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On asymptotic behaviors for wave equations
with a nonlinear dissipative term in R^{N}
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Takahiro MOTAI and Kiyoshi MOCHIZUKI
(Received April 10, 1995)

Abstract. In this paper we investigate the asymptotic behavior of solutions to the
Cauchy problem of the equation

w_{tt}(t)-\triangle w(t)+\lambda w(t)+\beta(x,t,w_{t})w_{t}(t)=0

for (x, t)\in R^{N}x(0, \infty) . Here \triangle is the N-demensional Laplacian and \lambda\geq 0 . \beta(x, t, w_{t})w_{t}

represents a dissipative term of the form

\beta(x,t,w_{t})=|w_{t}(x,t)|^{\rho-1} (\rho>1) , or

\beta(x,t,w_{t})=(V_{\gamma}*|w_{t}(t)|^{2})(x)=\int_{R^{N}}V_{\gamma}(x-y)|w_{t}(y,t)|^{2}dy

with V_{\gamma}(x)=|x|^{-\gamma} (0<\gamma<N) . We prove that the solution to above equation behaves
like a solution to the free wave equation as tarrow\infty when its energy remains positive.

Key words: wave equations, nonlinear dissipative term.

1. Introduction

In our previous paper [9] we are concerned with the energy decay and
non-decay problems of solutions to the wave equation

w_{tt}(t)-\triangle w(t)+\lambda w(t)+\beta(x, t, w_{t})w_{t}(t)=0 (1.1)

for (x, t)\in R^{N}\cross(0, \infty) with initial data

w(x, 0)=w_{1}(x) and w_{t}(x, 0)=w_{2}(x) , x\in R^{N} . (1.2)

Here w(t)=w(x, t) is a real valued function, w_{t}=\partial w/\partial t , w_{tt}=\partial^{2}w/\partial t^{2} ,
\triangle is the N-demensional Laplacian, \lambda\geq 0 and \beta(x, t, w_{t})w_{t} represents a
dissipative term of the form

\beta(x, t, w_{t})=b(x, t)|w_{t}(x, t)|^{\rho-1} (1.3)
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with b(x, t)\geq 0 and \rho>1 , or

\beta(x, t, w_{t})=(V_{\gamma}*|w_{t}(t)|^{2})(x)=\int_{R^{N}}V_{\gamma}(x-y)|w_{t}(y, t)|^{2}dy (1.4)

with V_{\gamma}(x)=|x|^{-\gamma}(0<\gamma<N) . Our purpose is to investigate the asymp-
totic bvehavior of the energy to equation (1.1) when it does not decay as
tarrow\infty .

In order to state our results, we introduce our notations: L^{p}(1\leq p\leq

\infty) is the usual space of all L^{p_{-}}functions in R^{N} ; if X is a Banach space and
I\subset R is an interval, then by C^{k}(I;X) , C_{L}(I;X) and L^{p}(I;X) we mean
the spaces of all X-valued C^{k}-functions, locally Lipschitz functions and L^{p_{-}}

functions on I , respectively; H_{p}^{k,s} is the Sobolev space for 1\leq p\leq\infty , k\in R

and s>-N with norm

||u||_{H_{p}^{k,s}}=||S^{-1}((1+|\xi|^{2})^{k/2}|\xi|^{s}\hat{u}(\xi))||_{L^{p}} ,

were denote the Fourier transformation and S^{-1} is its inverse; especially
we denote by H^{k,s} in case p=2, H_{p}^{k} in case s=0 and H^{k} in case p=2
and s=0;E is the space of pairs f=(f_{1}, f_{2}) of functions such that

||f||_{E}^{2}= \frac{1}{2}\{||\nabla f_{1}||_{L^{2}}^{2}+||f_{2}||_{L^{2}}^{2}+\lambda||f_{1}||_{L^{2}}^{2}\}<\infty ,

where \nabla f_{1}=(\partial_{1}f_{1}, \cdots, \partial_{N}f_{1}) with \partial_{j}=\partial/\partial x_{j} . This norm is called the
energy of the equation (1.1).

We note that the equation (1.1) can be written in the form

iW_{t}(t)-AW(t)+BW(t)=0 , t\in(0, \infty) (1.5)

with initial data

W(0)=W_{0}={}^{t}(w_{1}, w_{2}) , (1.6)

where

W(t)=(\begin{array}{l}w(t)w_{t}(t)\end{array}) , A=-i (\begin{array}{ll}0 -1-\triangle+\lambda 0\end{array})

and

BW(t)=i (\begin{array}{l}0\beta(x,t,w_{t})w_{t}\end{array})

Since A is a selfadjoint operator in E , U_{0}(t)=\exp(-iAt) become a one
parameter unitary group in E . And (1.5) and (1.6) can be rewritten in the
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form of the integral equation

W(t)=U_{0}(t)W_{0}- \int_{0}^{t}U_{0}(t-\tau)BW(\tau)d\tau . (1.7)

It is known that the initial value problem (1.1) and (1.2) has a global
solution.

