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Trace scaling automorphisms of certain stable
AF algebras
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Abstract. Trace scaling automorphisms of a stable AF algebra with dimension group
totally ordered are outer conjugate if the scaling factors are the same (not equal to one).
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1. Introduction

This is a continuation of [8], where we showed a UHF version of a well-
known result of A. Connes [5] that trace scaling automorphisms of the AFD
type II_{\infty} factor with the same non-trivial scale are outer conjugate with
each other. In this paper we show the same result for stable AF algebras
with totally ordered dimension group.

The key idea remains the same as in [8] and hence as in [5]: Define
and prove a Rohlin property for such automorphisms and analyse them
using this property. We are now familiar with the unital case (see [3, 2,
16, 13, 14, 15]). What we did in [8] is to evade non-unital C^{*} algebras and
deal with partial unital endomorphisms of unital (UHF) algebras. What we
do here is to define a suitable Rohlin property for automorphisms of non-
unital C^{*} -algebras and prove it. We will define it by borrowing an idea due
to R\emptyset rdam[18] , where corner endomorphisms are treated, and prove it by
using an argument in [13, 14] , where automorphisms of unital AF algebras
are treated. Our main contribution is to find a passage from the non-unital
case to the unital case in proving the Rohlin property, which is done in
Section 2.

In Section 3 we shall show that our definition of Rohlin property is
the right one, i.e., this is at least strong enough to prove the stability or
1 cohomology property [5, 9, 10]. Note that it is this property that we
actually need.

Another idea used in [5, 8] , a technique envolving tensor products, is
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no longer applicable here. For example if A is an AF algebra with totally
ordered dimension group and A\otimes A has the same property, then A must be
UHF. However by using an intertwining argument we shall show that any
two automorphisms \alpha and \beta with the Rohlin property of an AF algebra are
outer conjugate if \alpha_{*} and \beta_{*} are equal as automorphisms of the dimension
group. More precisely, the conclusion is that for any \epsilon>0 there is an aut0-
morphism \sigma of A and a unitary U in A+\mathbb{C}1 (or in A if A is unital) such
that ||U-1||<\epsilon and \alpha=AdU\circ\sigma\circ\beta\circ\sigma^{-1} . In general we cannot take 1
for U or cannot conclude conjugacy of \alpha and \beta . This extends Theorem 2 of
[14] and Theorem 7 of [8]. (Note that even in the UHF case the conclusion
is stronger than the one in [8].)

Let \lambda\neq 1 be a positive number and let G_{\lambda} be the subgroup of 1R
generated by \lambda^{n} , n\in \mathbb{Z} . If A is the stable AF algebra whose dimension
group is G_{\lambda} and \alpha is an automorphism of A such that \alpha_{*} acts on the
dimension group by multiplication by \lambda , then from the above result the
crossed product A x_{\alpha}\mathbb{Z} depends only on \lambda . But we have now a more general
theorem in this direction: it follows from [18, 11, 17] that A>\triangleleft_{\alpha}\mathbb{Z} , being a
purely infinite simple C^{*} -algebra, is isomorphic to a stable Cuntz algebra.

2. Rohlin property

Let A be a non-unital C^{*} -algebra and let \alpha be an automorphism of A.
We assume that A has an approximate unit consisting of projections. Based
on [18] we define a Rohlin property for \alpha as follows:

Definition 2.1 The automorphism \alpha has the Rohlin property if for any
k\in \mathbb{N} there are positive integers k_{1} , \ldots , k_{m}\geq k satisfying the following
condition: For any projections E , e in A , any unitary U in A+\mathbb{C}1 , any
finite subset \mathcal{F} of A_{E}=EAE , and \epsilon>0 with

e\leq E , Ad Uo\alpha(e)\leq E , e\in \mathcal{F} , Ad U\circ\alpha(e)\in \mathcal{F} ,

there exists a family \{e_{i,j} ; i=1, \ldots, m, j=0, \ldots, k_{i}-1\} of projections in
A such that

\sum_{i}\sum_{j}e_{i,j}=E
,

||AdU\circ\alpha(e_{i,j}e)-e_{i,j+1}AdU\circ\alpha(e)||<\epsilon ,
||[x, e_{i,j}]||<\epsilon ,
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for i=1 , \ldots , m , j=0, . , k_{i} –1 and x\in \mathcal{F} where e_{i,k_{i}}=e_{i,0} . The
projections \{e_{i,j}\} will be called a set of Rohlin towers.

If we apply the same definition to a unital C^{*} -algebra A , then the Rohlin
property for the unital case [13, 14] , where E=1=e is preassumed, implies
the present definition. (We just have to cut down by E a set of Rohlin
towers obtained for E=1=e which almost commutes with E , e and use
functional calculus to get the desired set of Rohlin towers.) The following
is an easy consequence whose proof we omit:

Proposition 2.2 Suppose that there is an increasing sequence \{P_{n}\} of
projections in A such that ||P_{n}x-x||arrow 0 for any x\in A and \alpha(P_{n})=P_{n} .
Then \alpha has the Rohlin property if and only if the restriction of \alpha to A_{P_{n}}=

P_{n}AP_{n} has the Rohlin property for any n .

