Currents invariant by a Kleinian group

Aziz El Kacimi Alaoui, Shigenori Matsumoto and Tarek Moussa

(Received September 25, 1995)

Abstract

The goal of this paper is to give, under some hypotheses, a characterization of currents and distributions invariant by a group of diffeomorphisms of a manifold M and especially in the case of a Kleinian group Γ acting on the n-sphere \mathbf{S}^{n}.

Key words: current, distribution, Kleinian group, Poincaré exponent, bigraded cohomology.

0. Introduction

Let $p \in \mathbf{N}$ and $\Omega^{p}(M)$ be the space of differential forms of degree p with compact support in M equipped with its usual C^{∞}-topology. An element T of the (topological) dual $\mathcal{C}_{p}(M)$ of $\Omega^{p}(M)$ is called a current of degree p and a distribution when $p=0$. An element $T \in \mathcal{C}_{p}(M)$ is said to be invariant (or γ-invariant) under the action of a diffeomorphism $\gamma: M \longrightarrow M$ if it satisfies $\left\langle T, \gamma^{*} \varphi\right\rangle=\langle T, \varphi\rangle$ for every $\varphi \in \Omega^{p}(M)$ or if it vanishes on the space $K^{p}=\left\{\varphi-\gamma^{*} \varphi: \varphi \in \Omega^{p}(M)\right\}$. So the space $\mathcal{C}_{p}^{\Gamma}(M)$ (where Γ is the cyclic group generated by γ) of invariant currents on M is canonically isomorphic to the (topological) dual of the quotient $\Omega^{p}(M) / K^{p}$. More generally if Γ is a group of diffeomorphisms of M we say that $T \in \mathcal{C}_{p}(M)$ is Γ-invariant if it is invariant by every element $\gamma \in \Gamma$.

In [Ha], Haefliger characterized foliations with minimal leaves in terms of currents invariant by pseudogroups. Thus if the foliation is a suspension with holonomy group Γ, then the interest is focused upon Γ-invariant currents. The case of a Fuchsian group was studied in [HL]: let Γ be a subgroup of the diffeomorphism group $\operatorname{Diff}\left(\mathbf{S}^{1}\right)$ of the circle \mathbf{S}^{1} whose elements are restriction of elements of a Fuchsian group G of diffeomorphisms of the unit disc \mathbf{D}. Suppose that the quotient Riemannian surface $S=G \backslash \mathbf{D}$ is of finite volume, of genus g and with k punctures. Then it was proved in [HL] that the space of Γ-invariant distributions on the circle \mathbf{S}^{1} which vanish on constant functions is isomorphic to the space of harmonic forms on S having at most poles of order one at the punctures x_{i}. Its dimension
is $\max (2 g, 2 g+2 k-2)$.
Other results in higher dimension can be found in [Ga]. Invariant currents by a locally free action of the affine group $G A$ on a compact 3-manifold with a solvable fundamental group were completely characterized in [Ek].

In this paper we study currents, especially distributions, invariant by Kleinian groups. Distribution is a concept generalizing that of measure. It is well known, easy to prove, that nonelementary Kleinian groups do not admit invariant measure. So a natural question is: Does there exist an invariant distribution? We shall show in Proposition 3.1 that Kleinian group of certain kind admits an invariant distribution.

First of all let Γ be the cyclic group generated by a loxodromic transformation $\gamma: \mathbf{S}^{n} \longrightarrow \mathbf{S}^{n}$ and $D=\mathbf{S}^{n}-\left\{a_{+}, a_{-}\right\}$where a_{+}and a_{-}are respectively the repeller and the attractor of γ. The group Γ acts on D properly discontinuously and the quotient $\Gamma \backslash D$ is analytically diffeomorphic to $\mathbf{S}^{1} \times \mathbf{S}^{n-1}$. We have the following exact sequence

$$
0 \longrightarrow \mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n},\left\{a_{+}, a_{-}\right\}\right) \xrightarrow{i} \mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right) \xrightarrow{L_{0}} \mathcal{C}_{0}^{\Gamma}(D)
$$

where $\mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n},\left\{a_{+}, a_{-}\right\}\right)$denotes the space of Γ-invariant distributions on \mathbf{S}^{n} with support contained in $\left\{a_{+}, a_{-}\right\}$and L_{0} is the localization map i.e. L_{0} associates to every distribution on \mathbf{S}^{n} its restriction to D. The question is if L_{0} is surjective or not.

In $\S 3$, $\operatorname{Image}\left(L_{0}\right)$ is shown to be a codimension one subspace of $\mathcal{C}_{0}^{\Gamma}(D)$. This determines completely the space $\mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right)$. In $\S 4$ we construct a cross section of the localization map L_{0}.

Now we consider the problem in further generality. Let Γ be a Kleinian group acting on \mathbf{S}^{n} and let $D_{\Gamma}=\mathbf{S}^{n}-\Lambda_{\Gamma}$ be the domain of discontinuity of Γ and consider the exact sequence for p-currents

$$
0 \longrightarrow \mathcal{C}_{p}^{\Gamma}\left(\mathbf{S}^{n}, \Lambda_{\Gamma}\right) \xrightarrow{i} \mathcal{C}_{p}^{\Gamma}\left(\mathbf{S}^{n}\right) \xrightarrow{L_{p}} \mathcal{C}_{p}^{\Gamma}\left(D_{\Gamma}\right) .
$$

Here Λ_{Γ} is the limit set of Γ. For $p=0$, it is very difficult to determine Image (L_{p}) in general. But for $p>\delta$ (where δ is the critical exponent of Γ), we show in $\S 2$ that L_{p} is surjective. Using this for certain groups, we show that for $p=0$, Image $\left(L_{0}\right)$ is a subspace of $\mathcal{C}_{0}^{\Gamma}\left(D_{\Gamma}\right)$ of codimension ≤ 1.

Also if Γ acts on D_{Γ} freely and properly discontinuously, we show that $\mathcal{C}_{p}^{\Gamma}\left(D_{\Gamma}\right)$ is isomorphic to $\mathcal{C}_{p}\left(\Gamma \backslash D_{\Gamma}\right)$. This is carried out in $\S 1$ in complete generality. This result also can be derived from Haefliger's paper [Ha] where he has studied currents invariant by a pseudo-group. However we shall give
a slightly different proof, since some concepts there play a crucial role in later developments.

In Section 5 we study weakly invariant distributions i.e. distributions with invariance lack localized in the limit set Λ_{Γ}. In $\S 6$ we use the preceding results for computing the first bigraded cohomology group of the foliation obtained by suspending a diffeomorphism group Γ.

Unless otherwise stated all the objects considered are assumed to be of class C^{∞}.

1. Covering space

Let M, X be C^{∞}-manifolds, Γ a discrete group and $\Gamma \longrightarrow M \xrightarrow{\pi} X$ a regular covering. The aim of this \S is to show that, for every $p \in \mathbf{N}$, the space $\mathcal{C}_{p}^{\Gamma}(M)$ of Γ-invariant p-currents is canonically isomorphic to the space $\mathcal{C}_{p}(X)$ of the usual p-currents on the quotient manifold $X=\Gamma \backslash M$.

1.1. Preliminary

Let $\mathbf{j}=\left(j_{1}, \ldots, j_{p}\right) \in \mathbf{N}^{p}$ be a multi-index such that $1 \leq j_{1}<\cdots<$ $j_{p} \leq n$. Choose a local chart $\left\{U,\left(x_{1}, \ldots, x_{n}\right)\right\}$ of M. Then every element $\omega \in \Omega^{p}(M)$ has a local expression

$$
\omega=\sum_{\mathbf{j}} \omega_{\mathbf{j}} d x_{j_{1}} \wedge \cdots \wedge d x_{j_{p}}
$$

where ω_{j} are C^{∞} functions on U. Let $\left(U_{i}\right)_{i \in I}$ be a locally finite cover of M by charts U_{i}. We define the k-norm $\|\omega\|_{k}$ of ω by

$$
\|\omega\|_{k}=\max _{i \in I}\left\{\max _{|\mathbf{s}| \leq k}\left(\sum_{\mathbf{j}} \sup _{x \in U_{i}}\left|\frac{\partial^{|\mathbf{s}|} \omega_{\mathbf{j}}}{\partial x_{1}^{s_{1}} \cdots \partial x_{n}^{s_{n}}}(x)\right|\right)\right\}
$$

where $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in \mathbf{N}^{n}$ and $|\mathbf{s}|=s_{1}+\cdots+s_{n}$. This number exists because ω has a compact support.

The next Lemma will be useful mainly in a later \S. Endow $\Omega^{p}(M)$ with the usual C^{∞}-topology. That is, $\omega_{n} \longrightarrow \omega$ if and only if $\operatorname{supp}\left(\omega_{n}\right)$ is contained in a fixed compact subset and all the derivatives of ω_{n} converge to the corresponding derivatives of ω uniformly on this subset.