Theorem 1 Let \lambda\geq 0 and N\geq 1 .
(i) Let \beta(x, t, w_{t}) satisfy (1.3). Assume that

0\leq b(x, t)\leq C_{1} , |b_{t}(x, t)|+|\nabla b(x, t)|\leq C_{2}b(x, t) (1.8)

for a.e(x, t)\in R^{N}\cross(0, \infty) wilh constants C_{1} , C_{2}>0 . And assume that
(w_{1}(x), w_{2}(x))\in H^{2}\cross(H^{1}\cap L^{2\rho}) . Then there exists a unique solution to
(1.1) and (1.2) which satisfies the following:

w(t)\in\{
L^{\infty}([0, \infty);H^{0,2}\cap H^{0,1})\cap C_{L}([0, \infty);H^{0,1}) , if \lambda=0 ,

(1.9)
L^{\infty}([0, \infty);H^{2})\cap C_{L}([0, \infty);H^{1}) , if \lambda>0 ,

w_{t}(t)\in L^{\infty}([0, \infty);H^{1})\cap C_{L}([0, \infty);L^{2})) , (1.10)

w_{tt}(t)\in L^{\infty}([0, \infty);L^{2}) , (1.11)

\beta(x, t, w_{t})w_{t}(t)\in L^{\infty}([0, \infty);L^{2}))\cap L^{r’}([0, \infty);H_{q}^{1},) , (1.12)

there 1/r’=1/2+\theta(\rho-1)/2(\rho+1) and 1/q’=1/2+\theta(\rho-1)/2(\rho+1)+

(1-\theta)(\rho-1)/4\rho(0\leq\theta\leq 1) . In addition the following integral equation
holds:

W(t)=U_{0}(t-s)W(s)- \int_{s}^{t}U_{0}(t-\tau)BW(\tau)d\tau in E (1.13)

for 0\leq s<t<\infty .
(ii) Let \beta(x, t, w_{t}) satisy (1.4). Assume that (w_{1}(x), w_{2}(x))\in H^{2}\cross

(H^{1}\cap L^{6N/(3N-2\gamma)}) . Then there exists a unique solution to (1.1) and (1.2)
which satisfies (1.9)\sim (1.11), (1.13) and

\beta(x, t, w_{t})w_{t}(t)\in L^{\infty}([0, \infty);L^{2}))\cap L^{r’}([0, \infty);H_{q}^{1},) (1.14)

there 1/r’=1/2 and 1/q’=1/2+\gamma/2N .

The theory of monotone operators provides the existence of a global
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weak solution. (See e.g., Lions-Strauss [4] and Strauss [17].) But our ar-
gument in this paper needs the regularity of the nonlinear term, i.e. (1.12)
and (1.14), which is deduced ffom the existence of a strong solution. By a
strong solution to (1.1) we mean a solution which satisfies (1.1) in L^{2}-sense.
So we shall sketch a proof of Theorem 1 in Appendix.

Now we state our results.

Theorem 2 Let w(t) be a solution of the initial value problem (1.1), (1.2)
and (1.3) with b(x, t)\equiv 1 . We put \rho_{1}(N)=\infty(1\leq N\leq 6) , =N/(N-6)
(N\geq 7) and \rho_{2}(N)=\infty(1\leq N\leq 3) , =N(N-1)/(N-2)(N-3)
(N\geq 4) .

(i) Let \lambda=0 and N\geq 2 . Then there exists a W^{+}={}^{t}(w_{1}^{+}, w_{2}^{+})\in

E for 1+2/(N-1)<\rho<\rho_{1}(N) which satisfies the following: in case
1+4/(N-1)\leq\rho<\rho_{1}(N)

||U_{0}(-t)W(t)-W^{+}||_{E}arrow 0 as t - \infty ; (1.15)

in case 1+2/(N-1)<\rho<\rho_{2}(N) there also exists a 0<1/p<1/2 , which
depends on \rho and N, such that

||U_{0}(-t)W(t)-W^{+}||_{H_{p}^{0,1}\cross L^{p}}arrow 0 as tarrow\infty . (1.16)

(ii) Let \lambda>0 and N\geq 1 . Then there exists a W^{+}={}^{t}(w_{1}^{+}, w_{2}^{+})\in E

for 1+2/N<\rho<\rho_{1}(N) which satisfies the following: in case 1+4/N\leq
\rho<\rho_{1}(N)

||U_{0}(-t)W(t)-W^{+}||_{E} -0 as tarrow\infty ; (1.17)

in case 1+2/N<\rho<\rho_{2}(N) there also exists 0<1/p<1/2 , which depends
on \rho and N, such that

||U_{0}(-t)W(t)-W^{+}||_{H_{p}^{1}\cross L^{p}}arrow 0 as t – \infty . (1.18)

Theorem 3 Let w(t) be a solution to the initial value problem (1.1), (1.2)
and (1.1).