We are, however, interested in the situation where the above proposition
does not apply.

Let A be a simple stable AF algebra and let \alpha be an automorphism of
A . Let \{A_{n}\} be an increasing sequence of finite-dimensional subalgebras of
A such that the union \bigcup_{n}A_{n} is dense in A.

Remark 2.3 In this situation for any \epsilon>0 there is a subsequence \{n_{k}\}

of positive integers and a unitary U\in A+1 such that ||U-1||<\epsilon and
Ad U\circ\alpha(A_{k})\subset A_{k+1} , (Ad U\circ\alpha)^{-1}(A_{k})\subset A_{k+1} for any k . This can be
proved by using the following fact inductively: If B is a finite-dimensional
subalgebra of A and \epsilon>0 , there is an n\in \mathbb{N} and a unitary U\in A+1 such
that ||U-1||<\epsilon and Ad U(B)\subset A_{n} .

Hence by slightly perturbing \alpha and passing to a subsequence of \{A_{n}\}

we may assume that \alpha^{-1}(A_{n})\subset A_{n+1} , \alpha(A_{n})\subset A_{n+1} for any n . We fix a
nonzero projection E\in A_{1} .

Let e be a projection in \bigcup_{k}A_{k} and U a unitary in \bigcup_{k}A_{k}+\mathbb{C}1 such that
e\leq E and Ad U\circ\alpha(e)\leq E . Since A_{E}=EAE is simple there is a k\in \mathbb{N}

such that e , Ad U\circ\alpha(e) , U\in A_{k}+\mathbb{C}1 and the multiplication by e (resp.
f=AdU\circ\alpha(e)) induces an isomorphism of (A\cap A_{k}’)_{E} onto (A\cap A_{k}’)_{e} (resp.
(A\cap A_{k}’)f) or the central support of e (resp. f ) in (A_{k})_{E} is E . We define a
homomorphism \phi(\alpha, e, U) of (A\cap A_{k+1}’)_{E} into (A\cap A_{k}’)_{E} by

\phi(\alpha, e, U)(x)f=AdU\circ\alpha(xe)=\alpha(x)f .
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This is indeed well-defined: Since

[Ad Uo\alpha(xe) , b] = Ad U\circ\alpha ( [xe , (Ad Uo\alpha ) (b)] ) =0

for b\in(A_{k})_{f}=fA_{k}f , we have that

Ad Uo\alpha(xe)\in(A\cap A_{k}’)_{f}=A_{f}\cap((A_{k})_{f})’

We note that \phi(\alpha, e, U) is essentially independent of e and U in the sense
that if \phi(\alpha, e_{1}, U_{1}) is another one then \phi(\alpha, e, U)=\phi(\alpha, e_{1}, U_{1}) on the
common domain D . Because if e_{1}\leq e and U_{1}=U , this follows since

(\phi(\alpha, e, U)(x)-\phi(\alpha, e_{1}, U_{1})(x))AdUo\alpha(e_{1})=0

for any x\in D ; if e=e_{1} , this follows since

(\phi(\alpha, e, U)(x)-Ad(UU_{1}^{*})\circ\phi(\alpha, e, U_{1})(x))AdUo\alpha(e)=0

for any x\in D and UU_{1}^{*} commutes with \phi(\alpha, e, U_{1})(x) ; and if e_{1}=AdV(e)
and U_{1}=U\alpha(V^{*}) with V a unitary in \bigcup_{n}A_{n}+\mathbb{C}1 , this follows since Ad U\circ

\alpha(e)=AdU_{1}\circ\alpha(e_{1}) .
Thus we denote by \tilde{\alpha} the homomorphism induced by these \phi(\alpha, e, U) ;

this is a homomorphism of (A\cap A_{k+1}’)_{E} into (A\cap A_{k}’)_{E} for some k . The
same computation shows that \tilde{\alpha} maps (A\cap A_{n+1}’)_{E} into (A\cap A_{n}’)_{E} for n\geq k .
Since \phi ( \alpha^{-1} , Ad Uo\alpha(e) , \alpha^{-1}(U^{*}) ) is well-defined if so is \phi(\alpha, e\underline{U},),\overline{\alpha^{-1}} is
defined at least on (A\cap A_{k+2}’)_{E} , and satisfies that \tilde{\alpha}\circ\overline{\alpha^{-1}}=\underline{id} , \alpha^{-1}\circ\tilde{\alpha}=id

on (A\cap A_{k+2}’)_{E} . A similar computation shows that (\tilde{\alpha})^{n}=\alpha^{n} on (A\cap A_{l}’)_{E}

for a sufficiently large l (depending on n).
Let \omega be a free ultrafilter on \mathbb{N} and let A_{E}^{\omega} be the quotient C^{*} -algebra

of l^{\infty}(\mathbb{N}, A_{E}) by the ideal I_{\omega}= \{(x_{n})|\lim_{n-\omega}||x_{n}||=0\} . Embedding A_{E}

into l^{\infty}(\mathbb{N}, A_{E}) and so into A_{E}^{\omega} as constant functions, let A_{E\omega}=A_{E}^{\omega}\cap A_{E}’ .
Let x=(x_{n})\in A_{E\omega} . Then we can find an increasing sequence \{k_{n}\} in

