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Symmetry of isometric embeddings of Riemannian
manifolds and local scalar invariants*
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Abstract. We study the infinitesimal symmetry of the isometric embeddings of a Rie-
mannian manifold M^{n} into \mathbb{R}^{n+d} , n\geq 2 , d\geq 1 . Then we define a notion of scalar
invariant for submanifolds in \mathbb{R}^{n+d} in terms of this symmetry. As an example, we show
by calculation that the Gaussian curvature of a surface is an invariant.
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Introduction

Let M be a smooth (C^{\infty}) manifold of dimension n , n\geq 2 , with Rie-
mannian metric g . A mapping u= (u^{1}, \ldots, u^{n+d}) : Marrow \mathbb{R}^{n+d} , d\geq 1 , is a
local isometric embedding if u satisfies

\langle du, du \rangle =g.

In terms of local coordinates x= (x^{1}, . , x^{n}) of M. the above equation is
written as

n+d \sum\frac{\partial u^{\alpha}}{\partial x^{i}}\frac{\partial u^{\alpha}}{\partial x^{j}}=g_{ij} , for each i , j=1 , . . , n , (2.5)
\alpha=1

where g_{ij}=g( \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}) .
A (local) scalar invariant of M is a real valued function defined on an

open subset of M which is invariant under local isometries. The scalar
curvature is the simplest scalar invariant. If vo1_{M}(p, r) is the volume of the
geodesic ball of radius r centered at a point p\in M . then for sufficiently
small r\geq 0

\frac{vo1_{M}(p,r)}{vo1_{\mathbb{R}^{n}}(0,r)}=1-c\kappa_{2}(p)r^{2}+\sum_{n\geq 4}\kappa_{n}(p)r^{n} .
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where c is a constant depending only on n and \kappa_{2} is the scalar curvature.
The functions 1, \kappa_{2} and \kappa_{n} , n\geq 4 , are scalar invariants. We refer the readers
to Chapter 2 of [Gil] for the theory of local invariants.

For an isometric embedding u : M –
\mathbb{R}^{n+d} , a local scalar invariant \kappa

of M can be expressed as a function of finite jet of u :

\kappa(x)=A(u^{(m)}) , (3.5)

where u^{(m)} denotes all the partial derivatives of u= (u^{1}, , u^{n+d}) of order
\leq m . (3.5) is a partial differential equation of order m that an isometric
embedding u satisfies. The scalar curvature \kappa_{2}(x) is a function of the second
jet of u . In the case d=1 , it is shown in [H1] that under a certain condition
on the scalar curvature the first derivatives of (2.1) and (3.5) with \kappa=\kappa_{2} ,
m=2 form a non-linear system of elliptic partial differential equations of
second order for u= (u^{1}, \ldots, u^{n+1}) .

In the present paper we study the symmetry of (2.1) and define notions
of extrinsic and intrinsic invariants of a submanifold M^{n} of \mathbb{R}^{n+d} in terms
of symmetry of (2.1).

Let M be a submanifold in \mathbb{R}^{n+d} given by

u^{n+\sigma}=h^{\sigma}(u_{1}, \ldots , u_{n}) , \sigma=1 , \ldots , d .

Let h= (h^{1}, \ldots, h^{d}) . A real valued function a(h^{(m)}) of finite jet of h is an
extrinsic invariant if it is invariant under rigid motions of \mathbb{R}^{n+d} (Definition
3.2). Principle curvatures of hypersurfaces in a euclidean space are extrin-
sic invariants. a(h^{(m)}) is an intrinsic invariant if it is invariant under the
symmetry of (2.1) (Definition 3.5). The scalar curvature and all the scalar
invariants of the classical theory are intrinsic invariants in our sense. By
expressing a(h^{(m)}) in terms of u^{(m)} we obtain (3.5), which is a compatibility
equation of (2.1).

It seems to the author that this method of obtaining compatibility equa-
tions works equally well for the embeddings of conformal and CR structures.

Our problems are purely local so that we assume that M is an open sub-
set of \mathbb{R}^{n} with the standard coordinates (x^{1}, , x^{n}) and that (g_{ij})_{i,j=1,\ldots,n}

is a C^{\infty} , symmetric, positive definite matrix valued function defined on
M . All the manifolds and mappings are assumed to be C^{\infty} unless stated
otherwise.

In \S 1, we review some rudiments of the jet theory and then in \S 2, we
study the infinitesimal symmetry (or the Lie-B\"acklund transformation) of
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(2.1). A solution of the evolution equation (3.4) where Q^{\alpha}(x, u^{(m)}) are
the components of an infinitesimal symmetry is a 1-parameter family of
embeddings,that is, a“bending” Bending of submanifolds has been studied
in [Jal], [Ja2] and [Ten]. We show that the evolutionary expression of Killing
fields of M and the infinitesimal rigid motions of \mathbb{R}^{n+d} are infinitesimal
symmetries (Theorem 2.1 and Theorem 2.2).

