# Currents invariant by a Kleinian group

Aziz EL KACIMI ALAOUI, Shigenori MATSUMOTO and Tarek MOUSSA (Received September 25, 1995)

**Abstract.** The goal of this paper is to give, under some hypotheses, a characterization of currents and distributions invariant by a group of diffeomorphisms of a manifold M and especially in the case of a Kleinian group  $\Gamma$  acting on the *n*-sphere  $\mathbf{S}^n$ .

Key words: current, distribution, Kleinian group, Poincaré exponent, bigraded cohomology.

# 0. Introduction

Let  $p \in \mathbf{N}$  and  $\Omega^p(M)$  be the space of differential forms of degree p with compact support in M equipped with its usual  $C^{\infty}$ -topology. An element Tof the (topological) dual  $\mathcal{C}_p(M)$  of  $\Omega^p(M)$  is called a *current of degree* p and a *distribution* when p = 0. An element  $T \in \mathcal{C}_p(M)$  is said to be *invariant* (or  $\gamma$ -*invariant*) under the action of a diffeomorphism  $\gamma : M \longrightarrow M$  if it satisfies  $\langle T, \gamma^* \varphi \rangle = \langle T, \varphi \rangle$  for every  $\varphi \in \Omega^p(M)$  or if it vanishes on the space  $K^p = \{\varphi - \gamma^* \varphi : \varphi \in \Omega^p(M)\}$ . So the space  $\mathcal{C}_p^{\Gamma}(M)$  (where  $\Gamma$  is the cyclic group generated by  $\gamma$ ) of invariant currents on M is canonically isomorphic to the (topological) dual of the quotient  $\Omega^p(M)/K^p$ . More generally if  $\Gamma$  is a group of diffeomorphisms of M we say that  $T \in \mathcal{C}_p(M)$  is  $\Gamma$ -*invariant* if it is invariant by every element  $\gamma \in \Gamma$ .

In [Ha], Haefliger characterized foliations with minimal leaves in terms of currents invariant by pseudogroups. Thus if the foliation is a suspension with holonomy group  $\Gamma$ , then the interest is focused upon  $\Gamma$ -invariant currents. The case of a Fuchsian group was studied in [HL]: let  $\Gamma$  be a subgroup of the diffeomorphism group Diff( $\mathbf{S}^1$ ) of the circle  $\mathbf{S}^1$  whose elements are restriction of elements of a Fuchsian group G of diffeomorphisms of the unit disc  $\mathbf{D}$ . Suppose that the quotient Riemannian surface  $S = G \setminus \mathbf{D}$ is of finite volume, of genus g and with k punctures. Then it was proved in [HL] that the space of  $\Gamma$ -invariant distributions on the circle  $\mathbf{S}^1$  which vanish on constant functions is isomorphic to the space of harmonic forms on S having at most poles of order one at the punctures  $x_i$ . Its dimension

<sup>1991</sup> Mathematics Subject Classification: 58A25, 57R30, 30F40.

 $is \max(2g, 2g + 2k - 2).$ 

Other results in higher dimension can be found in [Ga]. Invariant currents by a locally free action of the affine group GA on a compact 3-manifold with a solvable fundamental group were completely characterized in [Ek].

In this paper we study currents, especially distributions, invariant by Kleinian groups. Distribution is a concept generalizing that of measure. It is well known, easy to prove, that nonelementary Kleinian groups do not admit invariant measure. So a natural question is: Does there exist an invariant distribution? We shall show in Proposition 3.1 that Kleinian group of certain kind admits an invariant distribution.

First of all let  $\Gamma$  be the cyclic group generated by a loxodromic transformation  $\gamma : \mathbf{S}^n \longrightarrow \mathbf{S}^n$  and  $D = \mathbf{S}^n - \{a_+, a_-\}$  where  $a_+$  and  $a_-$  are respectively the repeller and the attractor of  $\gamma$ . The group  $\Gamma$  acts on Dproperly discontinuously and the quotient  $\Gamma \setminus D$  is analytically diffeomorphic to  $\mathbf{S}^1 \times \mathbf{S}^{n-1}$ . We have the following exact sequence

$$0 \longrightarrow \mathcal{C}_0^{\Gamma}(\mathbf{S}^n, \{a_+, a_-\}) \xrightarrow{i} \mathcal{C}_0^{\Gamma}(\mathbf{S}^n) \xrightarrow{L_0} \mathcal{C}_0^{\Gamma}(D)$$

where  $C_0^{\Gamma}(\mathbf{S}^n, \{a_+, a_-\})$  denotes the space of  $\Gamma$ -invariant distributions on  $\mathbf{S}^n$ with support contained in  $\{a_+, a_-\}$  and  $L_0$  is the *localization map* i.e.  $L_0$ associates to every distribution on  $\mathbf{S}^n$  its restriction to D. The question is if  $L_0$  is surjective or not.

In §3, Image( $L_0$ ) is shown to be a codimension one subspace of  $\mathcal{C}_0^{\Gamma}(D)$ . This determines completely the space  $\mathcal{C}_0^{\Gamma}(\mathbf{S}^n)$ . In §4 we construct a cross section of the localization map  $L_0$ .

Now we consider the problem in further generality. Let  $\Gamma$  be a Kleinian group acting on  $\mathbf{S}^n$  and let  $D_{\Gamma} = \mathbf{S}^n - \Lambda_{\Gamma}$  be the domain of discontinuity of  $\Gamma$  and consider the exact sequence for *p*-currents

$$0 \longrightarrow \mathcal{C}_p^{\Gamma}(\mathbf{S}^n, \Lambda_{\Gamma}) \xrightarrow{i} \mathcal{C}_p^{\Gamma}(\mathbf{S}^n) \xrightarrow{L_p} \mathcal{C}_p^{\Gamma}(D_{\Gamma}).$$

Here  $\Lambda_{\Gamma}$  is the *limit set* of  $\Gamma$ . For p = 0, it is very difficult to determine  $\operatorname{Image}(L_p)$  in general. But for  $p > \delta$  (where  $\delta$  is the *critical exponent* of  $\Gamma$ ), we show in §2 that  $L_p$  is surjective. Using this for certain groups, we show that for p = 0,  $\operatorname{Image}(L_0)$  is a subspace of  $\mathcal{C}_0^{\Gamma}(D_{\Gamma})$  of codimension  $\leq 1$ .

Also if  $\Gamma$  acts on  $D_{\Gamma}$  freely and properly discontinuously, we show that  $C_p^{\Gamma}(D_{\Gamma})$  is isomorphic to  $C_p(\Gamma \setminus D_{\Gamma})$ . This is carried out in §1 in complete generality. This result also can be derived from Haefliger's paper [Ha] where he has studied currents invariant by a pseudo-group. However we shall give

a slightly different proof, since some concepts there play a crucial role in later developments.

In Section 5 we study weakly invariant distributions i.e. distributions with invariance lack localized in the limit set  $\Lambda_{\Gamma}$ . In §6 we use the preceding results for computing the first bigraded cohomology group of the foliation obtained by suspending a diffeomorphism group  $\Gamma$ .

Unless otherwise stated all the objects considered are assumed to be of class  $C^{\infty}$ .

# 1. Covering space

Let M, X be  $C^{\infty}$ -manifolds,  $\Gamma$  a discrete group and  $\Gamma \longrightarrow M \xrightarrow{\pi} X$ a regular covering. The aim of this § is to show that, for every  $p \in \mathbf{N}$ , the space  $\mathcal{C}_p^{\Gamma}(M)$  of  $\Gamma$ -invariant *p*-currents is canonically isomorphic to the space  $\mathcal{C}_p(X)$  of the usual *p*-currents on the quotient manifold  $X = \Gamma \setminus M$ .

# 1.1. Preliminary

Let  $\mathbf{j} = (j_1, \ldots, j_p) \in \mathbf{N}^p$  be a multi-index such that  $1 \leq j_1 < \cdots < j_p \leq n$ . Choose a local chart  $\{U, (x_1, \ldots, x_n)\}$  of M. Then every element  $\omega \in \Omega^p(M)$  has a local expression

$$\omega = \sum_{\mathbf{j}} \omega_{\mathbf{j}} dx_{j_1} \wedge \dots \wedge dx_{j_p}$$

where  $\omega_{\mathbf{j}}$  are  $C^{\infty}$  functions on U. Let  $(U_i)_{i \in I}$  be a locally finite cover of M by charts  $U_i$ . We define the k-norm  $||\omega||_k$  of  $\omega$  by

$$||\omega||_{k} = \max_{i \in I} \left\{ \max_{|\mathbf{s}| \le k} \left( \sum_{\mathbf{j}} \sup_{x \in U_{i}} \left| \frac{\partial^{|\mathbf{s}|} \omega_{\mathbf{j}}}{\partial x_{1}^{s_{1}} \cdots \partial x_{n}^{s_{n}}} (x) \right| \right) \right\}$$

where  $\mathbf{s} = (s_1, \ldots, s_n) \in \mathbf{N}^n$  and  $|\mathbf{s}| = s_1 + \cdots + s_n$ . This number exists because  $\omega$  has a compact support.