\mathbb{N} and x_{n}’\in(A\cap A_{k_{n}}’)_{E} such that k_{n}arrow\infty and \lim_{narrow\omega}||x_{n}-x_{n}’||=0 . We
define a homomorphism \tilde{\alpha}_{\omega} of A_{E\omega} into itself by

\tilde{\alpha}_{\omega}(x)=(\tilde{\alpha}(x_{n}’)) .

This is indeed easily checked to be well-defined. In the same way we can
define \tilde{\beta}_{\omega} for \beta=\alpha^{-1} and show that \tilde{\alpha}_{\omega}\circ\tilde{\beta}_{\omega}=id and \tilde{\beta}_{\omega}\circ\tilde{\alpha}_{\omega}=id . Thus
\tilde{\alpha}_{\omega} is an automorphism of A_{E\omega} .

Let \tau be a densely-defined non-zero lower semi-continuous trace on A

and assume that \tau is unique up to a constant multiple. Since \tau\circ\alpha is again
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such a trace , there is a \lambda>0 such that \tau\circ\alpha=\lambda\tau . We normalize \tau

by \tau(E)=1 . We can define a state \tau_{\omega} on A_{E\omega} by \tau_{\omega}(x)=\lim\tau(x_{n}) for
x=(x_{n})\in A_{E\omega} . Note that \tau_{\omega} is tracial. We shall show that \tau_{\omega} is invariant
under \tilde{\alpha}_{\omega} .

Let x=(x_{n})\in A_{E\omega} , where x_{n}\in(A\cap A_{k_{n}})_{E}’ for some non-decreasing
sequence \{k_{n}\} with k_{n} – \infty . If \tilde{\alpha}=\phi(\alpha, e, U) on (A\cap A_{k+1}’)_{E} , { P_{i} ; i=
1 , \ldots , N } is the set of minimal projections in the center of EA_{k+1}E , and
k_{n}>k+1 , then

\tau(\tilde{\alpha}(x_{n}))=\sum_{i=1}^{N}\tau(P_{i}\tilde{\alpha}(x_{n}))

= \sum\frac{\tau(P_{i})}{\tau(P_{i}AdUo\alpha(e))}\tau(P_{i}AdU\circ\alpha(x_{n}e))

= \sum\frac{\tau(P_{i})}{\tau(P_{i}\alpha(e))}\tau 0\alpha(\alpha^{-1}(P_{i})ex_{n})

= \sum\frac{\tau(P_{i})}{\tau(\alpha^{-1}(P_{i})e)}\tau(\alpha^{-1}(P_{i})ex_{n})

which, when n is large, is almost equal to

\sum\frac{\tau(P_{i})}{\tau(\alpha^{-1}(P_{i})e)}\tau(\alpha^{-1}(P_{i})e)\tau(x_{n})=\tau(x_{n})

since \tau is factorial. Thus we obtain that \tau_{\omega}\circ\tilde{\alpha}_{\omega}=\tau_{\omega} .
Without loss of generality we assume, from now on, that \tilde{\alpha} is defined

as \phi(\alpha, e, 1) on (A\cap A_{2}’)_{E} , i.e., e , \alpha(e)\in A_{1} , e\leq E , \alpha(e)\leq E , and the
central supports of e and \alpha(e) in (A_{1})_{E} are E.

The above argument carries over to the weak closure \mathcal{R} of \pi_{\tau}(A_{E}) . Note
that \mathcal{R}^{\omega} is defined as the quotient of l^{\infty}(\mathbb{N}, \mathcal{R}) by

I= \{(x_{n})|\lim_{narrow\omega}||x_{n}||_{\tau}=0\}

where ||a||_{\tau}=\tau(a^{*}a)^{1/2} , and \tau is regarded as the tracial state on \mathcal{R} induced
from \tau on A_{E} . Since \tau\circ\tilde{\alpha}|(A\cap A_{2}’)_{E} is equivalent to \tau|(A\cap A_{2}’)_{E},\tilde{\alpha}

extends to a homomorphism of \mathcal{R}\cap\pi_{\tau}(A_{2E})’ into \mathcal{R}\cap\pi_{\tau}(A_{1E})’ , and for
x\in l^{\infty}(\mathbb{N}, \mathcal{R}\cap\pi_{\tau}(A_{2E})’) , \lim_{narrow\omega}||x_{n}||_{\tau}=0 if and only if lim ||\tilde{\alpha}(x_{n})||_{\tau}=0 .
In this way we have the automorphism \tilde{\alpha}_{\omega} of \mathcal{R}_{\omega}=\mathcal{R}^{\omega}\cap \mathcal{R}’ induced by \tilde{\alpha}

which satisfies that \tau_{\omega}\circ\tilde{\alpha}_{\omega}=\tau_{\omega} .