In \S 3, we define the extrinsic and intrinsic invariants for n-dimensional
submanifolds in \mathbb{R}^{n+d} . Then as an example, we show by calculation that
the Gaussian curvature is an intrinsic invariant.

1. Preliminaries

In this section, we recall some rudiments of the theory of jets and sym-
metry of differential equations. We adopt from [Olv] the basic definitions
and notations. However, the difference is that [Olv] treats the locally solv-
able equations while (2.1) is overdetermined if d<n(n-1)/2 , and therefore,
not locally solvable. Nevertheless, there exists symmetry in (2.1). Thus we
define the infinitesimal symmetry as in Definition 1.4.

Let X= \{(x^{1}, . . , x^{n})\} be an open subset of \mathbb{R}^{n} and U=\{(u^{1}, \ldots, u^{q})\}

be an open subset of \mathbb{R}^{q} . Let U^{(m)} be an open subset of a Euclidean
space whose coordinates represent all the partial derivatives of smooth maps
u(x)=(u^{1}(x), . . , u^{q}(x)) from X to U of all orders 0 through m . A multi-
index of order r is an unordered r-tuple of integers J= (j_{1}, \ldots, j_{r}) with
1\leq j_{s}\leq n . The order of multi-index J is denoted by |J| . A typical point
in U^{(m)} is denoted by u^{(m)} , so that

u^{(m)}=(u_{J}^{\alpha}) , 1\leq\alpha\leq q , 0\leq|J|\leq m .

Then U^{(m)} is an open subset of the Euclidean space of dimension q . (\begin{array}{l}n+mm\end{array}) .
The product space X\cross U^{(m)} is called the m-th order jet space and is denoted
by J^{m}(X, U) .

Let F= (f^{1}, \ldots, f^{q}) be a smooth map from X into U . For each x\in X

let

j_{x}^{m}F=(\partial_{J}f^{\alpha}(x)) , 1\leq\alpha\leq q , 0\leq|J|\leq m .

Then the map j^{m}F:X – J^{m}(X, U) defined by x\mapsto(x,j_{x}^{m}F) , is a section
of J^{m}(X, U) , and is called the m-th graph of F . By j_{x}F we denote the jet of
F at x of unspecified order. Let A be the set of real valued smooth functions
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a(x, u^{(m)}) of some finite, but unspecified order m . An element of A is called
a differential function and denote by a[u] . The order of a differential function
is the order of the highest derivatives that occurs. Then A is a commutative
algebra and the subset A^{(m)} of A consisting of the differential functions of
order less than or equal to m is a subalgebra.

Now consider a system of m-th order differential equations

\triangle^{I/}(x, u^{(m)})=0 , 1\leq\nu\leq l , (1.1)

for unknown functions u= (u^{1}, \ldots, u^{q}) of n variables x=(x^{1}, , x^{n}) .
Let I be the set of all differential functions of the form

\sum\sum P_{\nu}^{J}[u](D_{J}\triangle^{\nu})l , P_{\mathfrak{l}J}^{J}[u]\in A ,
|J|\geq 0\nu=1

where D_{J}=D_{(j_{1},\ldots,j_{r})}=D_{j_{1}}\circ\cdots oD_{j_{r}} is a composition of total differential
operators. Then we see that I is an ideal of A and that I is closed under
total differentiation, namely

D_{J}I\subset I , for any multi-index J. (1.2)

For each m=1,2 , \ldots , I^{(m)}:=I\cap A^{(m)} is an ideal of A^{(m)} . If F is a solution
of (1.1) of differentiability class C^{m} , a(j^{m}F)=0 , for all a \in I^{(m)} .

Let

V= \sum_{i=1}^{n}\xi^{i}(x, u)\frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q}\phi^{\alpha}(x, u)\frac{\partial}{\partial u^{\alpha}} (1.3)

be a vector field on X\cross U . The m-th prolongation of V is a vector field on
J^{m}(X, U) defined by

pr^{(m)}V=V+ \sum_{1\leq|J|\leq m}\phi_{J}^{\alpha}\frac{\partial}{\partial u_{J}^{\alpha}} ,

where the coefficients \phi_{J}^{\alpha} are given by the prolongation formula

\phi_{J}^{\alpha}=D_{J}(\phi^{\alpha}-\sum_{i=1}^{n}\xi^{i}u_{i}^{\alpha})+\sum_{i=1}^{n}\xi^{i}u_{J,i}^{\alpha} . (1.4)

By a straight-forward calculation one can show

Proposition 1.1 If V and W are vector fifields on X\cross U , then

pr^{(m)}[V, W]=[pr^{(m)}V,pr^{(m)}W] ,
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where [, ] is the Lie bracket.