The next Lemma will be useful mainly in a later §. Endow  $\Omega^p(M)$  with the usual  $C^{\infty}$ -topology. That is,  $\omega_n \longrightarrow \omega$  if and only if  $\operatorname{supp}(\omega_n)$  is contained in a fixed compact subset and all the derivatives of  $\omega_n$  converge to the corresponding derivatives of  $\omega$  uniformly on this subset.

**Lemma 1.2** A linear form  $T: \Omega^p(M) \longrightarrow \mathbb{C}$  is continuous if and only if for every compact set  $A \subset M$  there exists a positive constant C, an integer  $k \in \mathbf{N}$  such that

 $|\langle T, \omega \rangle| \le C ||\omega||_k$ 

for every  $\omega \in \Omega^p(M)$  with support contained in A.

The proof of this lemma is obvious.

Now let  $\overline{\Omega}^p(M)$  be the space of all **C**-valued *p*-forms on M (not necessarily compactly supported) and  $\overline{\Omega}^p_{\Gamma}(M)$  the subspace of  $\overline{\Omega}^p(M)$  whose elements  $\omega$  are  $\Gamma$ -invariant and such that the quotient  $\Gamma \setminus \text{supp}(\omega)$  is compact in X. Then we have obviously the following:

**Proposition 1.3**  $\pi^*: \Omega^p(X) \longrightarrow \overline{\Omega}^p(M)$  is a bijection onto  $\overline{\Omega}^p_{\Gamma}(M)$ .

**Lemma 1.4** There exists a positive  $C^{\infty}$ -function  $f: M \longrightarrow \mathbf{R}$  such that

i) for every compact  $B \subset X$ ,  $\operatorname{supp}(f) \cap \pi^{-1}(B)$  is compact; or equivalently for every compact  $A \subset M$ ,  $\operatorname{supp}(f) \cap \gamma A \neq \emptyset$  for but finitely many  $\gamma \in \Gamma$ .

ii)  $\sum_{\gamma \in \Gamma} f \circ \gamma = 1.$ 

*Proof.* Let  $(U_i)_{i \in I}$  be a locally finite cover of X by relatively compact open sets  $U_i$  which are evenly covered by  $\pi$ . Let  $V_i$  any lift of  $U_i$ ; then the family  $(V_i)_{i \in I}$  is locally finite but it is not a covering of M. Let  $g_i : M \longrightarrow \mathbf{R}_+$  be a  $C^{\infty}$ -function such that

 $g_i > 0$  on  $V_i$  and  $g_i = 0$  outside a neighbourhood of  $V_i$ .

Clearly the function  $g = \sum_{i \in I} g_i$  satisfies i). Hence for every compact  $A \subset M$  we have

 $\operatorname{supp}(g \circ \gamma) \cap A \neq \emptyset$  for but finitely many  $\gamma \in \Gamma$ .

Thus

$$\sum_{\gamma\in\Gamma}g\circ\gamma$$

is a well defined positive  $C^{\infty}$ -function. Put

$$f = \frac{g}{\sum_{\gamma \in \Gamma} g \circ \gamma}.$$

It is clear that f satisfies the conditions of Lemma 1.4.

Given  $\omega \in \Omega^p(M)$ , let

$$\overline{\omega} = \sum_{\gamma \in \Gamma} \gamma^* \omega \in \overline{\Omega}^p(M).$$

It is easy to show that  $\overline{\omega}$  is  $\Gamma$ -invariant and that  $\Gamma \setminus \operatorname{supp}(\overline{\omega}) = \pi(\operatorname{supp}(\omega))$ is compact. That is  $\overline{\omega} \in \overline{\Omega}^p_{\Gamma}(M)$ . By 1.3 one can define a map

$$\pi_!: \Omega^p(M) \longrightarrow \Omega^p(X)$$

by the condition

$$\pi^*(\pi_!(\omega)) = \sum_{\gamma \in \Gamma} \gamma^* \omega.$$

**Lemma 1.5** The map  $\pi_1$  is linear, continuous and surjective.

*Proof.* The fact that  $\pi_!$  is linear and continuous is obvious. We shall prove that it is surjective. Let  $\eta \in \Omega^p(X)$  and put  $\omega = f \cdot \pi^* \eta$ . Then  $\operatorname{supp}(\omega) = \operatorname{supp}(f) \cap \pi^{-1}(\operatorname{supp}(\eta))$  is compact. Also

$$\pi^*(\pi_!(\omega)) = \sum_{\gamma \in \Gamma} (f \circ \gamma) \cdot \gamma^* \pi^* \eta$$
$$= \sum_{\gamma \in \Gamma} (f \circ \gamma) \cdot \pi^* \eta$$
$$= \pi^* \eta$$

That is  $\pi_!(\omega) = \eta$ .

Let  $p \in \mathbf{N}$ ; in the introduction we have defined  $K^p$  to be the linear subspace of  $\Omega^p(M)$ 

$$K^{p} = \left\{ \sum_{i=1}^{n} (\gamma_{i}^{*} \omega_{i} - \omega_{i}) \mid \gamma_{i} \in \Gamma, \ \omega_{i} \in \Omega^{p}(M) \right\}.$$

Then we have the following:

**Proposition 1.6** The sequence

$$0 \longrightarrow K^p \longrightarrow \Omega^p(M) \xrightarrow{\pi_!} \Omega^p(X) \longrightarrow 0$$

is exact for every  $p \in \mathbf{N}$ .

*Proof.* The inclusion  $K^p \subset \text{Ker}(\pi_1)$  is clear; all that need proof is  $\text{Ker}(\pi_1) \subset K^p$ . The proof of this fact was communicated to us by G. Hector.

 $\square$ 

Choose an arbitrary element  $\omega \in \operatorname{Ker}(\pi_!)$ . Define  $O(\omega)$  to be the set of the points  $x \in X$  such that  $\omega$  vanishes all over  $\pi^{-1}(x)$ . Let U and V be connected open subsets of X such that  $\overline{U} \subset V$  and V is evenly covered by  $\pi$ . Then we will have the following:

**Lemma 1.7** For any  $\omega$ , there exists  $\omega_1 \in \text{Ker}(\pi_1)$  such that  $\omega_1 \equiv \omega \mod K^p$  and  $O(\omega) \cup U \subset O(\omega_1)$ .

This Lemma is sufficient for the proof of Proposition 1.6. For, one can choose finite families  $\{U_i\}$  and  $\{V_i\}$  (i = 1, ..., k) of open subsets of X covering  $\pi(\operatorname{supp}(\omega))$  such that  $\overline{U_i} \subset V_i$  and  $V_i$  is evenly covered by  $\pi$ . But then using 1.7 successively, we will get a sequence of p-forms

$$\omega \equiv \omega_1 \equiv \omega_2 \equiv \cdots \equiv \omega_k = 0 \mod K^p,$$

showing Proposition 1.6.

Proof of 1.7 Let g be a nonnegative valued  $C^{\infty}$ -function on X such that g = 1 on U and g = 0 outside V, and  $\overline{g} = g \circ \pi$ . Let  $\overline{U}$  (resp.  $\overline{V}$ ) be a connected component of  $\pi^{-1}(U)$  (resp.  $\pi^{-1}(V)$ ) ( $\overline{U} \subset \overline{V}$ ) and let  $\gamma_j$  ( $0 \leq j \leq l$ ) be the elements of  $\Gamma$  such that  $\gamma_j(\overline{V}) \cap \operatorname{supp}(\omega) \neq \emptyset$ . Let  $\eta_j$  be the restriction of  $\overline{g}\omega$  to  $\gamma_j(\overline{V})$ . Then we have

$$\omega = \sum_{j=0}^{l} \eta_j + (1 - \overline{g})\omega$$

Of course each term above is a  $C^{\infty}$ -form. Now define

$$\omega_1 = \sum_{j=0}^l \gamma_j^* \eta_j + (1 - \overline{g}) \omega_j$$

Notice that  $\omega_1 \equiv \omega \mod K^p$ . Also it follows immediately that  $O(\omega) \subset O(\omega_1)$ .

