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Fatou property of harmonic maps from complete
manifolds with simple type ends

Yi-Hu YANG
(Received September 4, 1995; Revised February 5, 1996)

Abstract. In this paper, we consider harmonic maps on a class of complete noncompact
manifolds, we prove the existence and Fatou property for harmonic maps into convex balls
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1. Introduction and Results

The boundary behavior, s0-called Fatou property, of the solution of
an elliptic equation has been attracting many mathematicians. But more
attention was concentrated on bounded domains. Until the beginning of
1960’ s (or, earlier, due to Gilbarg and Serrin [4]), J. Moser [10] did not use
his Harnack inequality to consider the behavior at infinity of the solution
to a divergence-type uniformly elliptic equation on unbounded domains.

Recently, P. Aviles, H. I. Choi and M. Micallef considered the behavior
at infinity of harmonic maps from Cartan-Hadamard manifolds with cur-
vature K satisfying -a^{2}\leq K\leq-b^{2}<0 to convex balls. They found
that in this case the result is completely analogous to that on bounded
domains. From the point of view of Martin boundary, this phenomenon is
very natural. Because the Martin boundary of the above Cartan-Hadamard
manifolds is actually S^{n}[0] .

A natural problem is that when the Martin boundary is a point or
finitely many points, how is the situation? Does the above phenomenon
also appear? On the other hand, the well-known Liouville-type theorem
due to Hildebrandt, Jost and Widman tells us that a harmonic map from a
simple Riemannian manifold to a geodesiclly convex ball has to be constant.
And from Section 2 we know that the Martin boundary of such manifolds
is a point. Thus, one should ask if the above Hildebrandt-Jost-Widman’s
theorem can be interpreted as Fatou property.
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The present paper is a continuation of the previous paper [17], where
we discussed Fatou property for the domain manifolds being complete Rie-
mannian manifolds with nonnegative sectional curvature at infinity. Here,
we will discuss the case for the following domain manifolds: M^{m}(m\geq 3) ,
complete noncompact Riemannian manifolds with finitely many ends such
that each end is isometric to the complement of a compact subset in a simple
Rimannian manifold (See Section 2). Our results are as follows.

Theorem 1 Let M^{m} be a complete Riemannian manifold as above, whose
ends are E_{1} , \ldots , E_{s} , s\geq 2 , N^{n} be a complete Riemannian manifold, B_{Q}(\tau)

be a geodesic convex ball (See section 2) in Nr Then for any given points
p_{1} , \ldots , p_{s}\in B_{Q}(\tau) , there exists a unique harmonic map f : M – B_{Q}(\tau)

with f(x) –
p_{\sigma} , as x\in E_{\sigma} , xarrow\infty and E(f)<\infty .

Theorem 2 Let M^{m} , B_{Q}(\tau) be as in Theorem 1, f : M – B_{Q}(\tau) be
a harmonic map such that the energy density is bounded and the energy
is finite. Then Fatou property holds, i.e. , there exist p_{1} , , p_{s} such that
f(x)-p_{\sigma} as x(\in E_{\sigma})arrow\infty

Corollary 1 Let s=1 . Then there is no nonconstant harmonic map

f : Marrow B_{Q}(\tau) with bounded energy density and finite energy.

The theorem due to Hildebrandt, Jost and Widman [7] tells us that
when M is a simple Riemannian manifold, any harmonic map f : M -

B_{Q}(\tau) is constant, this makes us believe that the complexity of topology
results in the existence of nonconstant harmonic maps. From this point
of view, Fatou property is a natural generalization of Liouville type the0-
rem. We think that there exists close relation between Fatou property and
Liouville type theorems. The understanding of the behavior at infinity of
harmonic maps on various kinds of manifolds makes Liouville type theorems
clearer.