We also have

Proposition 1.2 Suppose that \mathcal{L}_{0} is a fifinite dimensional Lie algebra of
vector fifields on X\cross U , with generators V_{j} , j=1 , . , Nr Suppose that
pr^{(m)}V_{j} , j=1 , \ldots , N , are linearly independent everywhere for some non-
negative integer m . Then there exist (n+q (\begin{array}{l}n+mm\end{array})-N) functionally indepen-
dent differential functions of order m annihilated by pr^{(m)}V_{j} , j=1 , . , N .

Proof The number of independent variables (x, u^{(m)}) is n+q (\begin{array}{l}n+mm\end{array}) , so
the assertion follows from the Frobenius theorem. \square

Now let Q= (Q^{1}[u], \ldots, Q^{q}[u]) be a q-tuple of differential functions.
An evolutionary vector field with the characteristic Q is an expression of
the form

V_{Q}= \sum_{\alpha=1}^{q}Q^{\alpha}[u]\frac{\partial}{\partial u^{\alpha}} , (1.5)

which can be regarded as a vector field in the jet space J^{m}(X, U) , for a
sufficiently large m . Let V be a vector field on X\cross U as in (1.3). Let

Q^{\alpha}[u]= \phi^{\alpha}-\sum_{i=1}^{n}\xi^{i}u_{i}^{\alpha} , \alpha=1 , \ldots , q . (1.6)

Then the evolutionary vector field V_{Q}= \sum_{\alpha=1}^{q}Q^{\alpha}[u]\frac{\partial}{\partial u^{\alpha}} with the charac-
teristic Q[u] given by (1.6) is called the evolutionary representative of V
The prolongation formula (1.4) applied to the evolutionary vector field (1.5)
yields

prV_{Q}=V_{Q}+ \sum_{J}(D_{J}Q^{\alpha})\frac{\partial}{\partial u_{J}^{\alpha}} . (1.7)

prV_{Q} is a linear differential operator that acts on differential functions.
When it acts on a differential function of order m only finitely many terms
with |J|\leq m in the summation of (1.7) virtually act as partial differential
operators. Finally, we define the infinitesimal symmetry of the systems that
are not nocally solvable:

Definition 1.4 An evolutionary vector field V_{Q} is an infinitesimal sym-
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metry (or Lie-B\"acklund transformation) of a system (1.1) if

(prV_{Q})\triangle^{\nu}\in I , for each lJ =1 , \ldots , l .

2. Infinitesimal symmetries for isometric embeddings

Let (M, g) be an n-dimensional manifold with Riemannian metric g . A
C^{1} mapping u= (u^{1}, \ldots, u^{n+d}) of M into a Euclidean space \mathbb{R}^{n+d} is a local
isometric embedding if and only if u satisfies

\sum_{\alpha=1}^{n+d}\frac{\partial u^{\alpha}}{\partial x^{i}}\frac{\partial u^{\alpha}}{\partial x^{j}}=g_{ij}(x) , 1\leq i , j\leq n , (2.1)

where (x^{1}, , x^{n}) is a local coordinate system of M and g_{ij}(x)=g( \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}) .

Since g_{ij}=g_{ji} , the number of equations in (2.1) is n(n+1)/2 and then the
system (2.1) is underdetermined if d>n(n-1)/2 and overdetermined if

d<n(n-1)/2 . For each i , j=1 , . . , n , let

\triangle^{ij}=\sum_{\alpha=1}^{n+d}\frac{\partial u^{\alpha}}{\partial x^{i}}\frac{\partial u^{\alpha}}{\partial x^{j}}-g_{ij}(x) . (2.2)

In this section we denote by script letters the jet theoretic notions ass0-

ciated with (2.1) : A is the algebra of differential functions in the arguments

(x^{1}, \ldots, x^{n}, u^{1}, \ldots, u^{n+d}, u_{i}^{\alpha}, u_{ij}^{\alpha}, \cdots) ,

where u_{i}^{\alpha}= \frac{\partial u^{\alpha}}{\partial x^{l}} , u_{ij}^{\alpha}= \frac{\partial^{2}u^{\alpha}}{\partial x^{i}\partial x^{j}} , and so forth. A^{(m)} is the subalgebra of A
consisting of the differential functions of order less than or equal to m. I is
an ideal of A consisting of all the differential functions of the form

\sum_{J}\sum_{i,j=1}^{n}P_{ij}^{J}[u](D_{J}\triangle^{ij}) , P_{ij}^{J}[u]\in A . (2.3)