Lemma 2.4 Suppose that \tau\circ\alpha=\lambda\tau with \lambda\neq 1 . If \mathcal{R}=\pi_{\tau}(A_{E})^{-w} , \mathcal{R}_{\omega} ,
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\tilde{\alpha}_{\omega} , \tau_{\omega} etc. are as above, then any non-zero power of \tilde{\alpha}_{\omega} is properly outer.

Proof. The proof is similar to the proofs of Lemmas 1 and 2 of [8].
Denote by \overline{\alpha} the automorphism of \pi_{\tau}(A)’ induced by \alpha . Fix n\geq 2 and let
B=\pi_{\tau}(A_{nE})\subset \mathcal{R} . For a non-zero projection f\in \mathcal{R}\cap B’ we assert that

\inf\{||p\tilde{\alpha}(p)||;0\neq p=p^{*}=p^{2}\in \mathcal{R}\cap B’, p\leq f\}=0 .

Suppose that the above infimum is positive, say \delta>0 . We may suppose
that f is in one factor direct summand of \mathcal{R}\cap B’ . Let f_{1} be a minimal
projection in B such that f_{1}f\neq 0 . Then any projection \tilde{p}\in \mathcal{R} with
\tilde{p}\leq ff_{1} is of the form \tilde{p}=f_{1}p with p a projection in f(\mathcal{R}\cap B’)f . Hence
for any z\in \mathcal{R} we have

\inf\{||pf_{1}z\overline{\alpha}(f_{1})\overline{\alpha}(p)||;0\neq p=p^{*}=p^{2}\in \mathcal{R}\cap B’, p\leq f\}=0 ,

since \overline{\alpha} is an outer automorphism of \pi_{\tau}(A)’ . There is a finite set \{V_{1}, , V_{k}\}

of unitaries in B such that \sum_{i}V_{i}f_{1}V_{i}^{*} is the central support of f_{1} in B . Since

\sum_{i,j}V_{i}pf_{1}V_{i}^{*}\overline{\alpha}(V_{j})\overline{\alpha}(f_{1})\overline{\alpha}(p)\overline{\alpha}(V_{j}^{*})=p\overline{\alpha}(p)

and

||p\tilde{\alpha}(p)||=||p\tilde{\alpha}(p)\overline{\alpha}(e)||=||p\overline{\alpha}(p)\overline{\alpha}(e)||=||p\overline{\alpha}(p)|| ,

there exist i , j such that

||pf_{1}V_{i}^{*}\overline{\alpha}(V_{j})\overline{\alpha}(f_{1})\overline{\alpha}(p)||\geq\delta/k^{2} ,

which is a contradiction. By using this we can show that \alpha_{\omega} is properly
outer (cf. Lemma 2 of [8] and [5]).

By applying the same argument to \tilde{\alpha}^{n} , we obtain that (\tilde{\alpha}_{\omega})^{n} is properly
outer for any n\neq 0 . \square

Let D=A_{E} and suppose that D has a unique tracial state. Let B be
a finite-dimensional subalgebra of D . We say x\in D is independent of B if
x\in B’ and

\tau(xy)=\tau(x)\tau(y) , y\in B .

Lemma 2.5 Let \{P_{1}, \ldots, P_{N}\} be the set of minimal central projections of
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B. Then x\in D\cap B’ is independent of B if and only if
\tau(xP_{i})=\tau(x)\tau(P_{i}) , i=1 , \ldots , N.

Proof. It suffices to show the if part. Since P_{i}DP_{i}\cong P_{i}BP_{i}\otimes(D\cap B’)P_{i} ,
it follows that for y\in P_{i}BP_{i}

\frac{\tau(xy)}{\tau(P_{i})}=\frac{\tau(xP_{i})}{\tau(P_{i})}\frac{\tau(y)}{\tau(P_{i})} .

Hence \tau(xy)=\tau(x)\tau(y) . This completes the proof. \square

Lemma 2.6 Suppose that the dimension group K_{0}(A) is totally ordered
and identified with a subgroup of \mathbb{R} and that K_{0}(A)=\lambda K_{0}(A) for some
\lambda\neq 1 . For any central sequence \{f_{k}\} of projections in A_{E} there is a central
sequence \{f_{k}’\} of projections in A_{E} such that f_{k}’\leq f_{k} , \tau(f_{k}-f_{k}’) –0, and
for any n there is a k_{n} satisfying that f_{k}’ is independent of A_{nE} for any
k\geq k_{n} .