Now, we discuss the conditions in Theorem 2. From Theorem 1, the fi-
nite energy condition seems to be reasonable. But, thanks to Liouville-type
theorem in [7], we believe that the condition can be omitted. In addi-
tion, requiring bounded energy density is unsatisfactory, but if for each end
E_{\sigma} , \sigma=1 , \ldots , s , Riemannian metric (\gamma_{\alpha\beta}) satisfies |\gamma_{\alpha\beta}|_{C^{1}}<+\infty , then for
any harmonic map f : M^{m} – B_{Q}(\tau) , its energy density is bounded. This
is a direct consequence of [3, Proposition 8, 5.13 or Theorem 4(i) ] (also
see [11] ) .
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This paper is organized as follows: In the section 2, we give some nec-
essary preliminaries, in particular, positive harmonic functions on M^{m} , and
Harnack inequality due to J. Moser. In the section 3 and section 4, we give
the proofs of theorem 1 and theorem 2

Finally, the author would like to thank the referee for his valuable com-
ments and suggestions.

2. Preliminaries

A complete Riemannian manifold V^{m} is called simple if it is diffe0-
morphic to R^{m} , and the corresponding metric g_{ij} satisfies that there exist
numbers \Lambda\geq\lambda>0 ,

\lambda|\xi|^{2}\leq g_{ij}\xi^{i}\xi^{j}\leq\Lambda|\xi|^{2} , (1)

where x\in R^{m} , \xi\in R^{m} . Throughout this paper, assuming that M^{m}(m\geq 3)

is a complete Riemannian manifold satisfying that there exists a compact
subset D\subset\subset M with s components of M\backslash D , denoted by E_{1} , . , E_{s}(s\geq 2) ,
each of which is isometric to the complement of a closed ball in some simple
Riemannian manifold (unless otherwise specified).

The following lemma might be known, but we are not able to find it in
the literature, so give a simple proof.

Lemma 1 Let V^{m} be a simple Riemannian manifold, p\in V . and B_{p}(r_{0})

be a geodesic ball centered at p with radius r_{0} . Then there exists a unique
harmonic function f on V\backslash B_{p}(r_{0}) with \int_{M}|\nabla f|^{2}<\infty , f|_{\partial B_{p}(r_{0})}=1 and
\lim_{xarrow\infty}f(x)=0 .

Proof. In the present setting, Laplace-Beltrami operator on V is obviously
uniformly elliptic. From [5, Theorem 1.1], one knows that there exists a
positive Green function G(x, y) on V satisfying for all x , y\in V

G(x, y)\leq K_{1}(m, \lambda, \Lambda)|x-y|^{2-m} , (2)

G(x, y)\geq K_{2}(m, \lambda, \Lambda)|x-y|^{2-m} . (3)

where K_{1} , K_{2} depend only on m , \lambda , \Lambda , and | | is Euclidean distance. Ob-
viously, fixing y, \lim_{xarrow\infty}G(x, y)=0 and G(x,p) is harmonic on V\backslash B_{p}(r_{0}) .

One can now imitate the method of [13, Section 4] to construct the re-
quired harmonic function f as follows: Choose a sequence of numbers
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R_{0}<R_{1}<R_{2}< , . \tau and consider the following Dirichlet problem

\{

\triangle_{V}f_{i}=0 , on B_{p}(R_{t})\backslash B_{p}(r_{0}) ,

f_{i}|_{\partial B_{p}(R_{i})}=0 , f_{i}|_{\partial B_{p}(ro)}=1 ,

where \triangle_{V} is Laplace-Beltrami operator with respect to Riemannian metric
on V One is able to obtain a sequence of harmonic functions \{f_{i}\}_{i=1}^{\infty} ,
satisfying f_{i}\leq f_{i+1} and f_{i}\leq 1 on B_{p}(R_{i})\backslash B_{p}(r_{0}) by Maximum principle.
By means of the standard elliptic estimates, one has that \{f_{i}\} uniformly
converges to some harmonic function, denoted by f , on any compact subset
of V\backslash B_{p}(r_{0}) , with f|_{\partial B_{p}(r_{0})}=1 . Choose a constant C satisying CG(x, p)|
\partial B_{p}(r_{0})\geq 1 , by the harmonicity of f(x) , G(x, p) on V\backslash B_{p}(r_{0}) and the
behavior at infinity of G(x,p) , one has

f_{i}(x)\leq CG(x,p) , \forall x\in B_{p}(R_{i})\backslash B_{p}(r_{0}) .