For each non-negative integer m ,

I^{(m)}=I\cap A^{(m)} ,

and so forth. An evolutionary vector field V_{Q}= \sum_{\alpha=1}^{n+d}Q^{\alpha}[u]\frac{\partial}{\partial u^{\alpha}} is an
infinitesimal symmetry of (2.1) if Q=(Q^{1}, \ldots, Q^{n+d}) satisfies

\sum_{\alpha=1}^{n+d}\{(D_{j}Q^{\alpha})u_{i}^{\alpha}+(D_{i}Q^{\alpha})u_{j}^{\alpha}\}=0 , mod I,
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for each i , j=1 , . , n . (2.4)

Now we mention two special kinds of infinitesimal symmetries: the ev0-

lutionary representative of a Killing field and the infinitesimal rigid motions
of \mathbb{R}^{n+d} . A vector field V on M is a Killing vector field if

L_{V}g=0 , (2.5)

where L is the Lie derivative and g is the Riemannian metric. Write V=
\sum_{k=1}^{n}\xi^{k}(x)\frac{\partial}{\partial x^{k}} in terms of the coordinates. Then (2.5) is a system of first
order linear partial differential equations

\sum_{k=1}^{n}(g_{jk}\frac{\partial\xi^{k}}{\partial x^{i}}+g_{ik}\frac{\partial\xi^{k}}{\partial x^{j}}+\xi^{k}\frac{\partial g_{ij}}{\partial x^{k}})=0 , i , j=1 , . , n , (2.6)

for the unknowns (\xi^{1}(x), \ldots , \xi^{n}(x)) .
The evolutionary representative of V has characteristic

Q^{\alpha}[u]=- \sum_{k=1}^{n}\xi^{k}(x)u_{k}^{\alpha} , \alpha=1 , \ldots , n+d. (2.7)

Theorem 2.1 If V= \sum_{k=1}^{n}\xi^{k}(x)\frac{\partial}{\partial x^{k}} is a Killing fifield on M its evolu-
tionary representative V_{Q} is an infifinitesimal symmetry of (2.1). Conversely,
if an evolutionary vector fifield \sum_{\alpha=1}^{n+d}Q^{\alpha}[u]\frac{\partial}{\partial u^{\alpha}} , with Q^{\alpha} as in (2.7) is an in-
fifinitesimal symmetry of (2.1) and if there exists a solution F of (2.1) then
V= \sum_{k=1}^{n}\xi^{k}\frac{\partial}{\partial x^{k}} is a Killing fifield of M .

Proof. Suppose that V is a Killing field. Let Q^{\alpha} be as in (2.7). Then

\sum_{\alpha=1}^{n+d}((D_{j}Q^{\alpha})u_{i}^{\alpha}+(D_{i}Q^{\alpha})u_{j}^{\alpha})

=- \sum_{\alpha=1}^{n+d}\sum_{k=1}^{n}\{(\xi_{j}^{k}u_{k}^{\alpha}+\xi^{k}u_{kj}^{\alpha})u_{i}^{\alpha}+(\xi_{i}^{k}u_{k}^{\alpha}+\xi^{k}u_{ki}^{\alpha})u_{j}^{\alpha}\} .

Since

\sum_{\alpha=1}^{n+d}u_{k}^{\alpha}u_{i}^{\alpha}=g_{ki} , mod I,
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and

\sum_{\alpha=1}^{n+d}(u_{kj}^{\alpha}u_{i}^{\alpha}+u_{ki}^{\alpha}u_{j}^{\alpha})=\frac{\partial gij}{\partial x^{k}} , mod I,

the above expression equals to

- \sum_{k}(\xi_{j}^{k}g_{ki}+\xi_{i}^{k}g_{kj}+\xi^{k}\frac{\partial g_{ij}}{\partial x^{k}}) , mod I,

=0 , mod I, by (2.6).

Thus V_{Q} is an infinitesimal symmetry.
Conversely, if

V_{Q}= \sum_{\alpha=1}^{n+d}(-\sum_{k=1}^{n}\xi^{k}(x)u_{k}^{\alpha})\frac{\partial}{\partial u^{\alpha}}

is an infinitesimal symmetry of (2.1), then (2.4) implies that

- \sum_{\alpha=1}^{n+d}\sum_{k=1}^{n}\{\xi_{j}^{k}u_{k}^{\alpha}u_{i}^{\alpha}+\xi_{i}^{k}u_{k}^{\alpha}u_{j}^{\alpha}+\xi^{k}D_{k}(u_{i}^{\alpha}u_{j}^{\alpha})\}=0 , mod I. (2.8)

If F= (f^{1}, . . ’ f^{n+d}) is a solution, evaluation of (2.8) on j^{1}F yields

n+dn \sum\sum\{\xi_{j}^{k}f_{k}^{\alpha}f_{i}^{\alpha}+\xi_{i}^{k}f_{k}^{\alpha}f_{j}^{\alpha}+\xi^{k}D_{k}(f_{i}^{\alpha}f_{j}^{\alpha})\}=0 .
\alpha=1k=1