Let us show finally that  $U \subset O(\omega_1)$ . Let x be an arbitrary point of U. Then  $(1 - \overline{g})\omega$  clearly vanishes on  $\pi^{-1}(x)$ . Also since  $\operatorname{supp}(\gamma_j^*\eta_j) \subset \overline{V}$ , we have that  $\omega_1$  vanishes on  $\pi^{-1}(x)$  except at one point in  $\pi^{-1}(x) \cap \overline{V}$ . But actually  $\omega_1$  also vanishes there since  $\omega_1 \in \operatorname{Ker}(\pi_1)$ . Therefore we have  $x \in O(\omega_1)$ .

Since  $\mathcal{C}_p^{\Gamma}(M)$  is canonically isomorphic to the dual space of the quotient  $\Omega^p(M)/K^p$ , from Proposition 1.6 we get easily the following:

**Theorem 1.8** The space  $C_p^{\Gamma}(M)$  of  $\Gamma$ -invariant p-currents on M is canonically isomorphic to the space  $C_p(X)$  of p-currents on X. The isomorphism is given by the transpose of  $\pi_1$ .

# 2. Kleinian groups

Let  $\mathbf{S}^n$  and  $\mathbf{D}^{n+1}$  denote respectively the unit sphere and the unit disc of the Euclidean space  $\mathbf{R}^{n+1}$ :

$$\mathbf{S}^n = \{x \in \mathbf{R}^{n+1} \mid |x| = 1\}$$
 and  $\mathbf{D}^{n+1} = \{x \in \mathbf{R}^{n+1} \mid |x| < 1\}.$ 

We denote by

$$dm^{2} = \frac{\sum_{i=1}^{n+1} dx_{i}^{2}}{\left(1 - |x|^{2}\right)^{2}}$$

the Lobatchevski metric on  $\mathbf{D}^{n+1}$ . Let  $\mathrm{Iso}^+(\mathbf{D}^{n+1})$  and  $\mathrm{Conf}^+(\mathbf{S}^n)$  be respectively the group of orientation preserving isometries of  $\mathbf{D}^{n+1}$  and the group of the Möbius (or conformal) transformations of  $\mathbf{S}^n$ . It is well known that

$$\operatorname{Conf}^+(\mathbf{S}^n) = \operatorname{Iso}^+(\mathbf{D}^{n+1}) = \operatorname{SO}(n+1,1)_0.$$

If  $\Gamma$  is a discrete subgroup of  $\operatorname{Conf}^+(\mathbf{S}^n)$  the set

$$\Lambda_{\Gamma} = \overline{\Gamma \cdot a} \cap \mathbf{S}^n$$

is independent of the choice of the point  $a \in \mathbf{D}^{n+1}$ . It is called the *limit set* of  $\Gamma$ . Its complement  $D_{\Gamma} = \mathbf{S}^n - \Lambda_{\Gamma}$  is called the *domain of discontinuity* of  $\Gamma$ . Now for fixed  $z \in \mathbf{D}^{n+1}$  and s > 0

$$\Phi_s(z) = \sum_{\gamma \in \Gamma} |\gamma'(z)|^s$$

(where  $\gamma'$  is the derivative of  $\gamma$ ) is called the *absolute Poincaré series* of  $\Gamma$ . If it converges for one point  $z \in \mathbf{D}^{n+1}$ , it converges for all and uniformly on compact subsets. The number

$$\delta(\Gamma) = \inf\{s > 0 : \Phi_s(z) \text{ converges for } z \in \mathbf{D}^{n+1}\}$$

is called the *critical exponent* of  $\Gamma$ .

As before we put

$$\mathcal{C}_p^{\Gamma}(\mathbf{S}^n) = \{ \Gamma \text{-invariant } p \text{-currents on } \mathbf{S}^n \}$$

$$\mathcal{C}_p^{\Gamma}(\mathbf{S}^n, \Lambda_{\Gamma}) = \{T \in \mathcal{C}_p^{\Gamma}(\mathbf{S}^n) \mid \operatorname{supp}(T) \subset \Lambda_{\Gamma}\}.$$

Then there is an exact sequence

$$0 \longrightarrow \mathcal{C}_p^{\Gamma}(\mathbf{S}^n, \Lambda_{\Gamma}) \longrightarrow \mathcal{C}_p^{\Gamma}(\mathbf{S}^n) \xrightarrow{L_p} \mathcal{C}_p^{\Gamma}(D_{\Gamma})$$

where  $L_p$  is the localization map.

**Problem 2.1** When  $L_p$  is surjective?

We have the following

**Theorem 2.2** If  $\Gamma \setminus D_{\Gamma}$  is compact and if  $p > \delta(\Gamma)$ , then  $L_p$  is surjective.

Let  $T \in \mathcal{C}_p^{\Gamma}(D_{\Gamma})$  and define  $T^* \in \mathcal{C}_p^{\Gamma}(\mathbf{S}^n)$  by the following formula:  $f \in \mathcal{C}^{\infty}(D_{\Gamma})$  is chosen as in Lemma 1.4 which is of compact support this time, since  $\Gamma \setminus D_{\Gamma}$  is compact; for  $\omega \in \Omega^p(M)$ , let

$$\langle T^*, \omega \rangle = \sum_{\gamma \in \Gamma} \langle T, (f \circ \gamma^{-1}) \cdot \omega \rangle.$$
(1)

Recall that

$$\sum_{\gamma\in\Gamma}f\circ\gamma^{-1}=1 \ \ ext{on} \ \ D_{\Gamma}.$$

To give a meaning to the expression (1), we need estimate  $|\langle T, (f \circ \gamma^{-1}) \cdot \omega \rangle|$ .

Now since T is  $\Gamma$ -invariant we have

$$\begin{aligned} |\langle T, (f \circ \gamma^{-1}) \cdot \omega \rangle| &= |\langle T, f \cdot \gamma^* \omega \rangle| \\ &\leq C ||f \cdot \gamma^* \omega||_k \\ &\leq \text{constant } ||\gamma^* \omega||_k \end{aligned}$$

where C is the positive constant chosen in Lemma 1.2 for the compact set A = supp(f).

Now let us make a simple observation for a Fuchsian group of the first kind. We consider

$$\mathbf{S}^2 = U_+ \cup \mathbf{S}^1 \cup U_-$$

where  $U_+$  and  $U_-$  are respectively the upper disc and the lower disc. The group  $\Gamma$  acts on  $\mathbf{S}^2$  leaving  $U_+$ ,  $\mathbf{S}^1$  and  $U_-$  invariant and  $\Gamma \setminus U_+$  and  $\Gamma \setminus U_-$  are homeomorphic to a closed Riemann surface of genus  $g \geq 2$ .

Now  $\Gamma$  has a 4g-gon as a fundamental domain and the action of each  $\gamma \in \Gamma$  looks like Fig. 1.

Imagine  $\gamma \in \Gamma$  very far away from  $e \in \Gamma$ . Then the action of  $\gamma$ , restricted to some compact region, say <u>D</u>, becomes very much like "minute contraction". For a 0-current (i.e. a distribution), this does not mean  $||\gamma^*(\omega)||_k$ small ( $\omega$  is a function and  $||\omega \circ \gamma||_0$  is not small). But if we consider *p*-current (for *p* large), the sum  $\sum_{\gamma \in \Gamma} ||\gamma^*(\omega)||_k$  actually converges on compact region which we are going to show.



Fig. 1.

 $1^{\circ}$ -k-norm on  $\Omega^{p}(M)$ .

We always consider  $\mathbf{S}^n$  to be the unit sphere in  $\mathbf{R}^{n+1}$ . A Möbius transformation  $\in \operatorname{Conf}^+(\mathbf{S}^n)$  is an even-time composite of inversions at *n*-dimensional spheres orthogonal to  $\mathbf{S}^n$ . Therefore it acts on  $\mathbf{R}^{n+1} \cup \{\infty\}$ .

Let  $V_{\varepsilon}$  be an  $\varepsilon$ -neighbourhood of  $\mathbf{S}^n$  and let  $\pi : V_{\varepsilon} \longrightarrow \mathbf{S}^n$  be the radial projection.

Given  $\omega \in \Omega^p(M)$ , we identify  $\omega$  with  $\pi^*(\omega) \in \Omega^p(V_{\varepsilon})$  and write it down using coordinates of  $\mathbb{R}^{n+1}$ . Thus

$$\omega = \sum_{\mathbf{j}} \alpha_{\mathbf{j}}(x_1, \dots, x_{n+1}) dx_{j_1} \wedge \dots \wedge dx_{j_p}$$



Fig. 3.

where, as in §1,  $\mathbf{j} = (j_1, \dots, j_p) \in \{1, \dots, n+1\}^p$ . Define the k-norm of  $\omega$  by

$$||\omega||_k = \sum_{\mathbf{j}} ||\alpha_{\mathbf{j}}||_k$$

where

$$||\alpha_{\mathbf{j}}||_{k} = \max_{|\mathbf{s}| \le k} \left\{ \sup_{x \in V_{\varepsilon}} \left| \frac{\partial^{|\mathbf{s}|} \alpha_{\mathbf{j}}}{\partial x_{1}^{s_{1}} \cdots \partial x_{n}^{s_{n}}}(x) \right| \right\}$$

where  $\mathbf{s} = (s_1, \ldots, s_n)$  and  $|\mathbf{s}| = s_1 + \cdots + s_n$ . This k-norm is of course equivalent to the usual k-norm defined by using coordinates of  $\mathbf{S}^n$ .