(i) Let \lambda=0 and N\geq 4 . Then for N/(N-1)<\gamma<2-1/(N-1)
there exists a W^{+}={}^{t}(w_{1}^{+}, w_{2}^{+})\in E and 0<1/p<1/2 , which depends on
\rho and N, such that

||U_{0}(-t)W(t)-W^{+}||_{H_{p}^{O,1}\cross L^{p}}arrow 0 as tarrow\infty ; (1.19)
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(ii) Let \lambda>0 and N\geq 3 . Then in case 2<\gamma<3 there exists a
W^{+}={}^{t}(w_{1}^{+}, w_{2}^{+})\in E such that

||U_{0}(-t)W(t)-W^{+}||_{E} -0 as t - \infty . (1.20)

In case 1<\gamma<2-1/(N –1) there exists a W^{+}={}^{t}(w_{1}^{+}, w_{2}^{+})\in E and
0<1/p<1/2 , which depends on \gamma and N, such that

||U_{0}(-t)W(t)-W^{+}||_{H_{p}^{1}\cross L^{p}} –0 as t - \infty . (1.21)

Remark. (1) In our previous paper [9] we have already proved that W^{+}\neq

0 for solutions to (1.1) with sufficiently small initial value (1.2).
(2) We can also treate the nonolinear dissipative term b(x, t)|w_{t}|^{\rho-1}w_{t} ,

where 0\leq b(x, t)\leq C(1+|x|)^{-\delta} for some 0\leq\delta\leq 1 and C>0 . But the
weighted Strichartz estimates are needed to deal with this dissipation. So
please refer to our forthcoming paper for details.

As stated in [9], there are several works concerning with energy decay
for (1.1). However, in case where energy remains positive as t - \infty there
are not many results on the asymptotic behavior of solutions, except low
energy scattering. (See e.g. Hidano and Tsutaya [2].) A partial answer to
this problem was given in [11] in case \lambda>0 . Mochizuki [7] and [8] treated
the linear dissipation b(x, t)w_{t} , where b(x, t)\geq 0 .

In this paper we prove these two theorems by the duality argument
which is formulated in the next section. The idea of this formulation is
deduced from our previous paper [8] and [11].

2. Semi-abstract formuration

In this section we consider the initial value problem (1.5) and (1.6),
that is,

iW_{t}(t)-AW(t)+BW(t)=0 , t\in(0, \infty) (2.1)

W(0)=W_{0}\in E . (2.2)

Here E is the energy space with a inner product

(f, g)_{E}= \frac{1}{2}\{(\nabla f_{1}, \nabla g_{1})_{L^{2}}+(f_{2}, g_{2})_{L^{2}}+\lambda(f_{1}, g_{1})_{L^{2}}\} ,
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where f=(f_{1}, f_{2}) , g=(g_{1}, g_{2}) and (, )_{L^{2}} is a L^{2} -inner product. We make
the following hypotheses in this section.
(H.I) Let Y=Y_{1}\cross Y_{2} and Z=Z_{1}\cross Z_{2} be product spaces of Sobolev
spaces with norms || ||_{Y} and || ||_{Z} , respectively. We denote by Y’ and Z’
the dual space of Y and Z with respect to E , respectively and by Y_{2}’ the
dual space of Y_{2} with respect to L^{2} .
(H.2) There exists a real number r\geq 2 and a positive constant C such
that

||[U_{0}(\cdot)g]_{2}||_{L^{r}([1,\infty);Y_{2})}\leq C||g||_{Z’} (2.3)

for any g={}^{t}(g_{1}, g_{2})\in C_{0}^{\infty}(R^{N})\cross C_{0}^{\infty}(R^{N}) . Here we denote by U_{0}(t) a
one parameter unitary group in E given in section 1 and by [U_{0}(t)g]_{2} the
second component of U_{0}(t)g .
(H.3) Let D be a subspace of E . If the initial data W_{0}={}^{t}(w_{1}, w_{2})\in D ,
there exists a solution to the integral equation

W(t)=U_{0}(t-s)W(s)- \int_{s}^{t}U_{0}(t-\tau)BW(\tau)d\tau in E (2.4)

for 0\leq s<t<\infty such that W(0)=W_{0} ,

W(t)\in L^{\infty}([0, \infty);E) (2.5)

and

\beta(x, t, w_{t})w_{t}(t)\in L^{r’}([1, \infty);Y_{2}’) , (2.6)

where 1/r’=1-1/r .
Then we obtain the following

Proposition 2.1 Under the hypotheses (H.1)\sim(H.3) there exists a W^{+}\in

E such that

||U_{0}(-t)W(t)-W^{+}||_{Z}arrow 0 as t – \infty (2.7)

Proof. We recall from (2.4)

(W(t), U_{0}(t)\Phi)_{E}-(U_{0}(t-s)W_{0}, U_{0}(t)\Phi)_{E}

=- \int_{s}^{t}(BW(\tau), U_{0}(\tau)\Phi)_{E}d\tau (2.8)
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for any \Phi\in C_{0}^{\infty}(R^{N})\cross C_{0}^{\infty}(R^{N}) . By (2.3) and (2.6) we have

|(U_{0}(-t)W(t)-U_{0}(-s)W(s), \Phi)_{E}|

\leq||BW(\cdot)||_{L^{r’}([s,t];Y’)}||U_{0}(\cdot)\Phi||_{L^{r}([s,t];Y)}

\leq||\beta(\cdot, \cdot, w_{t})w_{t}||_{L^{r’}([s,t];Y_{2}’)}||[U_{0}(\cdot)\Phi]_{2}||_{L^{r}([s,t];Y_{2})}