Substitute

\sum_{\alpha=1}^{n+d}f_{i}^{\alpha}f_{j}^{\alpha}=g_{ij} , i , j=1 , \ldots , n ,

to get (2.6), which implies that \sum_{k=1}^{n}\xi^{k}(x)\frac{\partial}{\partial x^{k}} is a Killing vector field of
M. \square

We denote by \mathcal{L} the Lie algebra of infinitesimal symmetries of (2.1) and
by \mathcal{L}_{0} the set of infinitesimal rigid motions of \mathbb{R}^{n+d} . Then \mathcal{L}_{0} is a Lie algebra
of dimension (n+d)(n+d+1)/2 with the standard basis consisting of n+d
translations

T_{k}= \frac{\partial}{\partial u^{k}}, k=1 , \ldots , n+d (2.9)
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and (n+d)(n+d-1)/2 rotations

R_{jk}=u^{j} \frac{\partial}{\partial u^{k}}-u^{k}\frac{\partial}{\partial u^{j}} , j , k=1 , \ldots , n+d, j\neq k . (2.10)

\mathcal{L}_{0} is a Lie subalgebra of \mathcal{L} by the following.

Theorem 2.2 An infifinitesimal rigid motion in \mathbb{R}^{n+d} is an infifinitesimal
symmetry of (2.1).

Proof Since (2.4) is linear in (Q^{1}, \ldots, Q^{n+d}) , it is enough to show that
the translations T_{i} and the rotations R_{ij} satisfy (2.4), and it is easy to see
that the left hand side of (2.4) is identically equal to zero for T_{i} and

R_{ij}\square

.

Now let \tilde{M} be an n-dimensional submanifold of \mathbb{R}^{n+d} . A vector field Z
on \tilde{M} , not necessary tangent to \tilde{M} , is called an infinitesimal bending of \tilde{M}

if

\langle\nabla_{X}’Z, Y\rangle+\langle X, \nabla_{Y}’Z\rangle=0 , (2.11)

for all vectors X and Y tangent to \tilde{M} , where \nabla’ is the covariant differenti-
motion of \mathbb{R}^{n+d} (see [Sp]). Now we have

Theorem 2.3 Suppose that V_{Q}= \sum_{\alpha=1}^{n+d}Q^{\alpha}[u]\frac{\partial}{\partial u^{\alpha}} is an infifinitesimal sym-
metry of (2.1) and that F is a solution of (2.1). Then V_{Q} evaluated on the
jet of F

V_{Q}(j_{x}F)= \sum_{\alpha=1}^{n+d}Q^{\alpha}(j_{x}F)\frac{\partial}{\partial u^{\alpha}}

is an infifinitesimal bending of F(M) at x\in M .

Proof. Suppose that Q^{\alpha}[u] , \alpha=1 , . . , n+d, satisfies (2.4) and F=
(f^{1}, \ldots, f^{n+d}) is a solution of (2.1). Then

\sum_{\alpha=1}^{n+d}\{\frac{\partial}{\partial x^{j}}Q^{\alpha}(j_{x}F)\frac{\partial f^{\alpha}}{\partial x^{i}}+\frac{\partial}{\partial x^{i}}Q^{\alpha}(j_{x}F)\frac{\partial f^{\alpha}}{\partial x^{j}}\}=0 ,

i,j=1 , \ldots , n . (2.12)

Let X_{i}=F_{*}( \frac{\partial}{\partial x^{i}}) , i=1 , \ldots , n , and let Z= \sum_{\alpha=1}^{n+d}Q^{\alpha}(j_{x}F)\frac{\partial}{\partial u^{\alpha}} . Then (2.12)
is equivalent to

\langle\nabla_{X_{j}}’Z, X_{i}\rangle+\langle X_{j}, \nabla_{X_{i}}’Z\rangle=0 , i , j=1 , . . ’ n ,
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which implies that Z satisfies (2.11). \square

3. Local invariants for isometric embeddings

Let \tilde{M} be an n-dimensional C^{\infty} submanifold of \mathbb{R}^{n+d}=\{ (u^{1}, . , u^{n+d})\} .
After Euclidean motions, \tilde{M} is locally given by

u^{n+\sigma}=h^{n+\sigma}(u^{1}, \ldots, u^{n}) , \sigma=1 , . , d . (3.1)