Proof. We may suppose that there is a k_{n} such that f_{k}\in(A\cap A_{n}’)_{E} for
k\geq k_{n} . Let \{P_{i}^{(n)}\} be the set of minimal central projections in A_{nE} . We
can find an l_{n}\geq k_{n} such that

| \frac{\tau(P_{i}^{(n)}f_{k})}{\tau(P_{i}^{(n)})}-\tau(f_{k})|<\frac{1}{n}

for k\geq l_{n} and all i . We will then define f_{k}’ , k\in\{l_{n}, \ldots, l_{n+1}-1\} as follows:
Let g_{k} \in\bigcup_{n\in \mathbb{Z}}\lambda^{n}\mathbb{Z} be such that \max\{0, \gamma-1/n\}<g_{k}\leq\gamma where

\gamma=\min_{i}\frac{\tau(P_{i}^{(n)}f_{k})}{\tau(P_{i}^{(n)})} .

Choose a subprojection q_{k,i} of P_{i}^{(n)}f_{k} in (A\cap A_{n}’)_{P_{i}^{(n)}f_{k}} such that \tau(q_{k,i})/

\tau(P_{i}^{(n)})=g_{k} , and let f_{k}’= \sum_{i}q_{k,i} . This is possible because, when (A_{n})_{P_{i}^{(n)}}

is isomorphic to the m_{i}\cross m_{i} matrix algebra,

K_{0}((A\cap A_{n}’)_{P_{i}^{(n)}})=m_{i}K_{0}(A_{P_{i}^{(n)}})

and when [P_{i}^{(n)}]=1 , K_{0}((A\cap A_{n}’)_{P_{i}^{(n)}}) contains \bigcup_{n\in \mathbb{Z}}\lambda^{n}\mathbb{Z} for any i . \square

Lemma 2.7 Suppose that K_{0}(A) is totally ordered. Let p\in(A\cap A_{n}’)_{E} be
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a projection independent of (A_{n})_{E} . Then if n-m\geq 1 , p,\tilde{\alpha}(p) , . . ’
\tilde{\alpha}^{m}(p)

are all equivalent in (A\cap A_{n-m}’)_{E} .

Proof. Let \{P_{i}\} be the set of minimal central projections in EA_{n-1}E .
Then

\tau(\tilde{\alpha}(p)P_{i})=\frac{\tau(P_{i})}{\tau(P_{i}\alpha(e))}\tau(\tilde{\alpha}(p)P_{i}\alpha(e))

= \frac{\tau(P_{i})}{\tau(\alpha^{-1}(P_{i})e)}\tau(\alpha^{-1}(P_{i})ep)

=\tau(P_{i})\tau(p)=\tau(pP_{i}) ,

since \alpha^{-1}(P_{i})e\in A_{n} . Hence p is equivalent to \tilde{\alpha}(p) in (A\cap A_{n-1}’)_{E} . We
just repeat this procedure. \square

Theorem 2.8 Let A be a stable AF algebrasuch that K_{0}(A) is totally or-
dered and let \alpha be an automorphism of A such that \tau\circ\alpha=\lambda\tau where \tau is
a trace on A (unique up to constant multiple) and \lambda\neq 1 . Then \alpha has the
Rohlin property.

Proof. Let E , e be projections in A and U a unitary in A+\mathbb{C}1 such
that e\leq E and Ad U\circ\alpha(e)\leq E . Let \{A_{n}\} be an increasing sequence of
finite-dimensional subalgebras of A such that the union \bigcup_{n}A_{n} is dense in
A and E , e , Ad U\circ\alpha(e)\in A_{1} . By taking Ad U\circ\alpha instead of \alpha we now
assume that U=1 . For any \delta>0 we find a unitary V\in A+1 such that
||V-1||<\delta and, by passing to a subsequence of \{A_{n}\} , Ad V\circ\alpha(A_{n})\subset

A_{n+1} , (Ad V\circ\alpha)^{-1}(A_{n})\subset A_{n+1} for any n (Remark 2.3). By perturbing
V if necessary we may further assume that Ad V\circ\alpha(e)=\alpha(e) . By taking
a sufficiently small \delta>0 we may take Ad V\circ\alpha for \alpha . Thus we have
the following situation: There exists an increasing sequence \{A_{n}\} of finite
dimensional subalgebras of A such that the union \bigcup_{n}A_{n} is dense in A ,
\alpha(A_{n})\subset A_{n+1} , \alpha^{-1}(A_{n})\subset A_{n+1} , E , e , \alpha(e)\in A_{1} , and e , \alpha(e)\leq E . The
problem is to find a set of Rohlin towers as specified in Definition 2.1. But
this follows from Lemmas 2.4, 2.6, and 2.7 based on the arguments given
in [13, 14] because we just have to prove the (ordinary) Rohlin property for
\tilde{\alpha} . Here is an outline. Since \mathcal{R}_{\omega} is a finite von Neumann algebra [5, 2.2.1],
we know by Lemma 2.3 and [5, 1.2.5] that \tilde{\alpha}_{\omega} on \mathcal{R}_{\omega} satisfies a Rohlin
property. Then by approximating a Rohlin tower in \mathcal{R}_{\omega} by projections in
A_{E} we show that the partial endomorphism \tilde{\alpha} of A_{E} satisfies an approximate
Rohlin property (Lemmas 2.5 and 2.6 and [14]). But this suffices to conclude
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the Rohlin property by [13, Proof of 2.1]. \square

Remark 2.9 In the situation of the previous theorem let \alpha be an aut0-
morphism of A such that \alpha_{*}=id and any non-zero power is not weakly
inner in the tracial representation. Then \alpha has the Rohlin property. (See
Proposition 2.2 or Theorem 4.1 of [14].)