# $2^{\circ}$ -Möbius transformation.

For  $\gamma \in \operatorname{Conf}^+(\mathbf{S}^n)$  and  $x \in \mathbf{R}^{n+1}$ ,  $D_x \gamma$  (the matrix derivative of  $\gamma$ ) is a

conformal matrix. Denote by  $|D_x\gamma|$  its norm. Now for  $\gamma$  such that  $\gamma(0) \neq 0$ 

$$I(\gamma) = \left\{ x \in \mathbf{R}^{n+1} \mid |D_x \gamma| = 1 \right\}$$

is an *n*-sphere perpendicular to  $\mathbf{S}^n$  called the *isometric sphere* of  $\gamma$ . It is very small if  $\gamma$  is very far away from *e*. Suppose  $\gamma(0) \neq 0$ . Then it is known that such  $\gamma$  decomposes as

$$\gamma = J_{\theta} \circ J_{I(\gamma)} \circ P$$

where

$$P \in SO(n+1); P \text{ keeps } I(\gamma) \text{ invariant}$$

 $J_{I(\gamma)}$  is the inversion at  $I(\gamma)$ 

 $J_{\theta}$  is the inversion at a plane  $\theta$  passing through 0.

For details see [Ma]. The transformations  $J_{\theta}$  and P does not affect the derivatives of  $\gamma$ . Thus we need only study the derivatives of  $J_{I(\gamma)}$ .

# $3^{\circ}$ -Inversion.

For the estimate of the derivative of  $J_{I(\gamma)}$ , we shall change the coordinates and consider the following simple situation. Fix  $\lambda > 0$  sufficiently small. Then

$$x \in \mathbf{R}^{n+1} \longrightarrow h_{\lambda}(x) = \frac{\lambda^2}{|x|^2} x \in \mathbf{R}^{n+1}$$

is the inversion at  $|x| = \lambda$ . Let us estimate k-th derivative at the region  $A = \{x \mid |x| \ge a\}$  (where a > 0 is fixed. We are considering the situation  $\lambda << a$ ). Now each coordinate of  $h_{\lambda}(x)$  is a rational function

$$\lambda^2 \frac{g(x)}{f(x)}$$
 f, g homogeneous with  $\deg(g) < \deg(f)$ .

This property does not change if we take derivatives. That is, we have the

**Lemma 2.3** There exists a positive constant C = C(a, k) such that any *i*-derivative  $(1 \le i \le k)$  of the coordinates of  $h_{\lambda}$  at  $x \in \{|x| \ge a\}$  is smaller than  $\lambda^2 C$  in norm.

Let A be a compact set in  $D_{\Gamma}$ . For  $\gamma \in \Gamma$  denote by  $||\gamma||_{1,k}^A$  the supremum of any the *i*-th derivative  $(1 \leq i \leq k)$  of the coordinates of  $\gamma$  on A. Note that in the definition of  $||\omega||_k$ , we considered the 0-th derivative also. But with  $||\gamma||_{1,k}^A$  we do not take the 0-derivative into account.

**Corollary 2.4** There exists a positive constant C = C(a, k) such that

$$||\gamma||_{1,k}^A \le \lambda(\gamma)^2 C$$

where  $\lambda(\gamma)$  is the radius of the isometric sphere of  $\gamma$ .

*Proof.* There exists a > 0 such that except for finite number of  $\gamma \in \Gamma$ , the center of the isometric sphere of  $\gamma$  is at least *a*-apart from *A*. Now Corollary 2.4 follows from the decomposition  $\gamma = J_{\theta} \circ J_{I(\gamma)} \circ P$  and Lemma 2.3.



Fig. 4.

Now as before let

$$\omega = \sum_{\mathbf{j}} lpha_{\mathbf{j}}(x_1, \dots, x_{n+1}) dx_{j_1} \wedge \dots \wedge dx_{j_p} \in \Omega^p(\mathbf{S}^n).$$

Let us estimate  $||\gamma^*\omega||_k^A$  for  $\gamma \in \Gamma$  (A is compact in  $D_{\Gamma}$ ). Let

$$D_x \gamma = \begin{pmatrix} a_{11} & \cdots & a_{1,n+1} \\ \vdots & \ddots & \vdots \\ a_{n+1,1} & \cdots & a_{n+1,n+1} \end{pmatrix}$$

Then we obtain

$$\gamma^*\omega = \sum_{\mathbf{i}} \left( \sum_{\mathbf{j}} \left( a_{i_1,j_1} \cdot \cdots \cdot a_{i_p,j_p} \right) \alpha_{\mathbf{j}} \circ \gamma dx_{j_1} \wedge \cdots \wedge dx_{j_p} \right)$$

and

$$||\gamma^*\omega||_k^A \leq \text{constant} \sum_{\mathbf{j}} \left\{ ||\alpha_{\mathbf{j}} \circ \gamma||_k^A \left( ||\gamma||_{1,k}^A \right)^p \right\}$$

because for  $\gamma, \sigma \in \Gamma$  we have (easy to show)

$$||\gamma \cdot \sigma||_{1,k}^A \le C||\gamma||_{1,k}^A \cdot ||\sigma||_{1,k}^A.$$

Now by the Leibnitz rule we have

$$||\alpha_{\mathbf{j}} \circ \gamma||_{k}^{A} \leq ||\alpha_{\mathbf{j}}||_{k}^{\gamma(A)} \cdot Q(||\gamma||_{1,k}^{A})$$

where Q is a polynomial with positive coefficients and with leading term 1. This is because we consider 0-th derivative in  $||\alpha_{\mathbf{j}} \circ \gamma||_{k}^{A}$ . By Corollary 2.4 we have  $Q \leq \text{constant}$ . Thus we get the following:

Lemma 2.5 We have

$$||\gamma^*\omega||_k^A \le C||\omega||_k \cdot \lambda(\gamma)^{2p}.$$

It is easy to show, except for a finite number of  $\gamma \in \Gamma$ , that we have

$$\frac{1}{2}\lambda(\gamma)^2 \le |\gamma'(0)| \le \lambda(\gamma)^2.$$

# End of the proof of Theorem 2.2.

Let  $\omega \in \Omega^p(\mathbf{S}^n)$  and  $T \in \mathcal{C}_p^{\Gamma}(D_{\Gamma})$ . Define  $\langle T^*, \omega \rangle$  by

$$\begin{aligned} \langle T^*, \omega \rangle \ &= \ \sum_{\gamma \in \Gamma} \langle T, f \circ \gamma^{-1} \cdot \omega \rangle \\ &= \ \sum_{\gamma \in \Gamma} \langle T, f \cdot \gamma^* \omega \rangle. \end{aligned}$$

Then on  $A = \operatorname{supp}(f)$  we have

$$\begin{aligned} |\langle T, f \cdot \gamma^* \omega \rangle| &\leq \text{constant} ||\gamma^* \omega||_k^A \\ &\leq \text{constant} ||\omega||_k \lambda(\gamma)^{2p}. \end{aligned}$$

Now for  $z \in \mathbf{D}^{n+1}$ , we have

$$||D_z\gamma|| = \frac{\lambda(\gamma)^2}{|z - b(\gamma)|^2}$$

where  $b(\gamma)$  is the center of the isometric sphere (see [Ma] p. 189).

Since  $|z - b(\gamma)|^2 > constant$  for any  $\gamma \in \Gamma$ , we have  $\sum_{\gamma \in \Gamma} |\langle T, f \cdot \gamma^*(\omega) \rangle| \leq constant ||\omega||_k \sum_{\gamma \in \Gamma} \lambda(\gamma)^{2p}$   $\leq constant ||\omega||_k \sum_{\gamma \in \Gamma} ||D_z \gamma||^p$   $\leq constant ||\omega||_k$ 

if  $p > \delta(\Gamma)$  (the critical exponent of  $\Gamma$ ). Thus  $T^*$  defines a *p*-current on  $\mathbf{S}^n$ . It is clear that  $T^*$  is  $\Gamma$ -invariant and that  $L_p(T^*) = T$ .