Lemma 1.2 A linear form $T: \Omega^{p}(M) \longrightarrow \mathbf{C}$ is continuous if and only if for every compact set $A \subset M$ there exists a positive constant C, an integer
$k \in \mathbf{N}$ such that

$$
|\langle T, \omega\rangle| \leq C| | \omega \|_{k}
$$

for every $\omega \in \Omega^{p}(M)$ with support contained in A.
The proof of this lemma is obvious.
Now let $\bar{\Omega}^{p}(M)$ be the space of all \mathbf{C}-valued p-forms on M (not necessarily compactly supported) and $\bar{\Omega}_{\Gamma}^{p}(M)$ the subspace of $\bar{\Omega}^{p}(M)$ whose elements ω are Γ-invariant and such that the quotient $\Gamma \backslash \operatorname{supp}(\omega)$ is compact in X. Then we have obviously the following:
Proposition $1.3 \pi^{*}: \Omega^{p}(X) \longrightarrow \bar{\Omega}^{p}(M)$ is a bijection onto $\bar{\Omega}_{\Gamma}^{p}(M)$.
Lemma 1.4 There exists a positive C^{∞}-function $f: M \longrightarrow \mathbf{R}$ such that
i) for every compact $B \subset X, \operatorname{supp}(f) \cap \pi^{-1}(B)$ is compact; or equivalently for every compact $A \subset M, \operatorname{supp}(f) \cap \gamma A \neq \emptyset$ for but finitely many $\gamma \in \Gamma$.
ii) $\quad \sum_{\gamma \in \Gamma} f \circ \gamma=1$.

Proof. Let $\left(U_{i}\right)_{i \in I}$ be a locally finite cover of X by relatively compact open sets U_{i} which are evenly covered by π. Let V_{i} any lift of U_{i}; then the family $\left(V_{i}\right)_{i \in I}$ is locally finite but it is not a covering of M. Let $g_{i}: M \longrightarrow \mathbf{R}_{+}$be a C^{∞}-function such that

$$
g_{i}>0 \text { on } V_{i} \text { and } g_{i}=0 \text { outside a neighbourhood of } V_{i} \text {. }
$$

Clearly the function $g=\sum_{i \in I} g_{i}$ satisfies i). Hence for every compact $A \subset M$ we have

$$
\operatorname{supp}(g \circ \gamma) \cap A \neq \emptyset \text { for but finitely many } \gamma \in \Gamma
$$

Thus

$$
\sum_{\gamma \in \Gamma} g \circ \gamma
$$

is a well defined positive C^{∞}-function. Put

$$
f=\frac{g}{\sum_{\gamma \in \Gamma} g \circ \gamma} .
$$

It is clear that f satisfies the conditions of Lemma 1.4.

Given $\omega \in \Omega^{p}(M)$, let

$$
\bar{\omega}=\sum_{\gamma \in \Gamma} \gamma^{*} \omega \in \bar{\Omega}^{p}(M) .
$$

It is easy to show that $\bar{\omega}$ is Γ-invariant and that $\Gamma \backslash \operatorname{supp}(\bar{\omega})=\pi(\operatorname{supp}(\omega))$ is compact. That is $\bar{\omega} \in \bar{\Omega}_{\Gamma}^{p}(M)$. By 1.3 one can define a map

$$
\pi_{!}: \Omega^{p}(M) \longrightarrow \Omega^{p}(X)
$$

by the condition

$$
\pi^{*}\left(\pi_{!}(\omega)\right)=\sum_{\gamma \in \Gamma} \gamma^{*} \omega .
$$

Lemma 1.5 The map $\pi!$ is linear, continuous and surjective.
Proof. The fact that $\pi!$ is linear and continuous is obvious. We shall prove that it is surjective. Let $\eta \in \Omega^{p}(X)$ and put $\omega=f \cdot \pi^{*} \eta$. Then $\operatorname{supp}(\omega)=\operatorname{supp}(f) \cap \pi^{-1}(\operatorname{supp}(\eta))$ is compact. Also

$$
\begin{aligned}
\pi^{*}\left(\pi_{!}(\omega)\right) & =\sum_{\gamma \in \Gamma}(f \circ \gamma) \cdot \gamma^{*} \pi^{*} \eta \\
& =\sum_{\gamma \in \Gamma}(f \circ \gamma) \cdot \pi^{*} \eta \\
& =\pi^{*} \eta
\end{aligned}
$$

That is $\pi_{!}(\omega)=\eta$.
Let $p \in \mathbf{N}$; in the introduction we have defined K^{p} to be the linear subspace of $\Omega^{p}(M)$

$$
K^{p}=\left\{\sum_{i=1}^{n}\left(\gamma_{i}^{*} \omega_{i}-\omega_{i}\right) \mid \gamma_{i} \in \Gamma, \omega_{i} \in \Omega^{p}(M)\right\} .
$$

Then we have the following:
Proposition 1.6 The sequence

$$
0 \longrightarrow K^{p} \longrightarrow \Omega^{p}(M) \xrightarrow{\pi_{1}} \Omega^{p}(X) \longrightarrow 0
$$

is exact for every $p \in \mathbf{N}$.
Proof. The inclusion $K^{p} \subset \operatorname{Ker}\left(\pi_{!}\right)$is clear; all that need proof is $\operatorname{Ker}\left(\pi_{!}\right) \subset K^{p}$. The proof of this fact was communicated to us by G. Hector.

Choose an arbitrary element $\omega \in \operatorname{Ker}\left(\pi_{!}\right)$. Define $O(\omega)$ to be the set of the points $x \in X$ such that ω vanishes all over $\pi^{-1}(x)$. Let U and V be connected open subsets of X such that $\bar{U} \subset V$ and V is evenly covered by π. Then we will have the following:

Lemma 1.7 For any ω, there exists $\omega_{1} \in \operatorname{Ker}\left(\pi_{!}\right)$such that $\omega_{1} \equiv \omega$ $\bmod K^{p}$ and $O(\omega) \cup U \subset O\left(\omega_{1}\right)$.

This Lemma is sufficient for the proof of Proposition 1.6. For, one can choose finite families $\left\{U_{i}\right\}$ and $\left\{V_{i}\right\}(i=1, \ldots, k)$ of open subsets of X covering $\pi(\operatorname{supp}(\omega))$ such that $\overline{U_{i}} \subset V_{i}$ and V_{i} is evenly covered by π. But then using 1.7 successively, we will get a sequence of p-forms

$$
\omega \equiv \omega_{1} \equiv \omega_{2} \equiv \cdots \equiv \omega_{k}=0 \bmod K^{p}
$$

showing Proposition 1.6.
Proof of 1.7 Let g be a nonnegative valued C^{∞}-function on X such that $g=1$ on U and $g=0$ outside V, and $\bar{g}=g \circ \pi$. Let \bar{U} (resp. \bar{V}) be a connected component of $\pi^{-1}(U)$ (resp. $\left.\pi^{-1}(V)\right)(\bar{U} \subset \bar{V})$ and let $\gamma_{j}(0 \leq$ $j \leq l)$ be the elements of Γ such that $\gamma_{j}(\bar{V}) \cap \operatorname{supp}(\omega) \neq \emptyset$. Let η_{j} be the restriction of $\bar{g} \omega$ to $\gamma_{j}(\bar{V})$. Then we have

$$
\omega=\sum_{j=0}^{l} \eta_{j}+(1-\bar{g}) \omega .
$$

Of course each term above is a C^{∞}-form. Now define

$$
\omega_{1}=\sum_{j=0}^{l} \gamma_{j}^{*} \eta_{j}+(1-\bar{g}) \omega
$$

Notice that $\omega_{1} \equiv \omega \bmod K^{p}$. Also it follows immediately that $O(\omega) \subset$ $O\left(\omega_{1}\right)$.

Let us show finally that $U \subset O\left(\omega_{1}\right)$. Let x be an arbitrary point of U. Then $(1-\bar{g}) \omega$ clearly vanishes on $\pi^{-1}(x)$. Also since $\operatorname{supp}\left(\gamma_{j}^{*} \eta_{j}\right) \subset \bar{V}$, we have that ω_{1} vanishes on $\pi^{-1}(x)$ except at one point in $\pi^{-1}(x) \cap \bar{V}$. But actually ω_{1} also vanishes there since $\omega_{1} \in \operatorname{Ker}\left(\pi_{!}\right)$. Therefore we have $x \in O\left(\omega_{1}\right)$.
Since $\mathcal{C}_{p}^{\Gamma}(M)$ is canonically isomorphic to the dual space of the quotient $\Omega^{p}(M) / K^{p}$, from Proposition 1.6 we get easily the following:

Theorem 1.8 The space $\mathcal{C}_{p}^{\Gamma}(M)$ of Γ-invariant p-currents on M is canonically isomorphic to the space $\mathcal{C}_{p}(X)$ of p-currents on X. The isomorphism is given by the transpose of π !.