\leq C||\beta(\cdot, \cdot, w_{t})w_{t}||_{L^{r’}([s,t];Y_{2}’)}||\Phi||_{Z’} (2.9)

for 1\leq s<t<\infty . Since C_{0}^{\infty}(R^{N})\cross C_{0}^{\infty}(R^{N}) is dense in E’ . it follows
from (2.5), (2.6) and (2.9) that \{U_{0}(-t)W(t)\} is a weak Cauchy sequence
in E . Therefore there exists a W^{+}\in E such that

U_{0}(-t)W(t) – W^{+} weakly in E as tarrow\infty . (2.10)

By (2.8) with s=0 we have

(U_{0}(-t)W(t), \Phi)_{E}=(W_{0}, \Phi)_{E}-\int_{0}^{t}(BW(\tau), U_{0}(\tau)\Phi)_{E}d\tau . (2.11)

So we obtain

(W^{+}, \Phi)_{E}=(W_{0}, \Phi)_{E}-\int_{0}^{\infty}(BW(\tau), U_{0}(\tau)\Phi)_{E}d\tau (2.12)

when tarrow\infty . It follows ffom (2.11) and (2.12) that

|(U_{0}(-t)W(t)-W^{+}, \Phi)_{E}|=|\int_{t}^{\infty}(BW(\tau), U_{0}(\tau)\Phi)_{E}d\tau|

\leq||BW(\cdot)||_{L^{r’}([t,\infty];Y’)}||U_{0}(\cdot)\Phi||_{L^{r}([t,\infty];Y)}

\leq C||\beta(\cdot, \cdot, w_{t})w_{t}||_{L^{r’}([t,\infty];Y_{2}’)}||\Phi||_{Z’} . (2.13)

Since Z is a reflexive Banach space, we assert

||U_{0}(-t)W(t)-W^{+}||_{Z}\leq C||\beta(\cdot, \cdot, w_{t})w_{t}||_{L^{r’}([t,\infty];Y_{2}’)} . (2.14)

Therefore we obtain (2.7) by (2.14). \square

3. Proof of Theorems

We first state some estimates which correspond to (H.2).

Proposition 3.1 (i) Let \lambda=0 and N\geq 2 . Suppose that

0< \frac{1}{r}<\frac{1}{2} , \frac{1}{q}=\frac{1}{2}-\frac{2}{(N-1)r} , e=1- \frac{N+1}{(N-1)r} . (3.1)
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Then we have

||[U_{0}(\cdot)g]_{2}||_{L^{r}(R;H_{q}^{0,e-1})}\leq C||g||_{E} (3.2)

for any g={}^{t}(g_{1}, g_{2})\in C_{0}^{\infty}(R^{N})\cross C_{0}^{\infty}(R^{N}) .
(ii) Let \lambda>0 and N\geq 1 . Suppose that

0< \frac{1}{r}\leq\frac{1}{2} , \frac{1}{2}-\frac{2}{(N-1)r}<\frac{1}{q}<\frac{1}{2}-\frac{2}{Nr} , e< \frac{1}{2}+\frac{1}{q}-\frac{1}{r} . (3.3)

Then we have

||[U_{0}(\cdot)g]_{2}||_{L^{r}(R;H_{q}^{e-1})}\leq C||g||_{E} (3.4)

for any g={}^{t}(g_{1}, g_{2})\in C_{0}^{\infty}(R^{N})\cross C_{0}^{\infty}(R^{N}) .

Proof.
(i) See Pecher [13] Theorem 1 for a proof.
(ii) See Marshall [5] for a proof. \square

Corollary 3.2 (i) Let \lambda=0 and N\geq 2 . Suppose that

0< \frac{1}{r}<\frac{1}{2} ( 0< \frac{1}{r}\leq\frac{1}{3} if N=2), (3.5)

e=1- \frac{N+1}{(N-1)r} , \frac{1}{q}1=\frac{1}{2}-\frac{2}{(N-1)r}-\frac{(1-\eta)e}{N}(0\leq\eta\leq 1) .

Then we have

||[U_{0}(\cdot)g]_{2}||_{L^{r}(R;H_{q_{1}}^{0,e\eta-1})}\leq C||g||_{E} (3.6)

for any g={}^{t}(g_{1}, g_{2})\in C_{0}^{\infty}(R^{N})\cross C_{0}^{\infty}(R^{N}) .
(ii) Let \lambda>0 and N\geq 1 . Suppose that

0< \frac{1}{r}\leq\frac{1}{2},0\leq e<(\frac{1}{2}+\frac{1}{q}1-\frac{1}{r})(\frac{N}{N-1+\eta}) , (3.7)

\frac{1}{2}-\frac{2}{(N-1)r}-\frac{(1-\eta)e}{N}<\frac{1}{q}1<\frac{1}{2}-\frac{2}{Nr}-\frac{(1-\eta)e}{N}(0\leq\eta\leq 1) .

Then we have

||[U_{0}(\cdot)g]_{2}||_{L^{r}(R;H_{q_{1}}^{e\eta-1})}\leq C||g||_{E} (3.8)
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for any g={}^{t}(g_{1}, g_{2})\in C_{0}^{\infty}(R^{N})\cross C_{0}^{\infty}(R^{N}) .