A local invariant of order m is a differential function of m-th jet of

h(u^{1}, . , u^{n})=(h^{1} (u^{1}, \ldots, u^{n}), \ldots, h^{d}(u^{1}, , u^{n})) ,

which is invariant under isometries of \tilde{M} .
First, we consider differential functions of m-th jet of h which are in-

variant under the action of \mathcal{L}_{0} , the infinitesimal isometries of \mathbb{R}^{n+d} . Since
\mathcal{L}_{0} is of dimension (n+d)(n+d+1)/2 with generators (2.9) and (2.10)
and the dimension of the m-th jet space of h is n+d(\begin{array}{l}n+mm\end{array}) , by Proposition
1.2 we have

Theorem 3.1 In the algebra of differential functions of m-th jet, m\geq 2 ,

of a system of d functions (h^{1}, \ldots, h^{d}) of n independent variables
(u^{1}, \ldots, u^{n}) , there are n+d(\begin{array}{l}n+mm\end{array}) -(n+d)(n+d+1)/2 functionally in-
dependent differential functions which are annihilated by \mathcal{L}_{0} .

Now let M be as in \S 2. Since the problem is local, we may regard M
as an open subset of \mathbb{R}^{n} with the standard coordinates (x^{1}, \ldots, x^{n}) and
let U=\mathbb{R}^{n+d}= \{(u^{1}, \ldots, u^{n+d})\} . For each positive integer m we define
a map \pi from an open subset \Omega^{m} of J^{m}(M, \mathbb{R}^{n+d}) to the m-th jet space
J^{m}(\mathbb{R}^{n}, \mathbb{R}^{d}) of (3.1) as follows. For m=1 , consider the Chain rule

\frac{\partial u^{n+\sigma}}{\partial x^{i}}=\sum_{k=1}^{n}h_{k}^{\sigma}\frac{\partial u^{k}}{\partial x^{i}} , i=1 , . , n , (3.2)

for the function u^{n+\sigma}=h^{n+\sigma}(u^{1}, . , u^{n}) , \sigma=1 , . . , d . Let \Omega^{1} be the

subset of J^{1}(M, \mathbb{R}^{n+d}) on which [ \frac{\partial u^{k}}{\partial x^{i}}]_{i,k=1,\ldots,n} is non-singular. Then on \Omega^{1} .

we solve (3.2) for h_{k}^{\sigma} in terms of u_{i}^{\alpha} , so define \pi : \Omega^{1}arrow J^{1}(\mathbb{R}^{n}, \mathbb{R}^{d}) by

\pi : (x, u, u_{i}^{\alpha} : \alpha=1, \ldots, n+d, i=1_{ },\ldots, n)

\mapsto(u, h_{k}^{\sigma} : \sigma=1, \ldots, d, k=1, \ldots, n) .

For m=2 , to define \pi : \Omega^{2}\subset J^{2}(M, \mathbb{R}^{n+d}) – J^{2}(\mathbb{R}^{n}, \mathbb{R}^{d}) , differentiate
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(3.2) to get

\frac{\partial^{2}u^{n+\sigma}}{\partial x^{i}\partial x^{j}}=\sum_{k,s=1}^{n}h_{ks}^{\sigma}\frac{\partial u^{k}}{\partial x^{i}}\frac{\partial u^{s}}{\partial x^{j}}+\sum_{k=1}^{n}h_{k}^{\sigma}\frac{\partial^{2}u^{k}}{\partial x^{i}\partial x^{j}} . (3.3)

Let \Omega^{2} be the subset of J^{2}(M, \mathbb{R}^{n+d}) on which [ \frac{\partial u^{k}}{\partial x^{i}}]_{i,k=1,\ldots,n} is non-
singular. Then on \Omega^{2} , we solve (3.2) and (3.3) for h_{k}^{\sigma} , h_{ks}^{\sigma} , in terms of u_{i}^{\alpha} .
u_{ij}^{\alpha} , so define \pi : \Omega^{2}arrow J^{2}(\mathbb{R}^{n}, \mathbb{R}^{d}) by

\pi : (x, u, u_{i}^{\alpha} , u_{ij}^{\alpha} : \alpha=1, \ldots, n+d, i, j=1, . . , n)

\mapsto (u, h_{k}^{\sigma}, h_{ks}^{\sigma} : \sigma=1, \ldots, d, k, s=1, \ldots , n) .

We define \pi : \Omega^{m}arrow J^{m}(\mathbb{R}^{n}, \mathbb{R}^{d}) inductively for each positive integer m .
Now we define the notions of invariants for isometric embedding. We

shall call a differential function as in Theorem 3.1 an extrinsic invariant:

Definition 3.2 An extrinsic invariant for (2.1) of order m\geq 1 , is a dif-
ferential function a defined on J^{m}(\mathbb{R}^{n}, \mathbb{R}^{d}) such that

(pr^{(m)}V) (a \circ\pi ) =0 , mod I,

for all V\in \mathcal{L}_{0} .