2. Kleinian groups

Let \mathbf{S}^{n} and \mathbf{D}^{n+1} denote respectively the unit sphere and the unit disc of the Euclidean space \mathbf{R}^{n+1} :

$$
\mathbf{S}^{n}=\left\{x \in \mathbf{R}^{n+1}| | x \mid=1\right\} \text { and } \mathbf{D}^{n+1}=\left\{x \in \mathbf{R}^{n+1}| | x \mid<1\right\} .
$$

We denote by

$$
d m^{2}=\frac{\sum_{i=1}^{n+1} d x_{i}^{2}}{\left(1-|x|^{2}\right)^{2}}
$$

the Lobatchevski metric on \mathbf{D}^{n+1}. Let $\mathrm{Iso}^{+}\left(\mathbf{D}^{n+1}\right)$ and $\operatorname{Conf}^{+}\left(\mathbf{S}^{n}\right)$ be respectively the group of orientation preserving isometries of \mathbf{D}^{n+1} and the group of the Möbius (or conformal) transformations of \mathbf{S}^{n}. It is well known that

$$
\operatorname{Conf}^{+}\left(\mathbf{S}^{n}\right)=\operatorname{Iso}^{+}\left(\mathbf{D}^{n+1}\right)=\mathrm{SO}(n+1,1)_{0} .
$$

If Γ is a discrete subgroup of $\operatorname{Conf}^{+}\left(\mathbf{S}^{n}\right)$ the set

$$
\Lambda_{\Gamma}=\overline{\Gamma \cdot a} \cap \mathbf{S}^{n}
$$

is independent of the choice of the point $a \in \mathbf{D}^{n+1}$. It is called the limit set of Γ. Its complement $D_{\Gamma}=\mathbf{S}^{n}-\Lambda_{\Gamma}$ is called the domain of discontinuity of Γ. Now for fixed $z \in \mathbf{D}^{n+1}$ and $s>0$

$$
\Phi_{s}(z)=\sum_{\gamma \in \Gamma}\left|\gamma^{\prime}(z)\right|^{s}
$$

(where γ^{\prime} is the derivative of γ) is called the absolute Poincaré series of Γ. If it converges for one point $z \in \mathbf{D}^{n+1}$, it converges for all and uniformly on compact subsets. The number

$$
\delta(\Gamma)=\inf \left\{s>0: \Phi_{s}(z) \text { converges for } z \in \mathbf{D}^{n+1}\right\}
$$

is called the critical exponent of Γ.
As before we put

$$
\mathcal{C}_{p}^{\Gamma}\left(\mathbf{S}^{n}\right)=\left\{\Gamma \text {-invariant } p \text {-currents on } \mathbf{S}^{n}\right\}
$$

$$
\mathcal{C}_{p}^{\Gamma}\left(\mathbf{S}^{n}, \Lambda_{\Gamma}\right)=\left\{T \in \mathcal{C}_{p}^{\Gamma}\left(\mathbf{S}^{n}\right) \mid \operatorname{supp}(T) \subset \Lambda_{\Gamma}\right\} .
$$

Then there is an exact sequence

$$
0 \longrightarrow \mathcal{C}_{p}^{\Gamma}\left(\mathbf{S}^{n}, \Lambda_{\Gamma}\right) \longrightarrow \mathcal{C}_{p}^{\Gamma}\left(\mathbf{S}^{n}\right) \xrightarrow{L_{p}} \mathcal{C}_{p}^{\Gamma}\left(D_{\Gamma}\right)
$$

where L_{p} is the localization map.
Problem 2.1 When L_{p} is surjective?
We have the following
Theorem 2.2 If $\Gamma \backslash D_{\Gamma}$ is compact and if $p>\delta(\Gamma)$, then L_{p} is surjective.
Let $T \in \mathcal{C}_{p}^{\Gamma}\left(D_{\Gamma}\right)$ and define $T^{*} \in \mathcal{C}_{p}^{\Gamma}\left(\mathbf{S}^{n}\right)$ by the following formula: $f \in \mathcal{C}^{\infty}\left(D_{\Gamma}\right)$ is chosen as in Lemma 1.4 which is of compact support this time, since $\Gamma \backslash D_{\Gamma}$ is compact; for $\omega \in \Omega^{p}(M)$, let

$$
\begin{equation*}
\left\langle T^{*}, \omega\right\rangle=\sum_{\gamma \in \Gamma}\left\langle T,\left(f \circ \gamma^{-1}\right) \cdot \omega\right\rangle . \tag{1}
\end{equation*}
$$

Recall that

$$
\sum_{\gamma \in \Gamma} f \circ \gamma^{-1}=1 \text { on } D_{\Gamma} .
$$

To give a meaning to the expression (1), we need estimate $\mid\left\langle T,\left(f \circ \gamma^{-1}\right)\right.$. $\omega\rangle \mid$.

Now since T is Γ-invariant we have

$$
\begin{aligned}
\left|\left\langle T,\left(f \circ \gamma^{-1}\right) \cdot \omega\right\rangle\right| & =\left|\left\langle T, f \cdot \gamma^{*} \omega\right\rangle\right| \\
& \leq C\left\|f \cdot \gamma^{*} \omega\right\|_{k} \\
& \leq \operatorname{constant}\left\|\gamma^{*} \omega\right\|_{k}
\end{aligned}
$$

where C is the positive constant chosen in Lemma 1.2 for the compact set $A=\operatorname{supp}(f)$.

Now let us make a simple observation for a Fuchsian group of the first kind. We consider

$$
\mathbf{S}^{2}=U_{+} \cup \mathbf{S}^{1} \cup U_{-}
$$

where U_{+}and U_{-}are respectively the upper disc and the lower disc. The group Γ acts on \mathbf{S}^{2} leaving U_{+}, \mathbf{S}^{1} and U_{-}invariant and $\Gamma \backslash U_{+}$and $\Gamma \backslash U_{-}$ are homeomorphic to a closed Riemann surface of genus $g \geq 2$.

Now Γ has a $4 g$-gon as a fundamental domain and the action of each $\gamma \in \Gamma$ looks like Fig. 1.

Imagine $\gamma \in \Gamma$ very far away from $e \in \Gamma$. Then the action of γ, restricted to some compact region, say \underline{D}, becomes very much like "minute contraction". For a 0 -current (i.e. a distribution), this does not mean $\left\|\gamma^{*}(\omega)\right\|_{k}$ small (ω is a function and $\|\omega \circ \gamma\|_{0}$ is not small). But if we consider p-current (for p large), the sum $\sum_{\gamma \in \Gamma}\left\|\gamma^{*}(\omega)\right\|_{k}$ actually converges on compact region which we are going to show.

Fig. 1.
1°-k-norm on $\Omega^{p}(M)$.
We always consider \mathbf{S}^{n} to be the unit sphere in \mathbf{R}^{n+1}. A Möbius transformation $\in \operatorname{Conf}^{+}\left(\mathbf{S}^{n}\right)$ is an even-time composite of inversions at n dimensional spheres orthogonal to \mathbf{S}^{n}. Therefore it acts on $\mathbf{R}^{n+1} \cup\{\infty\}$.

Let V_{ε} be an ε-neighbourhood of \mathbf{S}^{n} and let $\pi: V_{\varepsilon} \longrightarrow \mathbf{S}^{n}$ be the radial projection.
Given $\omega \in \Omega^{p}(M)$, we identify ω with $\pi^{*}(\omega) \in \Omega^{p}\left(V_{\varepsilon}\right)$ and write it down using coordinates of \mathbf{R}^{n+1}. Thus

$$
\omega=\sum_{\mathbf{j}} \alpha_{\mathbf{j}}\left(x_{1}, \ldots, x_{n+1}\right) d x_{j_{1}} \wedge \cdots \wedge d x_{j_{p}}
$$

Fig. 2.

