end{array}) h_{d}+ (\begin{array}{l}d3\end{array}) h_{d-1}+ (d -12) h_{d-2}+(d-2)h_{d-3}+h_{d-4}\geq 0 ,

.\cdot

.

(2d d-3) h_{d}+ (\begin{array}{l}2d-4d-1\end{array}) h_{d-1}+\cdot(+(d-2)h_{1}+h_{0}\geq 0 ,

(\begin{array}{ll}2d -2d+1 \end{array}) h_{d}+ (2d d-3) h_{d-1}+ , . + (\begin{array}{l}d-12\end{array}) h_{1}+(d-2)h_{0}\geq 0 ,...
Proof. We may assume \#(k)=\infty . Let e=depthk[\triangle] and let H_{m}^{i}(k[\triangle])

be the i-th local cohomology of k[\triangle] with respect to the graded maximal
ideal m. By [St_{1} , Theorem 6.4] we have
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)’.

\sum_{i=e}^{d}(-1)^{i}F(H_{m}^{i}(k[\triangle]), t)=F(k[\triangle], t)_{\infty}

=( \frac{h_{0}+h_{1}t+\cdot\cdot+h_{d}t^{d}}{(1-t)^{d}})_{\infty}

= \frac{h_{d}+h_{d-1}t^{-1}+\cdot\cdot+h_{0}t^{-d}}{(-1)^{d}(1-t^{-1})^{d}}

=(-1)^{d}(h_{d}+h_{d-1}t^{-1}+\cdot\cdot+h_{0}t^{-d})

(1+dt^{-1}+ (d +12) t^{-2}+

where F(k[\triangle], t)_{\infty} signifies that F(k[\triangle], t) is to be expanded as a Laurent
series around \infty . Since \triangle is Buchsbaum, we have

F(H_{m}^{i}(k[\triangle]), t)=\dim_{k}(H_{m}^{i}(k[\triangle]))_{0} .

for i<d . Hence we have

F(H_{m}^{d}(k[\triangle]), t)=a+(dh_{d}+h_{d-1})t^{-1}

+ ( (\begin{array}{l}d+l2\end{array}) h_{d}+dh_{d-1}+h_{d-2}) t^{-2}+

for some a\in Z . Therefore we have

dh_{d}+h_{d-1}=\dim_{k}(H_{m}^{d}(k[\triangle]))_{-1}\geq 0 ,

which is the first inequality.
Let K_{k[\triangle]} be the canonical module of k[\triangle] . Then

F(K_{k[\triangle]}, t)=a+(dh_{d}+h_{d-1})t^{1}

+ ( (d +12) h_{d}+dh_{d-1}+h_{d-2}) t^{2}+\cdot\cdot .

By [Sch, Lemma 3.1.1] we have depth K_{k[\triangle]}\geq 2 . Hence there exist x , y\in

(k[\triangle])_{1} such that x , y is a K_{k[\triangle]} -sequence. Hence we can write

F(K_{k[\triangle]}/xK_{k[\triangle]}, t)=a+bt

+ ( (\begin{array}{l}d2\end{array}) h_{d}+(d-1)h_{d-1}+h_{d-2}) t^{2}

+
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for some b\in Z . Hence we have

(\begin{array}{l}d2\end{array}) h_{d}+(d-1)h_{d-1}+h_{d-2}\geq 0 ,

which is the second inequality.
Similarly as above, we have

F(K_{k[\triangle]}/(x, y)K_{k[\triangle]} , t)=a+(b-a)t+ct^{2}

+ ( (\begin{array}{l}d3\end{array}) h_{d}+ (\begin{array}{l}d-12\end{array}) h_{d-1}+(d-2)h_{d-2}+h_{d-3}) t^{3}

+\cdots

for some c\in Z . Then we have the remaining inequalities. \square

The next proposition is essentially due to Schenzel.

Proposition 2.2 Let \triangle be a(d-1) -dimensional Buchsbaum complex,
where d\geq 2 , and h(\triangle)=(h_{0}, h_{1}, \cdots, h_{d}) its h-vector. We put depth k[\triangle]=

e . Then (h_{0}, h_{1}, \cdot. , h_{e}) is an O-sequence. In particular, we have h_{i}\geq 0

for 0\leq i\leq e .