Remark 2.10 In the above theorem we can make the Rohlin property
more specific: In Definition 2.1 we may take \{\ , k+1\} for \{k_{1}, . , k_{m}\} .
This follows because of Lemma 2.7 (see [14]).

3. Stability

Theorem 3.1 Let A be a (non-unital) AF algebra and let \alpha be an autO-
morphism of A with the Rohlin property. Let \epsilon>0 and let B_{1} be a finite-
dimensional subalgebra of A. Then there is a finite-dimensional subalgebras
B_{2} of A such that for any unitary U\in A\cap B_{2}’+1 there is a unitary
V\in A\cap B_{1}’+1 with ||U-V\alpha(V^{*})||<\epsilon .

The following argument works if A is unital or non-unital; if A is unital,
we should regard 1 as the unit of A , otherwise 1 as the unit adjoined to A .

Suppose that there is an increasing sequence \{A_{n}\} of finite-dimensional
subalgebras of A such that \bigcup_{n}A_{n} is dense in A and \alpha^{-1}(A_{n})\subset A_{n+1} ,
\alpha(A_{n})\subset A_{n+1} for any n . By Remark 2.3 the above theorem is an easy
consequence of:

Lemma 3.2 Under the above assumption let U be a unitary in A\cap A_{n}’+1 .
Then for each k\in \mathbb{N} there is a unitary V in A\cap A_{n-2k}’+1 such that
||U-V\alpha(V^{*})||<4/k , where A_{m}=\{0\} for a non-positive m .

Proof Let U be a unitary in A\cap A_{n}’+1 . We may further suppose that
there is an m>n such that U\in A_{m}+1 . Let F be the identity of A_{m} and
let

E= \sup\{\alpha^{m}(F);-1\leq m\leq 2k+1\} ,

e= \sup\{\alpha^{m}(F);-1\leq m\leq 2k\} ,

which are projections in A_{m+2k+1} with that e , \alpha(e) \leq E . For U_{j}=

U\alpha(U)\cdots\alpha^{j-1}(U) with j\geq 0 , we have that if 0\leq j\leq k ,

U_{j}(1-\alpha(e))=1-\alpha(e) .
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For E , e and \{k, k+1\} we find a set of Rohlin towers { e_{1,0} , \ldots , e_{1,k-1} ,
e_{2,0} , . . , e_{2,k} } in (A\cap A_{m+2k+1}’)_{E} . Let W_{t}^{(1)} . W_{t}^{(2)} be paths of unitaries in
A_{m+k}\cap A_{n-k}’+1 such that

W_{0}^{(i)}=1 ,
W_{1}^{(1)}=U_{k} , W_{1}^{(2)}=U_{k+1} ,
||W_{s}^{(i)}-W_{t}^{(i)}||\leq\pi|s-t| , s , t\in[0,1] ,
W_{t}^{(i)}(1-e_{0})=1-e_{0} , t\in[0,1] ,

where e_{0}= \sup\{\alpha^{m}(F);0\leq m\leq k\} . Set

V= \sum_{j=0}^{k-1}U_{j}\alpha^{j}(W_{1-j/(k-1)}^{(1)})e_{1,j}+\sum_{j=0}^{k}U_{j}\alpha^{j}(W_{1-j/k}^{(2)})e_{2,j}+1-E ,

which is a unitary in A\cap A_{n-2k}’+1 . Since \alpha^{j}(W_{t}^{(i)})(1-\alpha(e))=1-\alpha(e)

for 0\leq j\leq k , we have

V(1-\alpha(e))=1-\alpha(e) , \alpha(V)(1-\alpha(e))=1-\alpha(e) .

Hence it follows that

V\alpha(V^{*})\alpha(e)

\approx\sum_{j=0}^{k-1}U_{j+1}\alpha^{j+1}(W_{1-(j+1)/(k-1)}^{(1)})\alpha^{j+1}(W_{1-j/(k-1)}^{(1)})^{*}\alpha(U_{j}^{*})e_{1,j+1}\alpha(e)

+ \sum_{j=0}^{k}U_{j+1}\alpha^{j+1}(W_{1-(j+1)/k}^{(2)})\alpha^{j+1}(W_{1-j/k}^{(2)})^{*}\alpha(U_{j}^{*})e_{2,j+1}\alpha(e) ,

where the k-1 ’th summand in the first summation should be understood
as

U_{0}W_{1}^{(1)}\alpha^{k}(W_{0}^{(1)})^{*}\alpha(U_{k-1}^{*})e_{1,0}\alpha(e)=Ue_{1,0}\alpha(e)

and the k ’th term in the second as

U_{0}W_{1}^{(2)}\alpha^{k+1}(W_{0}^{(2)})^{*}\alpha(U_{k}^{*})e_{2,0}\alpha(e)=Ue_{2,0}\alpha(e) .