Fig. 3.
where, as in $\S 1, \mathbf{j}=\left(j_{1}, \ldots j_{p}\right) \in\{1, \ldots, n+1\}^{p}$. Define the k-norm of ω by

$$
\|\omega\|_{k}=\sum_{\mathbf{j}}\left\|\alpha_{\mathbf{j}}\right\|_{k}
$$

where

$$
\left\|\alpha_{\mathbf{j}}\right\|_{k}=\max _{|\mathbf{s}| \leq k}\left\{\sup _{x \in V_{\varepsilon}}\left|\frac{\partial^{|\mathbf{s}|} \alpha_{\mathbf{j}}}{\partial x_{1}^{s_{1}} \cdots \partial x_{n}^{s_{n}}}(x)\right|\right\}
$$

where $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ and $|\mathbf{s}|=s_{1}+\cdots+s_{n}$. This k-norm is of course equivalent to the usual k-norm defined by using coordinates of \mathbf{S}^{n}.
2°-Möbius transformation.
For $\gamma \in \operatorname{Conf}^{+}\left(\mathbf{S}^{n}\right)$ and $x \in \mathbf{R}^{n+1}, D_{x} \gamma$ (the matrix derivative of γ) is a
conformal matrix. Denote by $\left|D_{x} \gamma\right|$ its norm. Now for γ such that $\gamma(0) \neq 0$

$$
I(\gamma)=\left\{x \in \mathbf{R}^{n+1}| | D_{x} \gamma \mid=1\right\}
$$

is an n-sphere perpendicular to \mathbf{S}^{n} called the isometric sphere of γ. It is very small if γ is very far away from e. Suppose $\gamma(0) \neq 0$. Then it is known that such γ decomposes as

$$
\gamma=J_{\theta} \circ J_{I(\gamma)} \circ P
$$

where

$$
\begin{aligned}
& P \in \mathrm{SO}(n+1) ; \quad P \text { keeps } I(\gamma) \text { invariant } \\
& J_{I(\gamma)} \text { is the inversion at } I(\gamma) \\
& J_{\theta} \text { is the inversion at a plane } \theta \text { passing through } 0 .
\end{aligned}
$$

For details see [Ma]. The transformations J_{θ} and P does not affect the derivatives of γ. Thus we need only study the derivatives of $J_{I(\gamma)}$.
3°-Inversion.
For the estimate of the derivative of $J_{I(\gamma)}$, we shall change the coordinates and consider the following simple situation. Fix $\lambda>0$ sufficiently small. Then

$$
x \in \mathbf{R}^{n+1} \longrightarrow h_{\lambda}(x)=\frac{\lambda^{2}}{|x|^{2}} x \in \mathbf{R}^{n+1}
$$

is the inversion at $|x|=\lambda$. Let us estimate k-th derivative at the region $A=\{x| | x \mid \geq a\}$ (where $a>0$ is fixed. We are considering the situation $\lambda \ll a)$. Now each coordinate of $h_{\lambda}(x)$ is a rational function

$$
\lambda^{2} \frac{g(x)}{f(x)} f, g \text { homogeneous with } \operatorname{deg}(g)<\operatorname{deg}(f)
$$

This property does not change if we take derivatives. That is, we have the
Lemma 2.3 There exists a positive constant $C=C(a, k)$ such that any i-derivative ($1 \leq i \leq k$) of the coordinates of h_{λ} at $x \in\{|x| \geq a\}$ is smaller than $\lambda^{2} C$ in norm.

Let A be a compact set in D_{Γ}. For $\gamma \in \Gamma$ denote by $\|\gamma\|_{1, k}^{A}$ the supremum of any the i-th derivative ($1 \leq i \leq k$) of the coordinates of γ on A.

Note that in the definition of $\|\omega\|_{k}$, we considered the 0 -th derivative also. But with $\|\gamma\|_{1, k}^{A}$ we do not take the 0 -derivative into account.
Corollary 2.4 There exists a positive constant $C=C(a, k)$ such that

$$
\|\gamma\|_{1, k}^{A} \leq \lambda(\gamma)^{2} C
$$

where $\lambda(\gamma)$ is the radius of the isometric sphere of γ.
Proof. There exists $a>0$ such that except for finite number of $\gamma \in \Gamma$, the center of the isometric sphere of γ is at least a-apart from A. Now Corollary 2.4 follows from the decomposition $\gamma=J_{\theta} \circ J_{I(\gamma)} \circ P$ and Lemma 2.3.

Fig. 4.
Now as before let

$$
\omega=\sum_{\mathbf{j}} \alpha_{\mathbf{j}}\left(x_{1}, \ldots, x_{n+1}\right) d x_{j_{1}} \wedge \cdots \wedge d x_{j_{p}} \in \Omega^{p}\left(\mathbf{S}^{n}\right) .
$$

Let us estimate $\left\|\gamma^{*} \omega\right\|_{k}^{A}$ for $\gamma \in \Gamma$ (A is compact in D_{Γ}). Let

$$
D_{x} \gamma=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1, n+1} \\
\vdots & \ddots & \vdots \\
a_{n+1,1} & \cdots & a_{n+1, n+1}
\end{array}\right) .
$$

Then we obtain

$$
\gamma^{*} \omega=\sum_{\mathbf{i}}\left(\sum_{\mathbf{j}}\left(a_{i_{1}, j_{1}} \cdots \cdots a_{i_{p}, j_{p}}\right) \alpha_{\mathbf{j}} \circ \gamma d x_{j_{1}} \wedge \cdots \wedge d x_{j_{p}}\right)
$$

and

$$
\left\|\gamma^{*} \omega\right\|_{k}^{A} \leq \mathrm{constant} \sum_{\mathbf{j}}\left\{\left\|\alpha_{\mathbf{j}} \circ \gamma\right\|_{k}^{A}\left(\|\gamma\|_{1, k}^{A}\right)^{p}\right\}
$$

because for $\gamma, \sigma \in \Gamma$ we have (easy to show)

$$
\|\gamma \cdot \sigma\|_{1, k}^{A} \leq C\|\gamma\|_{1, k}^{A} \cdot\|\sigma\|_{1, k}^{A}
$$

Now by the Leibnitz rule we have

$$
\left\|\alpha_{\mathbf{j}} \circ \gamma\right\|_{k}^{A} \leq\left\|\alpha_{\mathbf{j}}\right\|_{k}^{\gamma(A)} \cdot Q\left(\|\gamma\|_{1, k}^{A}\right)
$$

where Q is a polynomial with positive coefficients and with leading term 1. This is because we consider 0-th derivative in $\left\|\alpha_{\mathbf{j}} \circ \gamma\right\|_{k}^{A}$. By Corollary 2.4 we have $Q \leq$ constant. Thus we get the following:

Lemma 2.5 We have

$$
\left\|\gamma^{*} \omega\right\|_{k}^{A} \leq C\|\omega\|_{k} \cdot \lambda(\gamma)^{2 p}
$$

It is easy to show, except for a finite number of $\gamma \in \Gamma$, that we have

$$
\frac{1}{2} \lambda(\gamma)^{2} \leq\left|\gamma^{\prime}(0)\right| \leq \lambda(\gamma)^{2}
$$

End of the proof of Theorem 2.2.

Let $\omega \in \Omega^{p}\left(\mathbf{S}^{n}\right)$ and $T \in \mathcal{C}_{p}^{\Gamma}\left(D_{\Gamma}\right)$. Define $\left\langle T^{*}, \omega\right\rangle$ by

$$
\begin{aligned}
\left\langle T^{*}, \omega\right\rangle & =\sum_{\gamma \in \Gamma}\left\langle T, f \circ \gamma^{-1} \cdot \omega\right\rangle \\
& =\sum_{\gamma \in \Gamma}\left\langle T, f \cdot \gamma^{*} \omega\right\rangle
\end{aligned}
$$

Then on $A=\operatorname{supp}(f)$ we have

$$
\begin{aligned}
\left|\left\langle T, f \cdot \gamma^{*} \omega\right\rangle\right| & \leq \text { constant }\left\|\gamma^{*} \omega\right\|_{k}^{A} \\
& \leq \text { constant }\|\omega\|_{k} \lambda(\gamma)^{2 p}
\end{aligned}
$$

Now for $z \in \mathbf{D}^{n+1}$, we have

$$
\left\|D_{z} \gamma\right\|=\frac{\lambda(\gamma)^{2}}{|z-b(\gamma)|^{2}}
$$

where $b(\gamma)$ is the center of the isometric sphere (see [Ma] p. 189).

Since $|z-b(\gamma)|^{2}>$ constant for any $\gamma \in \Gamma$, we have

$$
\begin{aligned}
\sum_{\gamma \in \Gamma}\left|\left\langle T, f \cdot \gamma^{*}(\omega)\right\rangle\right| & \leq \mathrm{constant}\|\omega\|_{k} \sum_{\gamma \in \Gamma} \lambda(\gamma)^{2 p} \\
& \leq \mathrm{constant}\|\omega\|_{k} \sum_{\gamma \in \Gamma}\left\|D_{z} \gamma\right\|^{p} \\
& \leq \mathrm{constant}\|\omega\|_{k}
\end{aligned}
$$

if $p>\delta(\Gamma)$ (the critical exponent of Γ). Thus T^{*} defines a p-current on \mathbf{S}^{n}. It is clear that T^{*} is Γ-invariant and that $L_{p}\left(T^{*}\right)=T$.

Remark 2.6 According to Sullivan [Su], if Γ is convex-cocompact, then we have $\delta(\Gamma)=d_{H}\left(\Lambda_{\Gamma}\right)$ where d_{H} denotes the Hausdorff dimension.

3. Invariant distributions

Assume that (1) $\delta(\Gamma)<1,(2) \Gamma$ acts on D_{Γ} freely and (3) $\Gamma \backslash D_{\Gamma}$ is compact and connected. The localization map $L_{1}: \mathcal{C}_{1}^{\Gamma}\left(\mathbf{S}^{n}\right) \longrightarrow \mathcal{C}_{1}^{\Gamma}\left(D_{\Gamma}\right)$ is surjective by Theorem 2.2. Consider the following diagram.