**Remark 2.6** According to Sullivan [Su], if  $\Gamma$  is convex-cocompact, then we have  $\delta(\Gamma) = d_H(\Lambda_{\Gamma})$  where  $d_H$  denotes the Hausdorff dimension.

# 3. Invariant distributions

Assume that (1)  $\delta(\Gamma) < 1$ , (2)  $\Gamma$  acts on  $D_{\Gamma}$  freely and (3)  $\Gamma \setminus D_{\Gamma}$  is compact and connected. The localization map  $L_1 : \mathcal{C}_1^{\Gamma}(\mathbf{S}^n) \longrightarrow \mathcal{C}_1^{\Gamma}(D_{\Gamma})$  is surjective by Theorem 2.2. Consider the following diagram.

Here  $\theta$  is the *augmentation* defined by

$$\theta(T) = \langle T, \mathbf{1} \rangle$$

where **1** is the function identically equal to 1. The bottom row is exact since  $\Gamma \setminus D_{\Gamma}$  is connected;  $\hat{\theta}$  is defined by

$$\widehat{\theta}(T) = \langle T, f \rangle$$

where f is the function given by Lemma 1.4. Let us show the commutativity of the diagram (\*\*). All that need proof is  $\pi^{!} \circ \theta = \hat{\theta}$ .

Recall the arguments in §1 showing the surjectivity of the map  $\pi_{!}$ . It

says that for  $T \in \mathcal{C}_0^{\Gamma}(D_{\Gamma})$ 

$$\langle (\pi^!)^{-1}(T), \mathbf{1} \rangle = \langle T, f \cdot \pi^*(\mathbf{1}) \rangle$$
  
=  $\langle T, f \rangle.$ 

In other words

$$\theta((\pi^!)^{-1}(T)) = \widehat{\theta}(T)$$

**Theorem 3.1** We have

Image
$$(L_0) \supset \operatorname{Ker}(\theta)$$
.

*Proof.* This follows from the surjectivity of  $L_1$  and the exactness of the second row.

This theorem shows that  $\Gamma$ -invariant currents abound.

Now let us consider the case that  $\Gamma$  is elementary. The simplicity of the situation enables us to determine the image of  $L_0$  completely.

**Theorem 3.2** Suppose that  $\Gamma$  is elementary generated by a single loxodromic element  $\gamma$  with repeller  $a_+$  and attractor  $a_-$ . Then

Image $(L_0) = \operatorname{Ker}(\widehat{\theta}).$ 



Fig. 5.

Now choose  $a \in D_{\Gamma}$  and set

$$T_a = \sum_{n \in \mathbf{Z}} \delta_{\gamma^n a}$$

where  $\delta_x$  denotes the Dirac distribution at a point x.

Clearly  $T_a \in \mathcal{C}_0^{\Gamma}(D_{\Gamma})$  and  $\widehat{\theta}(T_a) = 1$ . We are going to construct an element  $S_a \in \mathcal{C}_0(\mathbf{S}^n)$  such that  $L_0(S_a) = T_a$ . But  $S_a$  will fail to be  $\Gamma$ -invariant. Thanks to the simplicity of the situation this failure will show Theorem 3.2.

Consider the following sum

$$S_a = \delta_a + \sum_{n>0} \left( \delta_{\gamma^n a} - \delta_{a_+} \right) + \sum_{n<0} \left( \delta_{\gamma^n a} - \delta_{a_-} \right).$$

To show that  $S_a$  is a well-defined distribution, we only need to show that for any  $g \in C^{\infty}(\mathbf{S}^n)$ ,  $\langle S_a, g \rangle$  converges. But

$$\langle S_a, g \rangle = g(a) + \sum_{n>0} \left( g(\gamma^n a) - g(a_+) \right) + \sum_{n<0} \left( g(\gamma^n a) - g(a_-) \right)$$

and

$$\begin{split} \sum_{n>0} |g(\gamma^n a) - g(a_+)| &\leq \operatorname{constant} \sum_{n>0} d(\gamma^n a, a_+) \\ &\leq \operatorname{constant} \sum_{n>0} \lambda^n \text{ for some } 0 < \lambda < 1 \\ &< +\infty. \end{split}$$

The same estimate holds for the sum  $\sum_{n<0} |g(\gamma^n a) - g(a_+)|$ , which proves that  $S_a$  is a distribution. Clearly  $L_0(S_a) = T_a$ .

Now let us compute  $\gamma_*(S_a)$ . We have

$$\begin{aligned} \langle \gamma_*(S_a), g \rangle &= \langle S_a, g \circ \gamma \rangle \\ &= g(\gamma a) + \sum_{n>0} (g(\gamma^{n+1}a) - g(a_+)) \\ &+ \sum_{n<0} (g(\gamma^{n+1}a) - g(a_-)). \end{aligned}$$

So

$$egin{aligned} &\langle \gamma_*(S_a)-S_a,g
angle\ &=g(\gamma a)-g(a) \end{aligned}$$

$$+ \left\{ \sum_{n>0} (g(\gamma^{n+1}a) - g(a_{+})) - \sum_{n>0} (g(\gamma^{n}a) - g(a_{+})) \right\}$$

$$+ \left\{ \sum_{n<0} (g(\gamma^{n+1}a) - g(a_{-})) - \sum_{n<0} (g(\gamma^{n}a) - g(a_{-})) \right\}$$

$$= \sum_{n\in\mathbf{Z}} (g(\gamma^{n+1}a) - g(\gamma^{n}a))$$

$$= g(a_{+}) - g(a_{-}).$$

For the proof of the last equality, consider the partial sum

$$\sum_{n=-N}^{N-1} (g(\gamma^{n+1}a) - g(\gamma^n a))$$
$$= g(\gamma^N a) - g(\gamma^{-N}a) \xrightarrow{N+\infty} g(a_+) - g(a_-).$$

Thus we have

$$\gamma_*(S_a) - S_a = \delta_{a_+} - \delta_{a_-}.$$

Now let us embark upon the proof of Theorem 3.2. By Theorem 3.1 we have already  $\operatorname{Ker}(\widehat{\theta}) \subset \operatorname{Image}(L_0)$ . For absurdity assume  $L_0(S) = T_a$  for some  $S \in \mathcal{C}_0^{\Gamma}(\mathbf{S}^n)$ . Consider  $U = S_a - S$ . Then  $\operatorname{supp}(U) \subset \{a_+, a_-\}$  and  $\gamma_*(U) - U = \delta_{a_+} - \delta_{a_-}$ .

Let  $\mathbf{1}_+$  be a bump function, equal to 1 near  $a_+$  and 0 near  $a_-$ . Then  $\langle U, \mathbf{1}_+ \circ \gamma \rangle = \langle U, \mathbf{1}_+ \rangle$ . Thus

$$\langle \gamma_*(U) - U, \mathbf{1}_+ \rangle = 0.$$

But we also have

$$\langle \delta_{a_+} - \delta_{a_-}, \mathbf{1}_+ \rangle = 1.$$

This is a contradiction.

Now let  $T \in \mathcal{C}_0^{\Gamma}(D_{\Gamma}) - \operatorname{Ker}(\widehat{\theta})$ . Then  $T - \widehat{\theta}(T)T_a \in \operatorname{Ker}(\widehat{\theta})$ ; so there exists an element  $S \in \mathcal{C}_0^{\Gamma}(\mathbf{S}^n)$  such that

$$T - \widehat{\theta}(T)T_a = L_0(S).$$

This implies that T is not an element of  $\text{Image}(L_0)$ . So we have necessarily

$$\operatorname{Ker}(\widehat{\theta}) = \operatorname{Image}(L_0)$$

which proves the theorem.

#### 4. Cross section of the localization map

As before  $X = \Gamma \setminus D_{\Gamma}$ . In the previous section, we have shown that the localization map  $L_0: \mathcal{C}_0^{\Gamma}(\mathbf{S}^n) \longrightarrow \mathcal{C}_0(X)$  is surjective onto  $\operatorname{Ker}(\theta)$  for an elementary Kleinian group generated by a single loxodromic transformation  $\gamma$ . That is, given a distribution  $T \in \mathcal{C}_0(X)$ , such that  $\langle T, \mathbf{1} \rangle = 0$ , one can choose  $S \in \mathcal{C}_0^{\Gamma}(\mathbf{S}^n)$  such that  $L_0(S) = T$ . However since the argument there is indirect, one cannot construct S explicitly even when T is given concretely. In this section we shall solve this problem by constructing a cross-section of  $L_0$ . The construction has two steps. Denote by  $\overline{\mathcal{C}}^{\infty}(\mathbf{S}^n)$ the space of  $\mathcal{C}^{\infty}$ -functions which vanish on the fixed points  $a_+$  and  $a_-$  of  $\gamma$ and by  $\overline{\mathcal{C}}(\mathbf{S}^n)$  its topological dual. Denote by  $\overline{\mathcal{C}}^{\Gamma}(\mathbf{S}^n)$  the subspace of  $\overline{\mathcal{C}}^{\infty}(\mathbf{S}^n)$ .