Proof. We may assume \#(k)=\infty . Let y_{1} , y_{2} , \cdots y_{d} be a homogeneous
system of parameters in k[\triangle]_{1} . By [Sch_{2},Theorem4.3] , we have

F(k[\triangle]/(y_{1} , \cdot\cdot, y_{d}), t)=g_{0}+g_{1}t+ \cdot . +g_{d}t^{d},
,

where

g_{j}=h_{j}+ (\begin{array}{l}dj\end{array})j\sum_{i=0}^{-1}(-1)^{j-i-1}\dim_{k}(H_{m}^{i}(k[\triangle]))_{0} ,

for 0\leq j\leq d .
Note that depthk [\triangle]=e implies H_{m}^{i}(k[\triangle])=0 for i<e . Then we

have h_{j}=g_{j}\geq 0 for j\leq e . \square

Then we conjecture the following:

Conjecture 2.3 Let h= (h_{0}, h_{1}, \cdot. , h_{d}) be an integer sequence, where
d\geq 2 , and let k be a field. Then the following conditions are equivalent:
(1) There exists (d-1)-dimensional Buchsbaum complex with dim k[\triangle]-

depth k[\triangle]\leq 1 such that h=h(\triangle) .
(2) (h_{0}, h_{1}, \cdot , h_{d-1}) is an O-sequence and - \frac{1}{d}h_{d-1}\leq h_{d}\leq h_{d-1}^{<d-1>} holds.
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Remark 2.4.
(1) Conjecture 2.3 holds in the case of d=2 . In fact, a 1-dimensional com-
plex \triangle is Buchsbaum if and only if \triangle is pure. And the 1-dimensional sim-
plicial complexes \triangle always satisfy the condition dim k[\triangle] – depth k[\triangle]\leq 1 .
The f-vectors of 1-dimensional pure complexes can be characterized by the
conditions f_{0}\geq 0 and Lo2\leq f_{1}\leq(_{2}^{fo}) , which is equivalent to the condition
(2) in Conjecture 2.3.
(2) In Conjecture 2.3, (1)\Rightarrow(2) always holds by Theorem 2.1.

3. 2-dimensional Buchsbaum complexes

In this section, we consider the case of d=3 . Let h=(h_{0}, h_{1}, h_{2}, h_{3})

be the h-vector of a 2-dimensional Buchsbaum complex. Suppose h_{3} is
negative and we put h_{3}=-n , where n>0 . Then we have h_{2}>0 by
Theorem 2.1. Since h_{1}=(\begin{array}{l}h_{1}1\end{array}) , we have (\begin{array}{l}h_{1}+12\end{array})=h_{1}^{<1>}\geq h_{2}\geq 3n . Therefore
h_{1}^{2}+h_{1}-6n\geq 0 . We have h_{1} \geq\frac{-1+\sqrt{24n+1}}{2} .

Definition 3.1 Let n be a natural number. We call the sequence

(1, \lceil\frac{-1+\sqrt{24n+1}}{2}\rceil. 3n, -n)

a lower bound sequence.

The following question is a special case of Conjecture 2.3.

Question 3.2 Are all lower bound sequences the h-vectors of Buchsbaum
complexes?

We construct some 2-dimensional Buchsbaum complexes whose h-vec-
tors are lower bound sequences. For simplicity we fix the vertex set V=
\{1,2, \cdots, v\} , where v>3 .

Theorem 3.3 Let \triangle be the simplicial complex which is spanned by

S=\{\{a, b, a+b\}| 1\leq a<b, a+b\leq v\}

\cup\{\{a, b, c\}| 1\leq a<b<c\leq v, a+b+c=2v+1 \} .

If 2v+1 is a prime number, then \triangle is Buchsbaum and

h( \triangle)=(1, v-3, \frac{(v-2)(v-3)}{2}, -\frac{(v-2)(v-3)}{6}) .



On h-vectors of Buchsbaum Stanley-Reisner rings 145

Corollary 3.4 Let v>3 be an integer such that 2v+1 is a prime number.
Then lower bound sequences

(1, _{v-3}, \frac{(v-2)(v-3)}{2}, -\frac{(v-2)(v-3)}{6})

are the h-vectors of Buchsbaum complexes.

Corollary 3.5 There exist infinite number of lower bound sequences which
are the h-vectors of Buchsbaum complexes.