Here θ is the augmentation defined by

$$
\theta(T)=\langle T, \mathbf{1}\rangle
$$

where $\mathbf{1}$ is the function identically equal to 1 . The bottom row is exact since $\Gamma \backslash D_{\Gamma}$ is connected; $\hat{\theta}$ is defined by

$$
\widehat{\theta}(T)=\langle T, f\rangle
$$

where f is the function given by Lemma 1.4. Let us show the commutativity of the diagram $(* *)$. All that need proof is $\pi^{!} \circ \theta=\widehat{\theta}$.

Recall the arguments in $\S 1$ showing the surjectivity of the map $\pi!$. It
says that for $T \in \mathcal{C}_{0}^{\Gamma}\left(D_{\Gamma}\right)$

$$
\begin{aligned}
\left\langle\left(\pi^{!}\right)^{-1}(T), \mathbf{1}\right\rangle & =\left\langle T, f \cdot \pi^{*}(\mathbf{1})\right\rangle \\
& =\langle T, f\rangle .
\end{aligned}
$$

In other words

$$
\theta\left(\left(\pi^{!}\right)^{-1}(T)\right)=\widehat{\theta}(T) .
$$

Theorem 3.1 We have

$$
\operatorname{Image}\left(L_{0}\right) \supset \operatorname{Ker}(\widehat{\theta}) .
$$

Proof. This follows from the surjectivity of L_{1} and the exactness of the second row.

This theorem shows that Γ-invariant currents abound.
Now let us consider the case that Γ is elementary. The simplicity of the situation enables us to determine the image of L_{0} completely.

Theorem 3.2 Suppose that Γ is elementary generated by a single loxodromic element γ with repeller a_{+}and attractor a_{-}. Then

$$
\text { Image }\left(L_{0}\right)=\operatorname{Ker}(\widehat{\theta}) .
$$

Fig. 5.

Now choose $a \in D_{\Gamma}$ and set

$$
T_{a}=\sum_{n \in \mathbf{Z}} \delta_{\gamma^{n} a}
$$

where δ_{x} denotes the Dirac distribution at a point x.
Clearly $T_{a} \in \mathcal{C}_{0}^{\Gamma}\left(D_{\Gamma}\right)$ and $\widehat{\theta}\left(T_{a}\right)=1$. We are going to construct an element $S_{a} \in \mathcal{C}_{0}\left(\mathbf{S}^{n}\right)$ such that $L_{0}\left(S_{a}\right)=T_{a}$. But S_{a} will fail to be Γ invariant. Thanks to the simplicity of the situation this failure will show Theorem 3.2.

Consider the following sum

$$
S_{a}=\delta_{a}+\sum_{n>0}\left(\delta_{\gamma^{n} a}-\delta_{a_{+}}\right)+\sum_{n<0}\left(\delta_{\gamma^{n} a}-\delta_{a_{-}}\right) .
$$

To show that S_{a} is a well-defined distribution, we only need to show that for any $g \in C^{\infty}\left(\mathbf{S}^{n}\right),\left\langle S_{a}, g\right\rangle$ converges. But

$$
\left\langle S_{a}, g\right\rangle=g(a)+\sum_{n>0}\left(g\left(\gamma^{n} a\right)-g\left(a_{+}\right)\right)+\sum_{n<0}\left(g\left(\gamma^{n} a\right)-g\left(a_{-}\right)\right)
$$

and

$$
\begin{aligned}
\sum_{n>0}\left|g\left(\gamma^{n} a\right)-g\left(a_{+}\right)\right| & \leq \text {constant } \sum_{n>0} d\left(\gamma^{n} a, a_{+}\right) \\
& \leq \text {constant } \sum_{n>0} \lambda^{n} \text { for some } 0<\lambda<1 \\
& <+\infty .
\end{aligned}
$$

The same estimate holds for the sum $\sum_{n<0}\left|g\left(\gamma^{n} a\right)-g\left(a_{+}\right)\right|$, which proves that S_{a} is a distribution. Clearly $L_{0}\left(S_{a}\right)=T_{a}$.

Now let us compute $\gamma_{*}\left(S_{a}\right)$. We have

$$
\begin{aligned}
\left\langle\gamma_{*}\left(S_{a}\right), g\right\rangle= & \left\langle S_{a}, g \circ \gamma\right\rangle \\
= & g(\gamma a)+\sum_{n>0}\left(g\left(\gamma^{n+1} a\right)-g\left(a_{+}\right)\right) \\
& +\sum_{n<0}\left(g\left(\gamma^{n+1} a\right)-g\left(a_{-}\right)\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
& \left\langle\gamma_{*}\left(S_{a}\right)-S_{a}, g\right\rangle \\
& \quad=g(\gamma a)-g(a)
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\left\{\sum_{n>0}\left(g\left(\gamma^{n+1} a\right)-g\left(a_{+}\right)\right)-\sum_{n>0}\left(g\left(\gamma^{n} a\right)-g\left(a_{+}\right)\right)\right\} \\
& \\
& +\left\{\sum_{n<0}\left(g\left(\gamma^{n+1} a\right)-g\left(a_{-}\right)\right)-\sum_{n<0}\left(g\left(\gamma^{n} a\right)-g\left(a_{-}\right)\right)\right\} \\
& = \\
& \sum_{n \in \mathbf{Z}}\left(g\left(\gamma^{n+1} a\right)-g\left(\gamma^{n} a\right)\right) \\
& = \\
& g\left(a_{+}\right)-g\left(a_{-}\right) .
\end{aligned}
$$

For the proof of the last equality, consider the partial sum

$$
\begin{aligned}
& \sum_{n=-N}^{N-1}\left(g\left(\gamma^{n+1} a\right)-g\left(\gamma^{n} a\right)\right) \\
& \quad=g\left(\gamma^{N} a\right)-g\left(\gamma^{-N} a\right) \xrightarrow{N+\infty} g\left(a_{+}\right)-g\left(a_{-}\right)
\end{aligned}
$$

Thus we have

$$
\gamma_{*}\left(S_{a}\right)-S_{a}=\delta_{a_{+}}-\delta_{a_{-}}
$$

Now let us embark upon the proof of Theorem 3.2. By Theorem 3.1 we have already $\operatorname{Ker}(\widehat{\theta}) \subset \operatorname{Image}\left(L_{0}\right)$. For absurdity assume $L_{0}(S)=T_{a}$ for some $S \in \mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right)$. Consider $U=S_{a}-S$. Then $\operatorname{supp}(U) \subset\left\{a_{+}, a_{-}\right\}$and $\gamma_{*}(U)-U=\delta_{a_{+}}-\delta_{a_{-}}$.

Let 1_{+}be a bump function, equal to 1 near a_{+}and 0 near a_{-}. Then $\left\langle U, \mathbf{1}_{+} \circ \gamma\right\rangle=\left\langle U, \mathbf{1}_{+}\right\rangle$. Thus

$$
\left\langle\gamma_{*}(U)-U, \mathbf{1}_{+}\right\rangle=0
$$

But we also have

$$
\left\langle\delta_{a_{+}}-\delta_{a_{-}}, \mathbf{1}_{+}\right\rangle=1
$$

This is a contradiction.
Now let $T \in \mathcal{C}_{0}^{\Gamma}\left(D_{\Gamma}\right)-\operatorname{Ker}(\widehat{\theta})$. Then $T-\widehat{\theta}(T) T_{a} \in \operatorname{Ker}(\widehat{\theta})$; so there exists an element $S \in \mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right)$ such that

$$
T-\widehat{\theta}(T) T_{a}=L_{0}(S)
$$

This implies that T is not an element of $\operatorname{Image}\left(L_{0}\right)$. So we have necessarily

$$
\operatorname{Ker}(\widehat{\theta})=\operatorname{Image}\left(L_{0}\right)
$$

which proves the theorem.

4. Cross section of the localization map

As before $X=\Gamma \backslash D_{\Gamma}$. In the previous section, we have shown that the localization map $L_{0}: \mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right) \longrightarrow \mathcal{C}_{0}(X)$ is surjective onto $\operatorname{Ker}(\theta)$ for an elementary Kleinian group generated by a single loxodromic transformation γ. That is, given a distribution $T \in \mathcal{C}_{0}(X)$, such that $\langle T, \mathbf{1}\rangle=0$, one can choose $S \in \mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right)$ such that $L_{0}(S)=T$. However since the argument there is indirect, one cannot construct S explicitely even when T is given concretely. In this section we shall solve this problem by constructing a cross-section of L_{0}. The construction has two steps. Denote by $\bar{C}^{\infty}\left(\mathbf{S}^{n}\right)$ the space of C^{∞}-functions which vanish on the fixed points a_{+}and a_{-}of γ and by $\overline{\mathcal{C}}\left(\mathbf{S}^{n}\right)$ its topological dual. Denote by $\overline{\mathcal{C}}^{\Gamma}\left(\mathbf{S}^{n}\right)$ the subspace of $\overline{\mathcal{C}}\left(\mathbf{S}^{n}\right)$ consisting of the elements U such that $\left\langle U, \gamma^{*} \varphi-\varphi\right\rangle=0$ for any $\varphi \in \bar{C}^{\infty}\left(\mathbf{S}^{n}\right)$.