The inclusion  $\overline{C}^{\infty}(\mathbf{S}^n) \hookrightarrow C^{\infty}(\mathbf{S}^n)$  defines the projection

$$p: \mathcal{C}_0^{\Gamma}(\mathbf{S}^n) \longrightarrow \overline{\mathcal{C}}^{\Gamma}(\mathbf{S}^n).$$

Also we have the localization map

$$\overline{L}_0:\overline{\mathcal{C}}^{\Gamma}(\mathbf{S}^n)\longrightarrow \mathcal{C}_0(X).$$

Clearly we have  $L_0 = \overline{L}_0 \circ p$ .

The first step is to construct a cross section

$$s: \mathcal{C}_0(X) \longrightarrow \overline{\mathcal{C}}^{\Gamma}(\mathbf{S}^n).$$

This will be carried out on the whole  $\mathcal{C}_0(X)$ , not only on  $\operatorname{Ker}(\theta)$ .

Define  $\overline{\theta} : \overline{\mathcal{C}}^{\Gamma}(\mathbf{S}^n) \longrightarrow \mathbf{C}$  also by  $\overline{\theta}(U) = \langle U, f \rangle$ . The second step is the construction of a cross section

$$t: \operatorname{Ker}(\overline{\theta}) \longrightarrow \mathcal{C}_0^{\Gamma}(\mathbf{S}^n).$$

Then  $t \circ s$  is the desired cross section of  $L_0$ .

 $1^{\circ}$ -First step

For any  $\psi \in \overline{C}^{\infty}(\mathbf{S}^n)$ , consider the series

$$\Psi = \sum_{n \in \mathbf{Z}} \psi \circ \gamma^n.$$

**Lemma 4.1** The series  $\Psi$  converges in the  $C^{\infty}$ -topology on compact subset in  $D_{\Gamma}$  and defines a function  $\Psi \in C^{\infty}(X)$ .

Define a map 
$$\sigma: \overline{C}^{\infty}(\mathbf{S}^n) \longrightarrow C^{\infty}(X)$$
 by  $\sigma(\psi) = \Psi$ 

# **Lemma 4.2** The map $\sigma$ is linear, continuous and surjective.

For the surjectivity, given  $\Psi \in C^{\infty}(X)$  we have  $\Psi = \sigma(f\Psi)$ . The proof of the other parts consists of estimations of derivatives. They are more or less the same as those in §2 and of course based upon the fact that  $\psi$ vanishes on the fixed points of  $\gamma$ . The details are left to the reader.

Now the cross section

$$s: \mathcal{C}_0(X) \longrightarrow \overline{\mathcal{C}}^{\Gamma}(\mathbf{S}^n)$$

is defined as the dual of  $\sigma$ .

2°-Second step  
Choose 
$$U \in \overline{\mathcal{C}}^{\Gamma}(\mathbf{S}^n)$$
 such that  $\langle U, f \rangle = 0$ . Let  
 $g_{-} = \sum_{n \geq 0} f \circ \gamma^n$ .

This function can be extended differentiably to  $\mathbf{S}^n$ , to yield a bump function, constant by 1 around  $a_-$  and 0 around  $a_+$ . Let us define

$$t:\overline{\mathcal{C}}^{\Gamma}(\mathbf{S}^n)\longrightarrow \mathcal{C}_0^{\Gamma}(\mathbf{S}^n)$$

by the following formula. For  $\varphi \in C^{\infty}(\mathbf{S}^n)$ , let

$$\langle t(U), \varphi \rangle = \langle U, \varphi_0 \rangle$$

where  $\varphi_0 = \varphi - \varphi(a_-)g_- - \varphi(a_+)(1 - g_-)$ . Clearly  $t(U) \in \mathcal{C}^{\Gamma}(\mathbf{S}^n)$ . Let us show that t(U) is  $\Gamma$ -invariant. Let

$$\begin{split} \langle t(U), \varphi \circ \gamma - \varphi \rangle \\ &= \langle U, \varphi \circ \gamma - \varphi(a_{-})g_{-} - \varphi(a_{+})(1 - g_{-}) \\ &- \varphi_{0} \circ \gamma + \varphi_{0} \circ \gamma - \varphi_{0} \rangle \\ &= \langle U, \varphi \circ \gamma - \varphi(a_{-})g_{-} - \varphi(a_{+})(1 - g_{-}) \\ &- \{\varphi \circ \gamma - \varphi(a_{-})g_{-} \circ \gamma - \varphi(a_{+})(1 - g_{-} \circ \gamma)\} \\ &+ (\varphi_{0} \circ \gamma - \varphi_{0}) \rangle \\ &= (\varphi(a_{-}) - \varphi(a_{+})) \langle U, g_{-} \circ \gamma - g_{-} \rangle + \langle U, \varphi_{0} \circ \gamma - \varphi_{0} \rangle. \end{split}$$

The first term vanishes since  $g_{-} \circ \gamma - g_{-} = -f$  and the second term vanishes since  $\varphi_0 \in \overline{C}^{\infty}(\mathbf{S}^n)$ . This completes the construction of the cross

section t of the projection p.

All that we proved in this paragraph are in fact applicable to a more general situation.

Let  $M^n$  be a manifold and let  $\gamma: M \longrightarrow M$  be a diffeomorphism with a finte set  $\Sigma = A \cup R$  of fixed points. Assume that

(1) all the points of A are attractors, that is, the spectral radius of the derivatives at these points is smaller than 1;

(2) all the points of R are repellers;

(3)  $\gamma$  acts freely and properly discontinuously on  $M - \Sigma$ .

The method of constructing s and t works if  $\gamma$  satisfies (1), (2) and (3).

There are examples on  $\mathbf{S}^1$  in which there exist the same number of attractors and repellers, placed alternatively.

Also on  $\mathbf{S}^n$ , there are examples with one attractor and one repeller. Let us show that they are exhausting. Let  $n \geq 2$ . Consider a small sphere S centered at an attractor. Denote by Q the closed region bounded by S and  $\gamma S$ . Then  $\langle \gamma \rangle \setminus Q$  is a closed manifold, homeomorphic to  $\mathbf{S}^1 \times \mathbf{S}^{n-1}$ . Now  $\langle \gamma \rangle \setminus (M - \Sigma)$  is also a manifold by (3). Since  $n \geq 2$ , it is connected. Therefore we have

$$\langle \gamma \rangle \setminus Q = \langle \gamma \rangle \setminus (M - \Sigma).$$

Now it is easy to show that  $M = \mathbf{S}^n$  and that there are only one attractor and only one repeller. The case n = 1 is left to the reader. But let us give an example:

Let  $\tilde{\gamma} : \mathbf{R} \longrightarrow \mathbf{R}$  be the diffeomorphism given by  $\tilde{\gamma}(x) = x + \alpha \sin(2\pi nx)$ where  $n \in \mathbf{N}^*$  and  $\alpha \in ]0, \frac{1}{2\pi n}[$ . Then  $\tilde{\gamma}$  satisfies the relation  $\tilde{\gamma}(x+1) = \tilde{\gamma}(x) + 1$  and hence induces a diffeomorphism  $\gamma$  of the circle  $\mathbf{S}^1 = \mathbf{R}/\mathbf{Z}$ . It has 2n fixed point

$$\Sigma = \left\{0, \frac{1}{2n}, \frac{2}{2n}, \frac{3}{2n}, \dots, \frac{2n-1}{2n}\right\}.$$

The manifold  $\mathbf{S}^1 - \Sigma$  is a disjoint union of 2n intervalles  $I_k$ ,  $k = 1, \ldots, 2n$ .

Let  $A = \{\frac{2k-1}{2n} \mid k = 1, ..., n\}$  and  $R = \{\frac{k}{n} \mid k = 0, ..., n-1\}$ . The spectral radius  $\rho_x(\gamma)$ , for  $x \in A$  and  $x \in R$  are respectively equal to  $1-2\pi n\alpha$  and  $1+2\pi n\alpha$ .

Furthermore the action generated by  $\gamma$  on  $M - \Sigma$  is free and properly discontinuous. The quotient manifold  $X = \langle \Gamma \rangle \setminus (M - \Sigma)$  is a disjoint union

of 2n copies  $(X_l)_{l=1,\dots,2n}$  of the circle.