Hence we have that

||V\alpha(V^{*})-U||\leq\pi/k+\epsilon(2k+1) ,
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where \epsilon>0 is a small number depending on the Rohlin towers we used.
This completes the proof. \square

4. Outer conjugacy

Theorem 4.1 Let A be an AF algebra and let \alpha and \beta be automorphism
sms of A with the Rohlin property. If \alpha_{*}=\beta_{*} on K_{0}(A) , then for any
\epsilon>0 there is an automorphism \sigma of A and a unitary U in A+1 such that
\alpha=AdU\circ\sigma\circ\beta\circ\sigma^{-1} . ||U-1||<\epsilon , and \sigma_{*}=id .

Proof Note that A can be either unital or non-unital.
Let \epsilon>0 and let \{x_{n}\} be a dense sequence in the unit ball of A .

We shall construct inductively sequences \{A_{n}\} , \{B_{n}\} of finite-dimensional
subalgebras of A , sequences \{u_{n}\} , \{v_{n}\} of unitaries in A+1 such that

1. A_{n}\ni_{1/n}x_{1} , . . ’ x_{n} , A_{n}\supset A_{n-1} ,

2. B_{n}\supset A_{n} , B_{n}\ni v_{n} ,

3. \beta_{2n}|A_{2n+1}=Adu_{2n+1}\circ\alpha_{2n-1}|A_{2n+1} ,

4. \alpha_{2n-1}|A_{2n}=Adu_{2n}\circ\beta_{2n-2}|A_{2n} ,

5. ||u_{2n+1}-v_{2n+1}\alpha_{2n-1}(v_{2n+1}^{*})||<2^{-2n-1}\epsilon , v_{2n+1}\in B_{2n-1}’ ,

6. ||u_{2n}-v_{2n}\beta_{2n-2}(v_{2n}^{*})||<2^{-2n}\epsilon , v_{2n}\in B_{2n-2}’ ,

7. for any unitary U\in A\cap\alpha_{2n-1}(A_{2n})’+1 there exists a unitary V\in

A\cap B_{2n-1}’+1 such that ||U-V\alpha_{2n-1}(V^{*})||<2^{-2n-1}\epsilon ,

8. for any unitary U\in A\cap\beta_{2n}(A_{2n+1})’+1 there exists a unitary V\in

A\cap B_{2n}’+1 such that ||U-V\beta_{2n}(V^{*})||<2^{-2n-2}\epsilon ,

where A_{n}\ni_{\delta}x means that there is a y\in A_{n} with ||x-y||<\delta and

A_{0}=\{0\} ,
\alpha_{2n+1}=Adu_{2n+1}\circ\alpha_{2n-1} , \alpha_{-1}=\alpha ,
\beta_{2n}=Adu_{2n}\circ\beta_{2n-2} , \beta_{0}=\beta .

We first construct A_{1} according to (1). Having constructed

A_{1} , . . , A_{2n+1} , B_{1} , \ldots , B_{2n} , u_{1} , , u_{2n} , v_{1} , . . , v_{2n} ,

we proceed as follows: We choose u_{2n+1} according to (3). Since \alpha_{2n-1}|A_{2n}=

\beta_{2n}|A_{2n} from (4) and the definition of \beta_{2n} above, it follows that u_{2n+1}\in

\alpha_{2n-1}(A_{2n})’ and so by (7) that there is a unitary v_{2n+1}\in A\cap B_{2n-1}’+1
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satisfying (5). We may assume that there is a B_{2n+1} satisfying (2) (for
2n+1 in place of n). Having defined B_{2n+1} we define A_{2n+2} satisfying (1)
and (7) (by using Theorem 3.1) and choose u_{2n+2} according to (4). Since
u_{2n+2}\in\beta_{2n}(A_{2n+1})’ , we define v_{2n+2} satisfying (6) by using (8) and assume
that there is a B_{2n+2} satisfying (2). We define A_{2n+3} satisfying (1) and (8).
This completes the induction.

We note that the union \bigcup_{n}A_{n} is dense in A and define automorphisms
\sigma_{n} of A by

\sigma_{2n}=Ad(v_{2n}v_{2n-2}\cdots v_{2}) ,
\sigma_{2n+1}=Ad(v_{2n+1}v_{2n-1} . . v_{1}) ,

and define

\tilde{\sigma}_{0}=\lim_{n}\sigma_{2n} ,

\tilde{\sigma}_{1}=\lim_{n}\sigma_{2n+1} .