The inclusion $\bar{C}^{\infty}\left(\mathbf{S}^{n}\right) \hookrightarrow C^{\infty}\left(\mathbf{S}^{n}\right)$ defines the projection

$$
p: \mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right) \longrightarrow \overline{\mathcal{C}}^{\Gamma}\left(\mathbf{S}^{n}\right)
$$

Also we have the localization map

$$
\bar{L}_{0}: \overline{\mathcal{C}}^{\Gamma}\left(\mathbf{S}^{n}\right) \longrightarrow \mathcal{C}_{0}(X) .
$$

Clearly we have $L_{0}=\bar{L}_{0} \circ p$.
The first step is to construct a cross section

$$
s: \mathcal{C}_{0}(X) \longrightarrow \overline{\mathcal{C}}^{\Gamma}\left(\mathbf{S}^{n}\right)
$$

This will be carried out on the whole $\mathcal{C}_{0}(X)$, not only on $\operatorname{Ker}(\theta)$.
Define $\bar{\theta}: \overline{\mathcal{C}}^{\Gamma}\left(\mathbf{S}^{n}\right) \longrightarrow \mathbf{C}$ also by $\bar{\theta}(U)=\langle U, f\rangle$. The second step is the construction of a cross section

$$
t: \operatorname{Ker}(\bar{\theta}) \longrightarrow \mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right)
$$

Then $t \circ s$ is the desired cross section of L_{0}.

1°-First step

For any $\psi \in \bar{C}^{\infty}\left(\mathbf{S}^{n}\right)$, consider the series

$$
\Psi=\sum_{n \in \mathbf{Z}} \psi \circ \gamma^{n}
$$

Lemma 4.1 The series Ψ converges in the C^{∞}-topology on compact subset in D_{Γ} and defines a function $\Psi \in C^{\infty}(X)$.

Define a map $\sigma: \bar{C}^{\infty}\left(\mathbf{S}^{n}\right) \longrightarrow C^{\infty}(X)$ by $\sigma(\psi)=\Psi$.
Lemma 4.2 The map σ is linear, continuous and surjective.
For the surjectivity, given $\Psi \in C^{\infty}(X)$ we have $\Psi=\sigma(f \Psi)$. The proof of the other parts consists of estimations of derivatives. They are more or less the same as those in $\S 2$ and of course based upon the fact that ψ vanishes on the fixed points of γ. The details are left to the reader.

Now the cross section

$$
s: \mathcal{C}_{0}(X) \longrightarrow \overline{\mathcal{C}}^{\Gamma}\left(\mathbf{S}^{n}\right)
$$

is defined as the dual of σ.

2°-Second step

Choose $U \in \overline{\mathcal{C}}^{\Gamma}\left(\mathbf{S}^{n}\right)$ such that $\langle U, f\rangle=0$. Let

$$
g_{-}=\sum_{n \geq 0} f \circ \gamma^{n} .
$$

This function can be extended differentiably to \mathbf{S}^{n}, to yield a bump function, constant by 1 around a_{-}and 0 around a_{+}. Let us define

$$
t: \overline{\mathcal{C}}^{\Gamma}\left(\mathbf{S}^{n}\right) \longrightarrow \mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right)
$$

by the following formula. For $\varphi \in C^{\infty}\left(\mathbf{S}^{n}\right)$, let

$$
\langle t(U), \varphi\rangle=\left\langle U, \varphi_{0}\right\rangle
$$

where $\varphi_{0}=\varphi-\varphi\left(a_{-}\right) g_{-}-\varphi\left(a_{+}\right)\left(1-g_{-}\right)$. Clearly $t(U) \in \mathcal{C}^{\Gamma}\left(\mathbf{S}^{n}\right)$. Let us show that $t(U)$ is Γ-invariant. Let

$$
\begin{aligned}
\langle t(U) & , \varphi \circ \gamma-\varphi\rangle \\
= & \left\langle U, \varphi \circ \gamma-\varphi\left(a_{-}\right) g_{-}-\varphi\left(a_{+}\right)\left(1-g_{-}\right)\right. \\
& \left.-\varphi_{0} \circ \gamma+\varphi_{0} \circ \gamma-\varphi_{0}\right\rangle \\
= & \left\langle U, \varphi \circ \gamma-\varphi\left(a_{-}\right) g_{-}-\varphi\left(a_{+}\right)\left(1-g_{-}\right)\right. \\
& -\left\{\varphi \circ \gamma-\varphi\left(a_{-}\right) g_{-} \circ \gamma-\varphi\left(a_{+}\right)\left(1-g_{-} \circ \gamma\right)\right\} \\
& \left.+\left(\varphi_{0} \circ \gamma-\varphi_{0}\right)\right\rangle \\
= & \left(\varphi\left(a_{-}\right)-\varphi\left(a_{+}\right)\right)\left\langle U, g_{-} \circ \gamma-g_{-}\right\rangle+\left\langle U, \varphi_{0} \circ \gamma-\varphi_{0}\right\rangle .
\end{aligned}
$$

The first term vanishes since $g_{-} \circ \gamma-g_{-}=-f$ and the second term vanishes since $\varphi_{0} \in \bar{C}^{\infty}\left(\mathbf{S}^{n}\right)$. This completes the construction of the cross
section t of the projection p.
All that we proved in this paragraph are in fact applicable to a more general situation.

Let M^{n} be a manifold and let $\gamma: M \longrightarrow M$ be a diffeomorphism with a finte set $\Sigma=A \cup R$ of fixed points. Assume that
(1) all the points of A are attractors, that is, the spectral radius of the derivatives at these points is smaller than 1 ;
(2) all the points of R are repellers;
(3) γ acts freely and properly discontinuously on $M-\Sigma$.

The method of constructing s and t works if γ satisfies (1), (2) and (3).
There are examples on \mathbf{S}^{1} in which there exist the same number of attractors and repellers, placed alternatively.

Also on \mathbf{S}^{n}, there are examples with one attractor and one repeller. Let us show that they are exhausting. Let $n \geq 2$. Consider a small sphere S centered at an attractor. Denote by Q the closed region bounded by S and γS. Then $\langle\gamma\rangle \backslash Q$ is a closed manifold, homeomorphic to $\mathbf{S}^{1} \times \mathbf{S}^{n-1}$. Now $\langle\gamma\rangle \backslash(M-\Sigma)$ is also a manifold by (3). Since $n \geq 2$, it is connected. Therefore we have

$$
\langle\gamma\rangle \backslash Q=\langle\gamma\rangle \backslash(M-\Sigma) .
$$

Now it is easy to show that $M=\mathbf{S}^{n}$ and that there are only one attractor and only one repeller. The case $n=1$ is left to the reader. But let us give an example:

Let $\widetilde{\gamma}: \mathbf{R} \longrightarrow \mathbf{R}$ be the diffeomorphism given by $\widetilde{\gamma}(x)=x+\alpha \sin (2 \pi n x)$ where $n \in \mathbf{N}^{*}$ and $\left.\alpha \in\right] 0, \frac{1}{2 \pi n}[$. Then $\widetilde{\gamma}$ satisfies the relation $\widetilde{\gamma}(x+1)=$ $\widetilde{\gamma}(x)+1$ and hence induces a diffeomorphism γ of the circle $\mathbf{S}^{1}=\mathbf{R} / \mathbf{Z}$. It has $2 n$ fixed point

$$
\Sigma=\left\{0, \frac{1}{2 n}, \frac{2}{2 n}, \frac{3}{2 n}, \ldots, \frac{2 n-1}{2 n}\right\} .
$$

The manifold $\mathbf{S}^{1}-\Sigma$ is a disjoint union of $2 n$ intervalles $I_{k}, k=$ $1, \ldots, 2 n$.

Let $A=\left\{\left.\frac{2 k-1}{2 n} \right\rvert\, k=1, \ldots, n\right\}$ and $R=\left\{\left.\frac{k}{n} \right\rvert\, k=0, \ldots, n-1\right\}$. The spectral radius $\rho_{x}(\gamma)$, for $x \in A$ and $x \in R$ are respectively equal to $1-2 \pi n \alpha$ and $1+2 \pi n \alpha$.

Furthermore the action generated by γ on $M-\Sigma$ is free and properly discontinuous. The quotient manifold $X=\langle\Gamma\rangle \backslash(M-\Sigma)$ is a disjoint union
of $2 n$ copies $\left(X_{l}\right)_{l=1, \ldots, 2 n}$ of the circle.

5. Weakly invariant distributions

Here we shall treat a nonelementary group by the same method as in the previous section. However what we get is a weaker result. For this we need the concept of weakly Γ-invariant distribution.

Definition 5.1 A group Γ is called a Schottky group if it is generated by s elements $\gamma_{1}, \ldots, \gamma_{s}$ such that for mutually disjoint closed balls A_{1}, \ldots, A_{s}, B_{1}, \ldots, B_{s}, we have $\gamma_{i}\left(A_{i}\right)=\overline{\mathbf{S}^{n}-B_{i}}$.