To prove Theorem 3.3 we prepare the following lemma.

Lemma 3.6

\#(S)=\frac{v(v-2)}{3} .

Proof For a fixed i we define

S_{i}=\{\{i, j, l\}\in S|i<j<l\}

For i< \frac{v}{2} we have

S_{i}=\{\{i, i+1,2i+1\}, \{i, i+2,2i+2\}, \cdot , \{i, v-i, v\}\}

\cup\{\{i, v-i+1, v\} , \{i, v-i+2, v-1\} ,

, . .
’

\{i, v-\lceil\frac{i}{2}\rceil, v-\lfloor\frac{i}{2}\rfloor+1\}\} .

Therefore we have

\#(S_{i})=v-2i+\lfloor\frac{i}{2}\rfloor

For i \geq\frac{v}{2} with S_{i}\neq\emptyset we have

S_{i}=\{\{i, i+1,2v-2i\} , \{i, i+2,2v-2i-1\} ,

, . .
’

\{i, v-r\frac{i}{2}\rceil, v-\lfloor\frac{i}{2}\rfloor+1\}\} .

Therefore we have

\#(S_{i})=2v-2i-(v-\lfloor\frac{i}{2}\rfloor)=v-2i+\lfloor\frac{i}{2}\rfloor
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Then

\#(S)= \sum \#(S_{i})= \sum (v-2i+ \lfloor\frac{i}{2}\rfloor) .

v-2i+ \lfloor\frac{i}{2}\rfloor>0i\geq 1 v-2i+ \lfloor\frac{i}{2}\rfloor>0i\geq 1

Since 2v+1 is prime, v\equiv 0,2 (mod 3). First suppose 3|v .

\#(S)=(v-2)+(v-3)+(v-5)+ , . +4+3+1

= \sum_{i=0}^{\frac{v}{3}-1}\{(3i+1)+3i\}

v(v-2)
=\overline{3}

.

Next suppose 3|(v-2) .

\#(S)=(v-2)+(v-3)+(v-5)+ . +5+3+2

= \frac{v-2}{\sum_{i=0}^{3}}\{3i+(3i-1)\}

v(v-2)
=\overline{3}

.

\square

Proo/of Theorem 3.3. Note that \{a, b\}\in\triangle for 1\leq a<b\leq v . In fact,
if a+b\leq v , then \{a, b, a+b\}\in\triangle . If a+b\geq v+1 and b\neq 2a , then
\{b-a, a, b\}\in\triangle . If a+b\geq v+1 and b=2a, then \{a, b, (2v+1)-3a\}\in\triangle .

By Lemma 3.6 we have

f( \triangle)=(v, \frac{v(v-1)}{2}, \frac{v(v-2)}{3}) ,

and

h( \triangle)=(1, v-3, \frac{(v-2)(v-3)}{2}, -\frac{(v-2)(v-3)}{6}) .

We must prove that \triangle is Buchsbaum. We have only to show that
1ink_{\triangle}(\{a\}) is connected for 1\leq a\leq v . First we assume that a \leq\frac{v}{2} and
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that a is even. Then there exist paths in 1ink_{\triangle}(\{a\}) as below:

1 – a+1–2a+1—-na+1 ,
2 – a+2–2a+2– . . . . . . . . . . –na+2 ,

. . . . \tau- v ,

a-1–2a-1–3a-1– \ldots–na–l,
2a 3a na .

Next we join two points by arcs as follows: For left end-points, we connect
couples of numbers whose sums are a . For right end-points, we connect
couples of numbers whose sums are (2v+1)-a . We claim that it becomes
a segment. Hence it is connected. Put p=2v+1 . Since p and a are
coprime, we have

Z/aZ=\{0, \pm p, \pm 2p, \cdot ^{ \pm(\frac{a}{2}},-1)p, \frac{a}{2}p\} .

Hence the above link is as follows:
\overline{a} \overline{a}

\overline{0}-\overline{p}-\overline{(-p)}-\overline{2p}- \cdot . -(-(-+1)p)–p22’

where \overline{lp} stands for

(m–)(a+m)– (2a+m)–. – \{(n-1)a+m\} (–(na+m))

with m\equiv lp(mod a) . Then it is a segment. In the case that a> \frac{v}{2} or a is
odd, we can prove it by a similar fashion. \square
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