# 5. Weakly invariant distributions

Here we shall treat a nonelementary group by the same method as in the previous section. However what we get is a weaker result. For this we need the concept of weakly  $\Gamma$ -invariant distribution.

**Definition 5.1** A group  $\Gamma$  is called a Schottky group if it is generated by s elements  $\gamma_1, \ldots, \gamma_s$  such that for mutually disjoint closed balls  $A_1, \ldots, A_s$ ,  $B_1, \ldots, B_s$ , we have  $\gamma_i(A_i) = \overline{\mathbf{S}^n - B_i}$ .

The following facts are well known.

- (1)  $\Gamma \simeq \langle \gamma_1 \rangle * \cdots * \langle \gamma_s \rangle.$
- (2)  $\Gamma$  acts on  $D_{\Gamma}$  freely.
- (3)  $\Gamma \setminus D_{\Gamma}$  is homeomorphic to  $\#_s(\mathbf{S}^1 \times \mathbf{S}^{n-1})$ .
- (4)  $\Gamma$  is convex-cocompact and thus by [Su]:  $\delta(\Gamma) = d_H(\Lambda_{\Gamma})$ .
- (5)  $\Lambda_{\Gamma}$  is a tame Cantor set.
- (6) Any element of  $\Gamma$  is loxodromic.

**Definition 5.2** A distribution  $T \in C_0(\mathbf{S}^n)$  is said to be weakly  $\Gamma$ -invariant if for any  $\gamma \in \Gamma$ ,  $\operatorname{supp}(\gamma_*(T) - T)$  is contained in  $\Lambda_{\Gamma}$ .

Let us denote weakly  $\Gamma$ -invariant distributions by  $\mathcal{C}_0^{(\Gamma)}(\mathbf{S}^n)$ . Clearly the localization map  $L_0$  carries  $\mathcal{C}_0^{(\Gamma)}(\mathbf{S}^n)$  into  $\mathcal{C}_0^{\Gamma}(D_{\Gamma})$ .

**Theorem 5.3** If  $\Gamma$  is a Schottky group such that  $d_H(\Lambda_{\Gamma}) < \frac{1}{2}$ , then

$$L_0: \mathcal{C}_0^{(\Gamma)}(\mathbf{S}^n) \longrightarrow \mathcal{C}_0^{\Gamma}(D_{\Gamma})$$

is a surjection.

*Proof.* By Theorem 3.1, we have

$$L_0(\mathcal{C}_0^{(\Gamma)}(\mathbf{S}^n)) \supset L_0(\mathcal{C}_0^{\Gamma}(\mathbf{S}^n)) \supset \operatorname{Ker}(\widehat{\theta}).$$

So we need only to show hat  $T_a \in L_0(\mathcal{C}_0^{(\Gamma)}(\mathbf{S}^n))$ , where

$$T_a = \sum_{\gamma \in \Gamma} \delta_{\gamma a} \quad a \in D_{\Gamma}.$$

In fact, for any  $T \in \mathcal{C}_0^{\Gamma}(\mathbf{S}^n)$  we have a decomposition

$$T = (T - \hat{\theta}(T) \cdot T_a) + \hat{\theta}(T) \cdot T_a.$$

The first summand lies in  $\operatorname{Ker}(\widehat{\theta})$  since  $\widehat{\theta}(T_a) = 1$ . Thus we will have  $T \in L_0(\mathcal{C}_0^{(\Gamma)}(\mathbf{S}^n))$ .

Now any element  $\gamma \in \Gamma' = \Gamma - \{e\}$  is loxodromic. Let  $a(\gamma)$  be the attractor of  $\gamma$ . For  $T_a$  define  $S_a$  as follows.

$$S_a = \delta_a + \sum_{\gamma \in \Gamma'} (\delta_{\gamma a} - \delta_{a(\gamma)}).$$

Notice that except for a finite number of  $\gamma$ ,  $\gamma a$  and  $a(\gamma)$  lie in the isometric sphere  $I(\gamma^{-1})$ . For a test function  $g \in C^{\infty}(\mathbf{S}^n)$ ,

$$\langle S_a,g \rangle = g(a) + \sum_{\gamma \in \Gamma'} \left\{ g(\gamma a) - g(a(\gamma)) \right\}$$

and

$$\begin{split} \sum_{\gamma \in \Gamma'} |g(\gamma a) - g(a(\gamma))| &\leq \operatorname{constant} \sum_{\gamma \in \Gamma'} |\operatorname{radius} I(\gamma^{-1})| \\ &\leq \operatorname{constant} \sum_{\gamma \in \Gamma'} |\gamma'(0)|^{\frac{1}{2}} \\ &< +\infty \end{split}$$

since  $d_H(\Lambda_{\Gamma}) < \frac{1}{2}$ . Thus  $S_a$  is a distribution. Clearly  $L_0(S_a) = T_a$  and the  $\Gamma$ -invariance of  $T_a$  shows that  $S_a \in L_0(\mathcal{C}_0^{(\Gamma)}(\mathbf{S}^n))$ .

# 6. Application to a bigraded cohomology with compact support

We will apply the preceding results to compute a *bigraded cohomology* with compact support of a foliation obtained by suspending one of all the groups  $\Gamma$  considered in the above sections. First let us recall some definitions and useful properties.

# 6.1. Cohomology of groups

Let  $\Gamma$  be a discrete group acting on a module E and denote by  $C^k(\Gamma, E)$ the set of all the maps  $\Gamma^k \longrightarrow E$ . We define  $d: C^k(\Gamma, E) \longrightarrow C^{k+1}(\Gamma, E)$ by

$$(dc)(\gamma_1,\ldots,\gamma_{k+1}) = \gamma_1 \cdot c(\gamma_2,\ldots,\gamma_{k+1}) + \sum_{i=1}^k (-1)^i c(\gamma_1,\ldots,\gamma_i\gamma_{i+1},\ldots,\gamma_{k+1}) + (-1)^{k+1} c(\gamma_1,\ldots,\gamma_k).$$

The operator d is linear and satisfies  $d^2 = 0$ ; so the image  $B^k(\Gamma, E)$  of this operator  $d: C^{k-1}(\Gamma, E) \longrightarrow C^k(\Gamma, E)$  is an ideal of the kernel  $Z^k(\Gamma, E)$ of  $d: C^k(\Gamma, E) \longrightarrow C^{k+1}(\Gamma, E)$ . The quotients

$$H^{k}(\Gamma, E) = Z^{k}(\Gamma, E) / B^{k}(\Gamma, E)$$
 for  $k \in \mathbf{N}$ 

are called the *cohomology groups* of  $\Gamma$  with values in the  $\Gamma$ -module E.

#### 6.2. Bigraded cohomology

Let  $\mathcal{F}$  a codimension n foliation on a manifold N of dimension m + n. Denote by  $T\mathcal{F}$  the tangent bundle of  $\mathcal{F}$  and  $\nu\mathcal{F} = TN/T\mathcal{F}$  its normal bundle. Let  $\Lambda^q T^*\mathcal{F}$  and  $\Lambda^p \nu^*\mathcal{F}$  be the vector bundles of exterior q-forms and exterior p-forms associated respectively to  $T^*\mathcal{F}$  and  $\nu^*\mathcal{F}$ . Let  $A_{\mathcal{F}}^{pq}$  be the space of global sections of the bundle  $\Lambda^q T^*\mathcal{F} \otimes \Lambda^p \nu^*\mathcal{F}$ . An element of  $A_{\mathcal{F}}^{pq}$  is considered to be a  $\Lambda^p \nu^*\mathcal{F}$ -valued q-form along the leaves. Because  $\Lambda^p \nu^*\mathcal{F}$  is a foliated vector bundle we can define the *exterior derivative* along the leaves  $d_{\mathcal{F}}: A_{\mathcal{F}}^{pq} \longrightarrow A_{\mathcal{F}}^{p,q+1}$  by

$$d_{\mathcal{F}}\eta(X_1,\ldots,X_{q+1}) = \sum_i (-1)^i X_i \cdot \eta(X_1,\ldots,\widehat{X}_i,\ldots,X_{q+1}) + \sum_{i< j} (-1)^{i+j} \eta([X_i,X_j],X_1,\ldots,\widehat{X}_i,\ldots,\widehat{X}_j,\ldots,X_{q+1}).$$

An easy computation shows that  $d_{\mathcal{F}}^2 = 0$  and thus we obtain a differential complex

$$0 \longrightarrow A_{\mathcal{F}}^{p0} \xrightarrow{d_{\mathcal{F}}} A_{\mathcal{F}}^{p1} \xrightarrow{d_{\mathcal{F}}} \cdots \xrightarrow{d_{\mathcal{F}}} A_{\mathcal{F}}^{pm} \longrightarrow 0.$$

Its homology  $H^{p,*}(N, \mathcal{F})$  is called the *bigraded cohomology* (foliated cohomology when p = 0) of the foliated manifold  $(N, \mathcal{F})$ .