The following facts are well known.
(1) $\Gamma \simeq\left\langle\gamma_{1}\right\rangle * \cdots *\left\langle\gamma_{s}\right\rangle$.
(2) Γ acts on D_{Γ} freely.
(3) $\Gamma \backslash D_{\Gamma}$ is homeomorphic to $\#_{s}\left(\mathbf{S}^{1} \times \mathbf{S}^{n-1}\right)$.
(4) Γ is convex-cocompact and thus by $[\mathrm{Su}]: \delta(\Gamma)=d_{H}\left(\Lambda_{\Gamma}\right)$.
(5) Λ_{Γ} is a tame Cantor set.
(6) Any element of Γ is loxodromic.

Definition 5.2 A distribution $T \in \mathcal{C}_{0}\left(\mathbf{S}^{n}\right)$ is said to be weakly Γ-invariant if for any $\gamma \in \Gamma, \operatorname{supp}\left(\gamma_{*}(T)-T\right)$ is contained in Λ_{Γ}.

Let us denote weakly Γ-invariant distributions by $\mathcal{C}_{0}^{(\Gamma)}\left(\mathbf{S}^{n}\right)$. Clearly the localization map L_{0} carries $\mathcal{C}_{0}^{(\Gamma)}\left(\mathbf{S}^{n}\right)$ into $\mathcal{C}_{0}^{\Gamma}\left(D_{\Gamma}\right)$.
Theorem 5.3 If Γ is a Schottky group such that $d_{H}\left(\Lambda_{\Gamma}\right)<\frac{1}{2}$, then

$$
L_{0}: \mathcal{C}_{0}^{(\Gamma)}\left(\mathbf{S}^{n}\right) \longrightarrow \mathcal{C}_{0}^{\Gamma}\left(D_{\Gamma}\right)
$$

is a surjection.
Proof. By Theorem 3.1, we have

$$
L_{0}\left(\mathcal{C}_{0}^{(\Gamma)}\left(\mathbf{S}^{n}\right)\right) \supset L_{0}\left(\mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right)\right) \supset \operatorname{Ker}(\widehat{\theta})
$$

So we need only to show hat $T_{a} \in L_{0}\left(\mathcal{C}_{0}^{(\Gamma)}\left(\mathbf{S}^{n}\right)\right)$, where

$$
T_{a}=\sum_{\gamma \in \Gamma} \delta_{\gamma a} \quad a \in D_{\Gamma}
$$

In fact, for any $T \in \mathcal{C}_{0}^{\Gamma}\left(\mathbf{S}^{n}\right)$ we have a decomposition

$$
T=\left(T-\widehat{\theta}(T) \cdot T_{a}\right)+\widehat{\theta}(T) \cdot T_{a}
$$

The first summand lies in $\operatorname{Ker}(\widehat{\theta})$ since $\widehat{\theta}\left(T_{a}\right)=1$. Thus we will have $T \in L_{0}\left(\mathcal{C}_{0}^{(\Gamma)}\left(\mathbf{S}^{n}\right)\right)$.

Now any element $\gamma \in \Gamma^{\prime}=\Gamma-\{e\}$ is loxodromic. Let $a(\gamma)$ be the attractor of γ. For T_{a} define S_{a} as follows.

$$
S_{a}=\delta_{a}+\sum_{\gamma \in \Gamma^{\prime}}\left(\delta_{\gamma a}-\delta_{a(\gamma)}\right) .
$$

Notice that except for a finite number of $\gamma, \gamma a$ and $a(\gamma)$ lie in the isometric sphere $I\left(\gamma^{-1}\right)$. For a test function $g \in C^{\infty}\left(\mathbf{S}^{n}\right)$,

$$
\left\langle S_{a}, g\right\rangle=g(a)+\sum_{\gamma \in \Gamma^{\prime}}\{g(\gamma a)-g(a(\gamma))\}
$$

and

$$
\begin{aligned}
\sum_{\gamma \in \Gamma^{\prime}}|g(\gamma a)-g(a(\gamma))| & \leq \mathrm{constant} \sum_{\gamma \in \Gamma^{\prime}}\left|\operatorname{radius} I\left(\gamma^{-1}\right)\right| \\
& \leq \mathrm{constant} \sum_{\gamma \in \Gamma^{\prime}}\left|\gamma^{\prime}(0)\right|^{\frac{1}{2}} \\
& <+\infty
\end{aligned}
$$

since $d_{H}\left(\Lambda_{\Gamma}\right)<\frac{1}{2}$. Thus S_{a} is a distribution. Clearly $L_{0}\left(S_{a}\right)=T_{a}$ and the Γ-invariance of T_{a} shows that $S_{a} \in L_{0}\left(\mathcal{C}_{0}^{(\Gamma)}\left(\mathbf{S}^{n}\right)\right)$.

6. Application to a bigraded cohomology with compact support

We will apply the preceding results to compute a bigraded cohomology with compact support of a foliation obtained by suspending one of all the groups Γ considered in the above sections. First let us recall some definitions and useful properties.

6.1. Cohomology of groups

Let Γ be a discrete group acting on a module E and denote by $C^{k}(\Gamma, E)$ the set of all the maps $\Gamma^{k} \longrightarrow E$. We define $d: C^{k}(\Gamma, E) \longrightarrow C^{k+1}(\Gamma, E)$ by

$$
\begin{aligned}
(d c)\left(\gamma_{1}, \ldots, \gamma_{k+1}\right)= & \gamma_{1} \cdot c\left(\gamma_{2}, \ldots, \gamma_{k+1}\right) \\
& +\sum_{i=1}^{k}(-1)^{i} c\left(\gamma_{1}, \ldots, \gamma_{i} \gamma_{i+1}, \ldots, \gamma_{k+1}\right) \\
& +(-1)^{k+1} c\left(\gamma_{1}, \ldots, \gamma_{k}\right)
\end{aligned}
$$

The operator d is linear and satisfies $d^{2}=0$; so the image $B^{k}(\Gamma, E)$ of this operator $d: C^{k-1}(\Gamma, E) \longrightarrow C^{k}(\Gamma, E)$ is an ideal of the kernel $Z^{k}(\Gamma, E)$ of $d: C^{k}(\Gamma, E) \longrightarrow C^{k+1}(\Gamma, E)$. The quotients

$$
H^{k}(\Gamma, E)=Z^{k}(\Gamma, E) / B^{k}(\Gamma, E) \text { for } k \in \mathbf{N}
$$

are called the cohomology groups of Γ with values in the Γ-module E.

6.2. Bigraded cohomology

Let \mathcal{F} a codimension n foliation on a manifold N of dimension $m+n$. Denote by $T \mathcal{F}$ the tangent bundle of \mathcal{F} and $\nu \mathcal{F}=T N / T \mathcal{F}$ its normal bundle. Let $\Lambda^{q} T^{*} \mathcal{F}$ and $\Lambda^{p} \nu^{*} \mathcal{F}$ be the vector bundles of exterior q-forms and exterior p-forms associated respectively to $T^{*} \mathcal{F}$ and $\nu^{*} \mathcal{F}$. Let $A_{\mathcal{F}}^{p q}$ be the space of global sections of the bundle $\Lambda^{q} T^{*} \mathcal{F} \otimes \Lambda^{p} \nu^{*} \mathcal{F}$. An element of $A_{\mathcal{F}}^{p q}$ is considered to be a $\Lambda^{p} \nu^{*} \mathcal{F}$-valued q-form along the leaves. Because $\Lambda^{p} \nu^{*} \mathcal{F}$ is a foliated vector bundle we can define the exterior derivative along the leaves $d_{\mathcal{F}}: A_{\mathcal{F}}^{p q} \longrightarrow A_{\mathcal{F}}^{p, q+1}$ by

$$
\begin{aligned}
& d_{\mathcal{F}} \eta\left(X_{1}, \ldots, X_{q+1}\right) \\
& =\sum_{i}(-1)^{i} X_{i} \cdot \eta\left(X_{1}, \ldots, \widehat{X_{i}}, \ldots, X_{q+1}\right) \\
& \quad+\sum_{i<j}(-1)^{i+j} \eta\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots, X_{q+1}\right) .
\end{aligned}
$$

An easy computation shows that $d_{\mathcal{F}}^{2}=0$ and thus we obtain a differential complex

$$
0 \longrightarrow A_{\mathcal{F}}^{p 0} \xrightarrow{d_{\mathcal{F}}} A_{\mathcal{F}}^{p 1} \xrightarrow{d_{\mathcal{F}}} \cdots \xrightarrow{d_{\mathcal{F}}} A_{\mathcal{F}}^{p m} \longrightarrow 0 .
$$

Its homology $H^{p, *}(N, \mathcal{F})$ is called the bigraded cohomology (foliated cohomology when $p=0$) of the foliated manifold (N, \mathcal{F}).