To define another notion of invariant, consider the cases in which there
exists a 1-parameter family of solutions of (2.1). A basic fact on the in-
finitesimal symmetries is the following.

Proposition 3.3 Suppose that V_{Q}= \sum_{\alpha=1}^{n+d}Q^{\alpha}[u]\frac{\partial}{\partial u^{\alpha}} is an infifinitesimal
symmetry and that u=F(x) is a solution of (2.1). Suppose that a mapping

v= (v^{1}, . , v^{n+d}) : M\cross(-\epsilon, \epsilon)arrow \mathbb{R}^{n+d}

satisfifies

\{

\frac{\partial v^{\alpha}(x,t)}{\partial t}=Q^{\alpha}(x, v^{(m)}) , \alpha=1 , . . ’ n+d,

v(x, 0)=F(x) ,
(3.4)

where v^{(m)}=\{(\partial/\partial x^{1})^{\alpha_{1}}, . . (\partial/\partial x^{n})^{\alpha_{n}}v : \alpha_{1}+\cdot. +\alpha_{n}\leq m\} . Then for
each t\in(-\epsilon, \epsilon) , v(\cdot, t) is a solution of (2.1).

Proof. See [Olv]. \square

A solution v(x, t) to the evolution equation (3.4) is a ‘bending’ of the
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embedding Fr An infinitesimal invariant is a differential function which
remains unchanged under any bending. However, a solution of (3.4) does
not always exist, and thus we are led to define the following

Definition 3.4 A differential function a defined on J^{m}(\mathbb{R}^{n}, \mathbb{R}^{d}) is an in-
finitesimal invariant of order m of (2.1) if

(prV_{Q}) (a \circ\pi ) =0 , mod I,

for any infinitesimal symmetry V_{Q} of (2.1).

Remark. In Definition 3.4 if the characteristic Q[u]=(Q^{1}[u], \ldots, Q^{n+d}[u])

of an infinitesimal symmetry V_{Q} are differential functions of order r then

(prV_{Q}) (a 0\pi ) =(pr^{(m)}V_{Q}) (a \circ\pi )

is a differential function of order m+r , defined on an open subset \Omega^{m+r} of
J^{m+r}(M, \mathbb{R}^{n+d}) . (2.1) is a condition for an embedding u=(u^{1}, . , u^{n+d})

and thus

[ \frac{\partial u^{\alpha}}{\partial x^{i}}]_{i=1,\ldots,n}^{\alpha=1,\ldots,n+d}

is of maximal rank n on the solution subvariety S^{m+r} of J^{m+r}(M, \mathbb{R}^{n+d})

given by the ideal I^{m+r} . therefore S^{m+r}\cap\Omega^{m+r} is non-empty.

Definition 3.5 A differential function a defined on J^{m}(\mathbb{R}^{n}, \mathbb{R}^{d}) is an in-
trinsic invariant of order m of (2.1) if a \circ\pi=k(x)mod I , for some function
k(x) . We call k(x) the intrinsic expression of a.

If u= (u^{1}, \ldots, u^{n+d}) : Marrow \mathbb{R}^{n+d} is a solution of (2.1) such that
[ \frac{\partial u^{\alpha}}{\partial x^{i}}]_{\alpha,i=1,\ldots,n} is non-singular we put (a 0\pi ) (u^{(m)})=A(u^{(m)}) . Then we
have

\kappa(x)=A(u^{(m)}) , (3.5)

which is a partial differential equation that a C^{m} solution of (2.1) satisfies.
For surfaces in \mathbb{R}^{3} , principal curvatures are extrinsic invariants and the
Gaussian curvature is an intrinsic invariant. The latter is the Theorema
Egregium of Gauss. Relations among the three notions of invariants are the
following.

Theorem 3.6 Let a be a differential function defifined on J^{m}(\mathbb{R}^{n}, \mathbb{R}^{d}) of
order m . If a is an infifinitesimal invariant of (2.1), then a is an extrinsic
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invariant of (2.1). If a is an intrinsic invariant of (2.1), then a is an

infifinitesimal invariants of (2.1).

Proof The first assertion is obvious, for an infinitesimal rigid motion of
\mathbb{R}^{n+d} is an infinitesimal symmetry of (2.1) (Theorem 2.2).

Now suppose that a is an intrinsic invariant and suppose that

V_{Q}= \sum_{\alpha=1}^{n+d}Q^{\alpha}[u]\frac{\partial}{\partial u^{\alpha}}

is an infinitesimal symmetry of (2.1). Since a\circ\pi=b+k(x) , for some b\in I ,

(prV_{Q}) (a \circ\pi ) =(prV_{Q})b+(prV_{Q})k(x) ,

where the second term of the right hand side is zero and the first term of
right hand side is contained in I, and therefore,

(prV_{Q}) (a \circ\pi ) =0 , mod I.