Since v_{n-2} , v_{n-4} , \in B_{n-2} , v_{n}\in B_{n-2}’ , and \bigcup_{n}B_{n} is dense, they are well-
defined We let

w_{2n+1}=u_{2n+1}\alpha_{2n-1}(v_{2n+1})v_{2n+1}^{*} , w_{2n}=u_{2n}\beta_{2n-2}(v_{2n})v_{2n}^{*}

and define unitaries w_{n}’\in A+1 by

w_{2n}’=w_{2n}Adv_{2n}(w_{2n-2})Ad(v_{2n}v_{2n-2})(w_{2n-4})\cdots Ad(v_{2n}\cdots v_{4})(w_{2}) ,
w_{2n+1}’=w_{2n+1}Adv_{2n+1}(w_{2n-1})\cdots Ad(v_{2n+1})\cdot\cdot v_{3})(w_{1}) .

Since ||w_{n}-1||<2^{-n}\epsilon , both \{w_{2n}’\} and \{w_{2n+1}’\} converge, say to \tilde{w}_{0} and
\tilde{w}_{1} respectively. Then \tilde{w}_{i},s are unitaries in A+1 such that ||\tilde{w}_{i}-1||<\epsilon .

Since \alpha_{2n-1}|A_{2n}=\beta_{2n}|A_{2n} , we have that

Ad w_{2n-1}’\circ\sigma_{2n-1}0\alpha 0\sigma_{2n-1}^{-1}|A_{2n}=Adw_{2n}’\circ\sigma_{2n}0\beta 0\sigma_{2n}^{-1}|A_{2n} ,

which implies that

Ad \tilde{w}_{1}\circ\tilde{\sigma}_{1}0\alpha 0\tilde{\sigma}_{1}^{-1}=Ad\tilde{w}_{0}\circ\tilde{\sigma}_{0}0\beta 0\tilde{\sigma}_{0}^{-1}-

This completes the proof. \square

Corollary 4.2 Let A be a stable AF algebrasuch that K_{0}(A) is totally
ordered and let \alpha , \beta be automorphisms of A such that \tau\circ\alpha=\lambda\tau and
\tau\circ\beta=\lambda\tau where \tau is a trace on A and \lambda\neq 1 . Then for any \epsilon>0
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there are an automorphism \sigma of A and a unitary U in A+1 such that
||U-1||<\epsilon , \sigma_{*}=id , and \alpha=AdUo\sigma 0\beta 0\sigma^{-1} .

Proof. This follows from Theorems 2.8 and 4.1. \square

Remark 4.3 In the above corollary the exact conjugacy \alpha=\sigma\circ\beta\circ\sigma^{-1}

for some automorphism \sigma of A cannot be expected in general. For example
if A is a prime AF algebrasuch that A\cong A\otimes \mathcal{K} , where \mathcal{K} is the compact
operators on l^{2}(\mathbb{Z}) , and \alpha is an automorphism of A such that \alpha^{n} is properly
outer for any n\neq 0 , let \alpha_{1} be the automorphism of A defined as \alpha\otimes\gamma

through A\otimes \mathcal{K}\cong A where \gamma=AdU and U is the shift unitary on l^{2}(\mathbb{Z}) .
Then \alpha_{1} satisfies that for any x , y\in A ,

||\alpha_{1}^{n}(x)y||arrow 0

as narrow\infty . This property is preserved by conjugacy but not by outer conju-
gacy. (By [12] there exists a faithful \alpha_{1} -covariant irreducible representation
of A ; by using Kadison’s transitivity theorem in this irreducible representa-
tion it follows that for any \epsilon>0 there are an x\in A and a unitary U\in A+1

such that 0\leq x\leq 1 , ||x||=1 , ||U-1||<\epsilon , and ||(AdUo\alpha_{1})^{n}(x)x||=1.)

Remark 4.4 Let \lambda\neq 1 be a positive number and let

G_{\lambda}= \bigcup_{n\in \mathbb{Z}}\mathbb{Z}\lambda^{n}

If \{1, \lambda, \lambda^{2}, , \} are linearly independent over \mathbb{Q} then the quotient G_{\lambda}/(1-

\lambda)G_{\lambda} is isomorphic to \mathbb{Z} and otherwise if \{f\in \mathbb{Z}[t]|f(\lambda)=0\}=p(t)\mathbb{Z}[t]

with some p(t)\in \mathbb{Z}[t] , then G_{\lambda}/(1-\lambda)G_{\lambda}\cong \mathbb{Z}/p(1)\mathbb{Z} . If A is the stable
AF algebra with dimension group G_{\lambda} and \alpha is an automorphism of A with
\alpha_{*}=\lambda , then the crossed product A \lambda_{\alpha}\mathbb{Z} has G_{\lambda}/(1-\lambda)G_{\lambda} as K_{0} and
{0} as K_{1} by the Pimsner-Voiculescu exact sequence [1]. Hence A x_{\alpha}\mathbb{Z}

is isomorphic to a stable Cuntz algebra O_{n}\otimes \mathcal{K} where n is either finite or
infinite [18, 11, 17, 6, 7].
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