Proof. The Sobolev embeddings H_{q}^{0,e\eta-1+(1-\eta)e} rightarrow H_{q_{1}}^{0,e\eta-1} and
H_{q}^{e\eta-1+(1-\eta)e}arrow H_{q}^{e_{1}\eta-1} hold if e\geq 0 and 1/q-(1-\eta)e/N=1/q_{1} . Thus
we obtain (3.6) and (3.8) by (3.2) and (3.4), respectively. \square

Proposition 3.3 (i) Let \lambda=0 and N\geq 2 . Suppose that 1/p’=N/q-
(N-3)/2 for

\frac{1}{2}-\frac{1}{N}\leq\frac{1}{q}\leq\frac{1}{2}-\frac{1}{N+1} , 0< \frac{1}{r}<(N-1)(\frac{N}{q}-\frac{N-2}{2}) (3.9)

and that 1/p’=1/Nq+(N+1)/2N for

\frac{1}{2}-\frac{1}{N+1}\leq\frac{1}{q}\leq\frac{1}{2} , 0< \frac{1}{r}<(N-1)(\frac{1}{2}-\frac{1}{q}) . (3.10)

Then we have

||[U_{0}(\cdot)g]_{2}||_{L^{r}([1,\infty);H_{q}^{0,-1})}\leq C||g||_{H_{p^{j}}^{01}\cross L^{p’}} (3.11)

for any g={}^{t}(g_{1}, g_{2})\in C_{0}^{\infty}(R^{N})\cross C_{0}^{\infty}(R^{N}) .
(ii) Let \lambda>0 and N\geq 1 . Suppose that 1/p’=N/q-(N-3)/2 for

\frac{1}{2}-\frac{1}{N}\leq\frac{1}{q}\leq\frac{1}{2}-\frac{1}{N+1} , 0< \frac{1}{r}<(N-1)(\frac{1}{q}-\frac{N-2}{2})(3.12)

and that 1/p’=1-1/q for

\frac{1}{2}-\frac{1}{N+1}\leq\frac{1}{q}\leq\frac{1}{2} , 0< \frac{1}{r}<{\rm Min}\{\frac{2}{q}, N(\frac{1}{2}-\frac{1}{q})\} . (3.13)

Then we have

||[U_{0}(\cdot)g]_{2}||_{L^{r}([1,\infty);H_{q}^{-1})}\leq C||g||_{H_{p}^{1},\cross L^{p’}} (3.14)

for any g={}^{t}(g_{1}, g_{2})\in C_{0}^{\infty}(R^{N})\cross C_{0}^{\infty}(R^{N}) .

Proof. Let \lambda=0 and N\geq 2 . It follows from Marshall-Strauss-Wainger
[6] that

||[U_{0}(\cdot)g]_{2}||_{H_{q}^{0,-1}}\leq C|t|^{-(N-1)(\frac{N}{q}-\frac{N-2}{2})}||g||_{H_{p}^{0}j^{1}\cross L^{p’}} (3.15)

for 1/2-1/N\leq 1/q\leq 1/2-1/(N+1) and 1/p’=N/q-(N-3)/2 . So
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we have (3.11) for any r which satisfies

r(N-1)( \frac{N}{q}-\frac{N-2}{2})>1 .

Summarizing these conditions, we obtain (3.9).
In other cases we can prove exactly in the same way as above. \square

Proof of Theorem 2. First we prove (i). We consider the case 1+4/(N-
1)<\rho<\rho_{1}(N) . In order to apply Proposition 2.1, we put 1/r=1/2-
\theta(\rho-1)/2(\rho+1) ,

Y=H_{q}^{-h,h}\cross H_{q}^{-h,h-1} , Z=E, D=H^{2}\cross(H^{1}\cap L^{2\rho}) ,

where 1/q=1/2-\theta(\rho-1)/2(\rho+1)-(1-\theta)(\rho-1)/4\rho(0\leq\theta\leq 1) , h=\eta e

(0\leq\eta\leq 1) and e=1-(N+1)/(N-1)r . Then we have

Y’=H_{q}^{2+h,-h},\cross H_{q}^{h,1-h}, Z’=E,

where 1/q’=1-1/q. Since (H.3) is obvious, we have only to verify (H.2).
Let N\geq 3 . By Corollary 3.2 (i) we have (2.3) if q and r satisy (3.5). Thus,
we have the condition

[2\{(N+1)\theta+(N-3)\}\eta+(N-1)\{(N+2)\theta+(N-6)\}]\rho^{2}

-2 [\{(N+1)\theta-(N-3)\}\eta+(N-1)\{3+(N+1)\theta]\rho

-N(N-1) (1-\theta)=0 (3.16)

with 0\leq\eta\leq 1 and 0<\theta\leq 1 . We can solve this quadratic equation if

2\{(N+1)\theta+(N-3)\}\eta+(N-1)\{(N+2)\theta+(N-6)\}>0 .
(3.17)

In case N\geq 7(3.17) holds for 0\leq\eta\leq 1 and in case 3\leq N\leq 6(3.17)

holds for 0\leq\theta\leq(6-N)/(N+2) . Let \alpha_{N}(\theta, \eta) be its positive solution of
(3.16). The supreme value of \alpha_{N}(\theta, \eta) is \alpha_{N}(0,0)=\rho_{1}(N) in case N\geq 7

and \alpha_{N}(\theta, 0)\uparrow\infty as \theta\downarrow(N-6)/(N+2) in case 3\leq N\leq 6 . On the other
hand, the minimal value of \rho is given by \alpha_{N}(1,1) . Therefore we obtain the
range of \rho if we note the continuity of \alpha_{N}(\theta, \eta) .