\square

Finally, we calculate intrinsic invariants of a surface in \mathbb{R}^{3} given by
u^{3}=h(u^{1}, u^{2}) by means of Definition 3.5.

First, we observe that the Lie algebra \mathcal{L}_{0} of infinitesimal isometries of
\mathbb{R}^{3} is of dimension 6 and J^{1}(\mathbb{R}^{2}, \mathbb{R}) is of dimension 5, therefore, there is no
extrinsic invariants of order 1. By Theorem 3.1 with n=2, d=1 , m=
2 , there are two functionally independent extrinsic invariants. Principal
curvatures \lambda_{i} , i=1,2 are those extrinsic invariants. They are given by

\frac{(1+(h_{2})^{2})h_{11}-2h_{1}h_{2}h_{12}+(1+(h_{1})^{2})h_{22}\pm\sqrt{A}}{2(1+(h_{1})^{2}+(h_{2})^{2})^{3/2}} , (3.6)

where

A=[(1+(h_{2})^{2})h_{11}-2h_{1}h_{2}h_{12}+(1+(h_{1})^{2})h_{22}]^{2}

-4(1+(h_{1})^{2}+(h_{2})^{2})(h_{11}h_{22}-(h_{12})^{2}) .

Any function of \lambda_{i} , i=1,2 , is also an extrinsic invariant. Now we show
that the Gaussian curvature

\lambda_{1}\lambda_{2}=\frac{h_{11}h_{22}-(h_{12})^{2}}{(1+(h_{1})^{2}+(h_{2})^{2})^{2}} (3.7)

is an intrinsic invariant in the sense of Definition 3.5.
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(3.2) and (3.3) with n=2, d=1 , are

\{

u_{x}^{3}=h_{1}u_{x}^{1}+h_{2}u_{x}^{2} ,

u_{y}^{3}=h_{1}u_{y}^{1}+h_{2}u_{y}^{2} ,
(3.3)

and

\{

u_{xx}^{3}=h_{11}u_{x}^{1}u_{x}^{1}+h_{12}(u_{x}^{1}u_{x}^{2}+u_{x}^{2}u_{x}^{1})+h_{22}u_{x}^{2}u_{x}^{2}+h_{1}u_{xx}^{1}+h_{2}u_{xx}^{2} ,

u_{xy}^{3}=h_{11}u_{x}^{1}u_{y}^{1}+h_{12}(u_{x}^{1}u_{y}^{2}+u_{x}^{2}u_{y}^{1})+h_{22}u_{x}^{2}u_{y}^{2}+h_{1}u^{1}xy+h_{2}u_{xy}^{2} , (3.8)

u_{yy}^{3}=h_{11}u_{y}^{1}u_{y}^{1}+h_{12}(u_{y}^{1}u_{y}^{2}+u_{y}^{2}u_{y}^{1})+h_{22}u_{y}^{2}u_{y}^{2}+h_{1}u_{yy}^{1}+h_{2}u_{yy}^{2} .

By solving (3.8) and (3.9) for h_{i} and h_{ij} , i,j=1,2 , and substituting in
(3.7), we get (\lambda_{1}\lambda_{2})\circ\pi , which is a differential function on \Omega^{2}\subset J^{2}(\mathbb{R}^{2}, \mathbb{R}^{3})

as defined in \S 3. Then eliminate the elements of I from (\lambda_{1}\lambda_{2})\circ\pi , where I
is the ideal as defined in \S 2 with n=2, d=1 . We used MathematicaOR for
the symbolic calculations, to get the following.

Theorem 3.7 The Gaussian curvature (3.7) is an intrinsic invariant of
order 2. In fact,

4 \frac{h_{11}h_{22}-(h_{12})^{2}}{(1+(h_{1})^{2}+(h_{2})^{2})^{2}}o\pi

=(g_{11}g_{22}-(g_{12})^{2})^{-2}[2((g_{12})^{2}-g_{11}g_{22})(g_{11,yy}-2g_{12,xy}+g_{22,xx})

+g_{11}(g_{11,y}g_{22,y}-2g_{12,x}g_{22,y}+(g_{22,x})^{2})

+g_{12}(g_{11,x}g_{22,y}-g_{11,y}g_{22,x}-2g_{11,y}g_{12,y}

+4g_{12,x}g_{12,y}-2g_{12,x}g_{22,x})

+g_{22} (g_{11,x}g_{22,x}-2g_{11,x}g_{12,y}+(g_{11,y})^{2})] , mod I, (3. 10)

where g_{11,x}= \frac{\partial g11}{\partial x} , and so forth.
The right hand side of (3.10) is the intrinsic expression of the Gaussian

curvature.
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