We can also define the *bigraded cohomology with compact support* as the homology  $H^{p,*}_c(N,\mathcal{F})$  of the differential complex

$$0 \longrightarrow \Omega^{p0}_{\mathcal{F}}(M) \xrightarrow{d_{\mathcal{F}}} \Omega^{p1}_{\mathcal{F}}(M) \xrightarrow{d_{\mathcal{F}}} \cdots \xrightarrow{d_{\mathcal{F}}} \Omega^{pm}_{\mathcal{F}}(M) \longrightarrow 0$$

where  $\Omega_{\mathcal{F}}^{p,*}(M)$  is the space of sections of compact support of the vector bundle  $\Lambda^*T^*\mathcal{F} \otimes \Lambda^p \nu^*\mathcal{F}$ .

# 6.3. The case of a suspension

Let W be a compact manifold and suppose that there exists an faithful representation  $\rho : \Gamma = \pi_1(W) \longrightarrow \text{Diff}(M)$  where Diff(M) is the diffeomorphism group of a manifold M. Let  $\widetilde{W}$  be the universal covering of W. The foliation  $\widetilde{\mathcal{F}}$  on  $\widetilde{W} \times M$  defined by the second projection is invariant by the diagonal action of  $\Gamma$ , thus it induces a foliation  $\mathcal{F}$  on the manifold  $N = \Gamma \setminus (\widetilde{W} \times M)$  transverse to the locally trivial fibration  $M \hookrightarrow N \longrightarrow W$ . By using the same method as in [ET] we can prove that we have an isomorphism

$$H^{p,*}_c(N,\mathcal{F}) \cong H^*(W,\Omega^p(M))$$

where  $\Omega^p(M)$  has a structure of a  $\Gamma$ -module defined by the induced action of  $\Gamma$  on M. We have also

$$H^{p,*}_c(N,\mathcal{F}) \cong H^*(\Gamma,\Omega^p(M)) \quad \text{for } *=0 \quad \text{and} \quad *=1.$$
 (\$\mathcal{R}\$)

Let us show that for a free group  $\Gamma$ , acting on M in a certain way, the dimension of  $H^1(\Gamma, \Omega^p(M))$  is infinite.

Now  $Z^1(\Gamma, \Omega^p(M))$  consists of twisted homomorphisms, that is, all the maps  $c: \Gamma \longrightarrow \Omega^p(M)$  such that for  $\gamma_1, \gamma_2 \in \Gamma$ 

$$c(\gamma_1\gamma_2) = \gamma_1 c(\gamma_2) + c(\gamma_1).$$

The space  $B^1(\Gamma, \Omega^p(M))$  consists of those twisted homomorphisms c such that for some  $\omega \in \Omega^p(M)$ 

 $c(\gamma) = \gamma \omega - \omega$ , for all  $\gamma \in \Gamma$ .

Therefore there exists a natural map

$$r: H^1(\Gamma, \Omega^p(M)) \longrightarrow \operatorname{Hom}(\Gamma, \Omega^p(M)/K^p),$$

where  $K^p$  is the submodule of  $\Omega^p(M)$  consisting of  $\sum_{i=1}^s (\gamma_i \omega_i - \omega_i)$  where  $\gamma_i \in \Gamma$  and  $\omega_i \in \Omega^p(M)$ .

Let us show that for a free group  $\Gamma = \mathbf{Z} * \cdots * \mathbf{Z}$ , r is a surjection.

Let  $a_1, \ldots, a_n$  be free generators. For any  $\omega_1, \ldots, \omega_n \in \Omega^p(M)$ , we claim that there exists uniquely a twisted homomorphism c such that

$$c(e) = 0$$
 and  $c(a_i) = \omega_i$  for  $i = 1, \ldots, n$ .

Clearly the surjectivity of r follows from this.

This homomorphism is explicitly defined as follows. First let

$$c(a_i^{-1}) = -a_i \omega_i.$$

For a reduced word  $\gamma = \gamma_1 \gamma_2 \cdots \gamma_n$ , where  $\gamma_i$  is either  $a_i$  or  $a_i^{-1}$ , let

$$c(\gamma_1 \cdots \gamma_n) = \gamma_1 \gamma_2 \cdots \gamma_{n-1} c(\gamma_n) + \cdots + \gamma_1 \gamma_2 c(\gamma_3) + \gamma_1 c(\gamma_2) + c(\gamma_1)$$

The verification that c is actually a twisted homomorphism is left to the reader.

Now from the surjectivity of r we get the following

**Proposition 6.4** Let  $\Gamma$  be a free group acting on a manifold M. Assume either of the followings

(1)  $\Gamma$  acts on M freely and properly.

(2)  $M = \mathbf{S}^n$ ,  $\Gamma$  is a Kleinian group and  $n \ge p > \delta(\Gamma) - 1$ .

Then we have  $\dim\{H^1(\Gamma, \Omega^p(M))\} = +\infty$ .

*Proof.* Since the dual of  $\Omega^p(M)/K^p$  is  $\mathcal{C}_p^{\Gamma}(M)$ , it suffices to show that the dimension of the space  $\mathcal{C}_p^{\Gamma}(M)$  is  $+\infty$ .

The case (1) follows from Proposition 1.6. Let us show the case (2). Suppose n = p. It is well known that  $\delta(\Gamma) \leq n$ . Therefore the proposition follows from Theorem 2.2. So suppose  $n - 1 \geq p \geq \delta(\Gamma) - 1$ . Consider the following diagram

$$\begin{array}{cccc} \mathcal{C}_{p+1}^{\Gamma}(\mathbf{S}^{n}) & \stackrel{d}{\longrightarrow} & \mathcal{C}_{p}^{\Gamma}(\mathbf{S}^{n}) \\ L_{p+1} \downarrow & & \downarrow L_{p} \\ \mathcal{C}_{p+1}(\Gamma \setminus D_{\Gamma}) & \stackrel{d}{\longrightarrow} & \mathcal{C}_{p}^{\Gamma}(\Gamma \setminus D_{\Gamma}) \end{array}$$

Surjectivity of  $L_{p+1}$  (Theorem 2.2) implies that

$$d\{\mathcal{C}_{p+1}(\Gamma \setminus D_{\Gamma})\} \subset \operatorname{Im}(L_p).$$

But it is well known, easy to show, that  $\dim\{d(\mathcal{C}_{p+1}(\Gamma \setminus D_{\Gamma}))\} = +\infty$ . Therefore we have  $\dim\{\mathcal{C}_p^{\Gamma}(\mathbf{S}^n)\} = +\infty$ .

**Acknowledgments** This paper was written while the second author was staying at Université de Valenciennes. He would like to express his gratitude to this institution for its warm hospitality.

#### References

[Ek] El Kacimi Alaoui A., Invariants de certaines actions de Lie. Instabilité du caractère Fredholm. Manuscripta Mathematica Vol. 74 Fasc. 2 (1992) 143–160.

- [ET] El Kacimi Alaoui A. and Tihami A., Cohomologie bigraduée de certains feuilletages. Bulletin de la Soc. Math. de Belgique, Fasc. 2, Vol. 38 (1986), 144–157.
- [Ga] Gaillard P.Y., Transformation de Poisson de formes différentielles. Le cas de l'espace hyperbolique. Comment. Math. Helv. **61** (1986), 581–616.
- [Ha] Haefliger A., Some remarks on foliations with minimal leaves. J. of Diff. Geo. 15 (1980), 269–284.
- [HL] Haefliger A. and Li Banghe, Currents on a circle invariant by a Fuchsian group. Lecture Notes in Math. 1007 (1981), 369–378.
- [Hr] Harvey W., Discrete groups and automorphic functions. Academic Press (1977).
- [Mk] Maskit B., Kleinian groups. Grundl 287.
- [Ma] Matsumoto S., Foundations of flat conformals tructures. Advanced Studies in Pure Mathematics, Vol. 20 (1992), 167–261.
- [Su] Sullivan D., The density at infinity of a discrete group of hyperbolic motions. Publ. Math. IHES, 50 (1979), 171-202.

Aziz El Kacimi Alaoui URA au CNRS GAT 751 Université de Valenciennes 59304-Valenciennes Cedex France E-mail: elkacimi@gat.univ-lille1.fr

Shigenori Matsumoto College of Science and Technology Nihon University, Tokyo 101 Japan E-mail: matsumo@cst.nihon-u.ac.jp

Tarek Moussa UFR de Mathématiques Université de Lille III 59653-Villeneuve d'Ascq Cedex France