In case N=2 the condition 0<1/r\leq 1/3 implies

\rho\geq(3\theta+1)/(3\theta-1) . (3.18)

We denote by g(\rho, \theta) the lefthand side of (3.16) with \eta=1 . Then we
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have g((3\theta+1)/(3\theta-1), \theta)=-96\theta^{2}/(3\theta-1)^{2}<0 . This implies that the
positive solution \alpha_{N}(\theta, 1) satisfies (3.18). The minimal value of \rho is given
by \alpha_{N}(1,1) . Noting \alpha_{N}(\theta, 1)\uparrow\infty as \theta\downarrow 3/5 , which follows from (3.17), we
get the range of \rho .

Next we consider the case 1+2/(N-1)<\rho<\rho_{2}(N) . We put

Y=L^{q}\cross H_{q}^{0,1} , Z=E, D=H^{2}\cross(H^{1}\cap L^{2\rho}) ,

where 1/q=1/2-\theta(\rho-1)/2(\rho+1)-(1-\theta)(\rho-1)/4\rho and 1/r=1/2-
\theta(\rho-1)/2(\rho+1)(0\leq\theta\leq 1) . As in the previous case, it is enough to verify
(H.2). Let q and r satisfy (3.10). Then obviously we have (2.3). Moreover,
substituting q and r to (3.10), we obtain

\{(N+1)\theta+(N-3)\}\rho^{2}-2\{(N+1)\theta+2\}\rho

-(N+1)(1-\theta)\leq 0 , (3.19)

\{(N+1)\theta+(N-3)\}\rho^{2}-2(1+N\theta)\rho-(N-1) (1-\theta)>0 .
(3.20)

By (3.20) we need (3 – N)/(N+1)<\theta\leq 1 if N=2,3 . We denote
by g_{1}(\rho, \theta) and g_{2}(\rho, \theta) the lefthand side of (3.19) and (3.20), respectively.
Then we have g_{2}(\rho, \theta)>g_{1}(\rho, \theta) . So it follows from (3.19) and (3.20)
that \beta_{N}(\theta)<\rho\leq\alpha_{N}(\theta) , where \alpha_{N}(\theta) and \beta_{N}(\theta) are positive solutions of
g_{1}(\rho, \theta) and g_{2}(\rho, \theta) , respectively. Since \beta_{N}(1)=1+2/(N-1) , \alpha_{N}(\theta)\uparrow\infty

as \theta\downarrow(3-N)/(N+1) if N=2,3 and \alpha_{N}(0)=(N+1)/(N-3) if N\geq 4 ,
we have

1+ \frac{2}{(N-1)}<\rho\{

<\infty (N=2,3) ,

\leq\frac{(N+1)}{(N-3)} (N\geq 4) .
(3.20)

This proves (1.16) for N=2,3 .
Let N\geq 4 , and let q and r be as above. Substituting q and r to (3.9)

with \theta\approx 0 , we have

(N-3)\rho^{2}-4\rho-(N+1)>0 , (3.22)

(N-4)\rho^{2}-4\rho-N<0 , (3.23)

(N-2)(N-3)\rho^{2}-2(2N-3)\rho-N(N-1)<0 . (3.24)
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Thus, we obtain

\frac{N+1}{N-3}<\rho<\frac{N(N-1)}{(N-2)(N-3)} . (3.25)

and this completes the proof of Theorem 2 (i).
We can prove (ii) exactly in the same way as above. So we may omit

its proof. \square

Proof of Theorem 3. The proof of Theorem 3 is the same as that of The-
orem 2. So we only prove (ii) of Theorem 3. In order to apply Proposition
2.1, we put 1/q=1/2-\gamma/2N , 1/r=1/2 and

Y=L^{q}\cross H_{q}^{-1}., Z=E, D=H^{2}\cross(H^{1}\cap L^{6N/(3N-2\gamma)}) .

On the other hand, we have (2.3) by Corollary 3.2 (ii) and the embedding
H_{q}^{e\eta-1}arrow H_{q}^{-1} if q and r satisfy

\frac{1}{2}-\frac{1}{N}-\frac{1}{Nr}<\frac{1}{q}<\frac{1}{2}-\frac{2}{Nr} . (3.26)

(3.26) follows from (3.7) if we note the range of \eta and e . Thus, substituting
q qnd r to (3.26), we get the range 2<\gamma<3 . Using Proposition 3.3 (ii),
we have the range 1<\gamma<2-1/(N –1 ) exactly in the same way. Thus
TheOrem3 (ii) is proved. \square
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Appendix
In this appendix we sketch a proof of Theorem 1. The method employed

here is the compactness argument based on uniform energy estimates which
is due to Segal [15], Lions [3] and Strauss [16]. (See also Reed [14] and
Ginibre-Velo [1].) A detailed proof of Theorem 1 can be found in Motai
[12].