We can also define the bigraded cohomology with compact support as the homology $H_{c}^{p, *}(N, \mathcal{F})$ of the differential complex

$$
0 \longrightarrow \Omega_{\mathcal{F}}^{p 0}(M) \xrightarrow{d_{\mathcal{F}}} \Omega_{\mathcal{F}}^{p 1}(M) \xrightarrow{d_{\mathcal{F}}} \cdots \xrightarrow{d_{\mathcal{F}}} \Omega_{\mathcal{F}}^{p m}(M) \longrightarrow 0
$$

where $\Omega_{\mathcal{F}}^{p, *}(M)$ is the space of sections of compact support of the vector bundle $\Lambda^{*} T^{*} \mathcal{F} \otimes \Lambda^{p} \nu^{*} \mathcal{F}$.

6.3. The case of a suspension

Let W be a compact manifold and suppose that there exists an faithful representation $\rho: \Gamma=\pi_{1}(W) \longrightarrow \operatorname{Diff}(M)$ where $\operatorname{Diff}(M)$ is the diffeo-
morphism group of a manifold M. Let \widetilde{W} be the universal covering of W. The foliation $\widetilde{\mathcal{F}}$ on $\widetilde{W} \times M$ defined by the second projection is invariant by the diagonal action of Γ, thus it induces a foliation \mathcal{F} on the manifold $N=\Gamma \backslash(\widetilde{W} \times M)$ transverse to the locally trivial fibration $M \hookrightarrow N \longrightarrow W$. By using the same method as in [ET] we can prove that we have an isomorphism

$$
H_{c}^{p, *}(N, \mathcal{F}) \cong H^{*}\left(W, \Omega^{p}(M)\right)
$$

where $\Omega^{p}(M)$ has a structure of a Γ-module defined by the induced action of Γ on M. We have also

$$
\begin{equation*}
H_{c}^{p, *}(N, \mathcal{F}) \cong H^{*}\left(\Gamma, \Omega^{p}(M)\right) \text { for } *=0 \text { and } *=1 \tag{R}
\end{equation*}
$$

Let us show that for a free group Γ, acting on M in a certain way, the dimension of $H^{1}\left(\Gamma, \Omega^{p}(M)\right)$ is infinite.

Now $Z^{1}\left(\Gamma, \Omega^{p}(M)\right)$ consists of twisted homomorphisms, that is, all the maps $c: \Gamma \longrightarrow \Omega^{p}(M)$ such that for $\gamma_{1}, \gamma_{2} \in \Gamma$

$$
c\left(\gamma_{1} \gamma_{2}\right)=\gamma_{1} c\left(\gamma_{2}\right)+c\left(\gamma_{1}\right) .
$$

The space $B^{1}\left(\Gamma, \Omega^{p}(M)\right)$ consists of those twisted homomorphisms c such that for some $\omega \in \Omega^{p}(M)$

$$
c(\gamma)=\gamma \omega-\omega, \text { for all } \gamma \in \Gamma .
$$

Therefore there exists a natural map

$$
r: H^{1}\left(\Gamma, \Omega^{p}(M)\right) \longrightarrow \operatorname{Hom}\left(\Gamma, \Omega^{p}(M) / K^{p}\right),
$$

where K^{p} is the submodule of $\Omega^{p}(M)$ consisting of $\sum_{i=1}^{s}\left(\gamma_{i} \omega_{i}-\omega_{i}\right)$ where $\gamma_{i} \in \Gamma$ and $\omega_{i} \in \Omega^{p}(M)$.

Let us show that for a free group $\Gamma=\mathbf{Z} * \cdots * \mathbf{Z}, r$ is a surjection.
Let a_{1}, \ldots, a_{n} be free generators. For any $\omega_{1}, \ldots, \omega_{n} \in \Omega^{p}(M)$, we claim that there exists uniquely a twisted homomorphism c such that

$$
c(e)=0 \text { and } c\left(a_{i}\right)=\omega_{i} \text { for } i=1, \ldots, n .
$$

Clearly the surjectivity of r follows from this.
This homomorphism is explicitly defined as follows. First let

$$
c\left(a_{i}^{-1}\right)=-a_{i} \omega_{i} .
$$

For a reduced word $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{n}$, where γ_{i} is either a_{i} or a_{i}^{-1}, let

$$
\begin{aligned}
c\left(\gamma_{1} \cdots \gamma_{n}\right)= & \gamma_{1} \\
\gamma_{2} \cdots & \gamma_{n-1} c\left(\gamma_{n}\right)+ \\
& \cdots+\gamma_{1} \gamma_{2} c\left(\gamma_{3}\right)+\gamma_{1} c\left(\gamma_{2}\right)+c\left(\gamma_{1}\right)
\end{aligned}
$$

The verification that c is actually a twisted homomorphism is left to the reader.

Now from the surjectivity of r we get the following
Proposition 6.4 Let Γ be a free group acting on a manifold M. Assume either of the followings
(1) Γ acts on M freely and properly.
(2) $M=\mathbf{S}^{n}$, Γ is a Kleinian group and $n \geq p>\delta(\Gamma)-1$.

Then we have $\operatorname{dim}\left\{H^{1}\left(\Gamma, \Omega^{p}(M)\right)\right\}=+\infty$.
Proof. \quad Since the dual of $\Omega^{p}(M) / K^{p}$ is $\mathcal{C}_{p}^{\Gamma}(M)$, it suffices to show that the dimension of the space $\mathcal{C}_{p}^{\Gamma}(M)$ is $+\infty$.

The case (1) follows from Proposition 1.6. Let us show the case (2). Suppose $n=p$. It is well known that $\delta(\Gamma) \leq n$. Therefore the proposition follows from Theorem 2.2. So suppose $n-1 \geq p \geq \delta(\Gamma)-1$. Consider the following diagram

$$
\begin{array}{ccc}
\mathcal{C}_{p+1}^{\Gamma}\left(\mathbf{S}^{n}\right) & \xrightarrow{d} & \mathcal{C}_{p}^{\Gamma}\left(\mathbf{S}^{n}\right) \\
L_{p+1} \downarrow & & \downarrow L_{p} \\
\mathcal{C}_{p+1}\left(\Gamma \backslash D_{\Gamma}\right) & \xrightarrow{d} & \mathcal{C}_{p}^{\Gamma}\left(\Gamma \backslash D_{\Gamma}\right)
\end{array}
$$

Surjectivity of L_{p+1} (Theorem 2.2) implies that

$$
d\left\{\mathcal{C}_{p+1}\left(\Gamma \backslash D_{\Gamma}\right)\right\} \subset \operatorname{Im}\left(L_{p}\right)
$$

But it is well known, easy to show, that $\operatorname{dim}\left\{d\left(\mathcal{C}_{p+1}\left(\Gamma \backslash D_{\Gamma}\right)\right)\right\}=+\infty$. Therefore we have $\operatorname{dim}\left\{\mathcal{C}_{p}^{\Gamma}\left(\mathbf{S}^{n}\right)\right\}=+\infty$.

Acknowledgments This paper was written while the second author was staying at Université de Valenciennes. He would like to express his gratitude to this institution for its warm hospitality.

References

[Ek] El Kacimi Alaoui A., Invariants de certaines actions de Lie. Instabilité du caractère Fredholm. Manuscripta Mathematica Vol. 74 Fasc. 2 (1992) 143-160.
[ET] El Kacimi Alaoui A. and Tihami A., Cohomologie bigraduée de certains feuilletages. Bulletin de la Soc. Math. de Belgique, Fasc. 2, Vol. 38 (1986), 144-157.
[Ga] Gaillard P.Y., Transformation de Poisson de formes différentielles. Le cas de l'espace hyperbolique. Comment. Math. Helv. 61 (1986), 581-616.
[Ha] Haefliger A., Some remarks on foliations with minimal leaves. J. of Diff. Geo. 15 (1980), 269-284.
[HL] Haefliger A. and Li Banghe, Currents on a circle invariant by a Fuchsian group. Lecture Notes in Math. 1007 (1981), 369-378.
[Hr] Harvey W., Discrete groups and automorphic functions. Academic Press (1977).
[Mk] Maskit B., Kleinian groups. Grundl 287.
[Ma] Matsumoto S., Foundations of flat conformals tructures. Advanced Studies in Pure Mathematics, Vol. 20 (1992), 167-261.
[Su] Sullivan D., The density at infinity of a discrete group of hyperbolic motions. Publ. Math. IHES, 50 (1979), 171-202.

Aziz El Kacimi Alaoui
URA au CNRS GAT 751
Université de Valenciennes
59304-Valenciennes Cedex
France
E-mail: elkacimi@gat.univ-lille1.fr
Shigenori Matsumoto
College of Science and Technology
Nihon University, Tokyo 101
Japan
E-mail: matsumo@cst.nihon-u.ac.jp
Tarek Moussa
UFR de Mathématiques
Université de Lille III
59653-Villeneuve d'Ascq Cedex
France