We approximate the nonlinear dissipative term by the double conv0-

lution molifier due to Segal [13] and Ginibre-Velo [1]. We choose an even
nonnegative function h(x)\in C_{0}^{\infty}(R^{N}) such that ||h||_{L^{1}}=1 . For any natural
numbers j we put

\mathfrak{B}_{j}(x, t, u)=h_{j}*(\beta(x, t, h_{j}*u)h_{j}*u) , (1)

where h_{j}(x)=j^{N}(jx) . Coresponding (1.1) and (1.2), we consider the
Cauchy problem;

\{

w_{jtt}(t)-\triangle w_{j}(t)+\lambda w_{j}(t)+\mathfrak{B}_{j}(x, t, w_{jt})=0 ,
w_{j}(x, 0)=h_{j}*w_{1}(x) , w_{jt}(x, 0)=h_{j}*w_{2}(x) .

(2)

Lemma A.I Let j be any natural number. Under the same assumptions
of Theorem 1 there exists a unique solution of (2) which satisfies

w_{j}(t) \in\bigcap_{i=0}^{k}C^{i}([0, \infty);H^{k-i}) for any natural number k. (3)

And the following energy inequalities hold: in case (1.3)

||W_{j}(t)||_{E}^{2}+ \int_{0}^{t}\int_{R^{N}}b(x, \tau)|h_{j}*w_{t}(\tau)|^{\rho+1}dxd\tau\leq||W_{0}||_{E}^{2} , (4)

where W_{j}(t)={}^{t}(w_{j}(t), w_{jt}(t)) and W_{0}={}^{t}(w_{1}, w_{2}) ,

||\triangle w_{j}(t)||_{L^{2}}^{2}+||\nabla w_{jt}(t)||_{L^{2}}^{2}+\lambda||\nabla w_{j}(t)||_{L^{2}}^{2}

+ \int_{0}^{t}\int_{R^{N}}b(x, \tau)|h_{j}*w_{jt}(\tau)|^{\rho-1}|\nabla(h_{j}*w_{jt}(\tau))|^{2}dxd\tau

\leq C_{3}(||w_{1}||_{H^{2}}^{2}+||w_{2}||_{H^{1}}^{2}) (5)

||\nabla w_{tj}(t)||_{L^{2}}^{2}+||w_{jtt}(t)||_{L^{2}}^{2}+\lambda||w_{jt}(t)||_{L^{2}}^{2}

+ \int_{0}^{t}\int_{R^{N}}b(x, \tau)|h_{j}*w_{jt}(\tau)|^{\rho-1}|h_{j}*w_{jtt}(\tau)|^{2}dxd\tau

\leq C_{4}(||w_{1}||_{H^{2}}^{2}+||w_{2}||_{H^{1}}^{2}+||w_{2}||_{L^{2\rho}}^{2\rho}) (6)



132 T. Motai and K. Mochizuki

for 0\leq t<\infty with some constants C_{3} , C_{4}>0 ; and in case (1.4)

||W_{j}(t)||_{E}^{2}+ \int_{0}^{t}||V_{(N+\gamma)/2}*|h_{j}*w_{t}(\tau)|^{2}||_{L^{2}}^{2}d\tau\leq||W_{0}||_{E}^{2} , (7)

||\triangle w_{j}(t)||_{L^{2}}^{2}+||\nabla w_{jt}(t)||_{L^{2}}^{2}+\lambda||\nabla w_{j}(t)||_{L^{2}}^{2}

+ \int_{0}^{t}\int_{R^{N}}(V_{\gamma}*|h_{j}*w_{jt}(\tau)|^{2}|\nabla(h_{j}*w_{jt}(\tau))|^{2}dxd\tau

\leq C_{5}(||w_{1}||_{H^{2}}^{2}+||w_{2}||_{H^{1}}^{2}) (8)

||\nabla w_{tj}(t)||_{L^{2}}^{2}+||w_{jtt}(t)||_{L^{2}}^{2}+\lambda||w_{jt}(t)||_{L^{2}}^{2}

+ \int_{0}^{t}\int_{R^{N}}(V_{\gamma}*|h_{j}*w_{jt}(\tau)|^{2})|h_{j}*w_{jtt}(\tau)|^{2}dxd\tau

+ \int_{0}^{t}||\partial_{t}(V_{(N+\gamma)/2}*|h_{j}*w_{jt}(\tau)|^{2})||_{L^{2}}^{2}d\tau

\leq C_{6}(||w_{1}||_{H^{2}}^{2}+||w_{2}||_{H^{1}}^{2}+||w_{2}||_{L^{6N/(3N-2\gamma)}}^{6}) (9)

for 0\leq t<\infty with some constants C_{5} , C_{6}>0 . Futhermore, the following
integral equation holds:

W_{j}(t)=U_{0}(t-s)W_{j}(s)- \int_{s}^{t}U_{0}(t-\tau)B_{j}W_{j}(\tau)d\tau in E (10)

for 0\leq s<t<\infty , where B_{j}W_{j}(t)={}^{t}(0, \mathfrak{B}_{j}(t)) .

Proof. Applying Reed [14, Theorem 2] to (2), we can show the existence
of a unique global solution. The double convolution molifier implies the
regularity of solutions. And noting (1.8) and the Schwartz inequality, (4)
\sim(9) are obtained by the standard energy method. \square

Lemma A.2 Let \{w_{j}(t)\}=\{w_{j}(t)\}_{j=0}^{\infty} be a sequence of solutions to (15)
obtained by Lemma A.I . Then \{h_{j}*w_{j}(t)\} has a convergent subsequence
(again denoted by \{h_{j}*w_{j}(t)\} ) as follows: there exists a w(t) which satisfies
(1.8)\sim (1.11), and

h_{j}*w_{j}(t) - w(t) in C(I;H^{1}(\Omega_{R})) as j – \infty , (11)

h_{j}*w_{jt}(t) - w_{t}(t) in C(I;L^{2}(\Omega_{R})) as jarrow\infty (12)

for any closed interbal I\subset R and any open ball \Omega_{R}=\{x\in R^{N}; |x|<R\}
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Proof. We put I_{n}=[0, n] . By energy inequalities which are obtained
in Lemma A.I we have \{h_{j}*w_{j}(t)\} , \{h_{j}*w_{jt}(t)\} and \{h_{j}*w_{jtt}(t)\} are
unioformly bounded with respect to j and t\in I_{n} in H^{2}(\Omega_{n}) , H^{1}(\Omega_{n}) and
L^{2}(\Omega_{n}) , respectively. The Rellich theorem and the Ascoli-Arzela theorem
tell us that \{h_{j}*w_{j}(t)\} has a convergent subsequence (which is denoted by
\{h_{j}*w_{j}(t)\} again) such that

h_{j}*w_{j}(t)arrow w(t) in C(I_{n};H^{1}(\Omega_{n})) as jarrow\infty , (13)

h_{j}*w_{jt}(t) – w_{t}(t) in C(I_{n};L^{2}(\Omega_{n})) as j – \infty . (14)

By the diagnal argument we can have a subsequence so that (13) and (14)
hold for each n . It follows from (13) that

h_{j}*w_{j}(t) – w(t) in \mathfrak{D}’(R^{N}\cross[0, \infty)) as j - \infty , (15)

and

h_{j}*w_{j}(t) – w(t) in \mathfrak{D}’(R^{N}) as j – \infty (16)

uniformly on any interval I\subset R . Here \mathfrak{D}’ means the space of distributions.
So noting (15), (16) and energy inequalities, we can prove that w(t) satisfy
(1.9)\sim (1.11). \square

Under these preliminary arrangements we sketch the proof of
Theorem 1.

Proof of Theorem 1. It follows from (10) that

(W_{j}(t), f)_{E}=(U_{0}(0)W_{j}(0), f)_{E}

- \int_{0}^{t}(B_{j}W_{j}(\tau), U_{0}(\tau-t)f)_{E}d\tau (17)

for any f\in C_{0}^{\infty}(R^{N})\cross C_{0}^{\infty}(R^{N}) and 0\leq s<t<\infty . Suppose that we can
show that

\mathfrak{B}_{j}(x, t, w_{jt})arrow\beta(x, t, w_{t})w_{t} weakly in L^{r’}([0, \infty);L^{q’}) (18)

as jarrow\infty for suitable 0<r’ , q’\leq 2 . Since it follows from the Hausdorff-
Young inequality that \chi_{t}(\cdot)[U_{0}(\cdot-t)f]_{2}\in L^{r}([0, \infty);L^{q}) , where \chi_{t}(\tau)=

1(0\leq\tau\leq t), =0(otherwise) , 1/r=1-1/r’ and 1/q=1-1/q’ , we can
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take limit in (17) to get

(W(t), f)_{E}=(U_{0}( O)W(0), f)_{E}-\int_{0}^{t}(BW(\tau), U_{0}(\tau-t)f)_{E}d\tau . (19)

Combining (1.9)\sim (1. 11) and (19), we have \beta(x, t, w_{t})w_{t}(t)\in L^{\infty}([0, \infty);L^{2})) .
(19) also asserts (1.13) because of the unitarity of U_{0}(t) . So we prove (18)
by showing

\mathfrak{B}_{j}(x, t, w_{jt}) – \beta(x, t, w_{t})w_{t} in \mathfrak{D}’(R^{N}\cross[0, \infty)) (20)

as j – \infty , and

||\mathfrak{B}_{j}(\cdot, \cdot, w_{jt})||_{L^{r’}([0,\infty);L^{q’})}\leq C_{7} , (21)

where C_{7} is independent on j . (20) is proved by the same way employed by
e,g . Reed [14] (pp. 61\sim 62) in case (1.3) and by Motai [10] in case (1.4).
(21) is proved by showing more extended result

||\mathfrak{B}_{j}(\cdot, \cdot, w_{jt})||_{L^{r’}([0,\infty);H_{q}^{1},)}\leq C_{8} , (22)

where r’ and q’ are as in Theorem 1. By means of (4)\sim(5) and (7)\sim(8) ,
(22) is proved by the duality argeument.

Obviously (20) and (22) imply (1.12) and (1.14).
The uniquness follows from the property

\{\beta(x, t, u_{1})u_{1}-\beta(x, t, u_{2})u_{2}\}(u_{1}-u_{2})\geq 0 . (23)

Thus this completes the sketch of the proof of Theorem 1. \square
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