Thus, f(x)\leq CG(x, p) , \forall x\in V\backslash B_{p}(r_{0}) , therefore \lim_{xarrow\infty}f(x)=0 .

Remained is to prove the energy finiteness, which is analogous to that
of [12, Theorem 2.1] (also see [17]). By the harmonicity and the boundary
value of f . one has

\int_{B_{p}(R_{i})\backslash B_{p}(r_{0})}|\nabla f_{i}|^{2}=\int_{B_{p}(R_{i})\backslash B_{p}(r_{0})}\nabla(f_{i}\nabla f_{i})

=- \int_{\partial B_{p}(r_{0})}\frac{\partial f_{i}}{\partial\gamma}
,

where \gamma is the unit outer normal vector. Fixing R>r_{0} , when R_{i}>R , one
has

\int_{B_{p}(R)\backslash B_{p}(r_{0})}|\nabla f_{i}|^{2}\leq-\int_{\partial B_{p}(r_{0})}\frac{\partial f_{i}}{\partial\gamma}
.

Let i go to infinity, one has

\int_{B_{p}(R)\backslash B_{p}(r_{0})}|\nabla f|^{2}\leq-\int_{\partial B_{p}(r_{0})}\frac{\partial f}{\partial\gamma}
.

Thus \int |\nabla f|^{2}<+\infty . This completes the proof of Lemma 1. \square

V\backslash B_{p}(r_{0})

Remark 1. By the definition of M , there exists a harmonic function f_{\sigma} on
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E_{\sigma} with lim h_{\sigma}(x)=0 and h_{\sigma}(x)=1 as x\in\partial E_{\sigma}(\sigma=1, . , s) .
x(\in E_{\sigma})arrow\infty

For the sake of convenience, we state Harnack inequality due to J. Moser
and its variant. For details see [15].

Theorem (Harnack inequality). Let u be a nonnegative solution of the
equation \partial_{i}(a^{ij}\partial_{j}u)=0 on Bo(R)\subset R^{m} , where a^{ij} satisfy (1). a^{ij}=a^{ji} ;
(2). \exists\lambda , \Lambda>0 , \lambda|\xi|^{2}\leq a^{ij}\xi^{i}\xi^{j}\leq\Lambda|\xi|^{2} , \forall\xi\in R^{m} . Then \forall\theta\in(0,1) , one has

sup u\leq C inf u ,
B_{O}(\theta R)

B_{O}(\theta R)

where C is a constant depending only on m, \frac{\Lambda}{\lambda} , and \theta .

Corollary Let u be a nonnegative solution of the equation in the above
theorem on R^{m}\backslash B_{O}(1) . Then for any R>3 , one has

sup u\leq C inf u ,
\partial B_{O}(R)

\partial B_{O}(R)

where C is constant depending only on m , \frac{\Lambda}{\lambda} .

Proof. It is easy to see that for any R>3 , there exist points x_{1} , \ldots , x_{k}

on \partial B_{O}(R) such that

i=1 \cup B_{x_{i}}(\frac{R}{3})k\supset\partial B_{O}(R) ,

where k=k(m) depends only on m. Remained is a modification of the
proof of [13, Section 3, Theorem 3.2], we omit it. \square

In order to motivate Fatou property, we observe the distribution of
Martin boundary points for the present manifold M^{m} . To the aim, we
firstly need to discuss the Green function on M . By means of [14, Section
2, Remark 1] and the above remark 1, there exists a minimal positive Green
function G(x, y) (see [2]) on M. Choosing x_{0}\in M , considering

\frac{G(x,y)}{G(x_{0},y)} ,

and using Harnack inequality, the similar discussion of [11, Section 3]
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deduces

y() arrow\infty\lim_{\in E_{\sigma}}\frac{G(x,y)}{G(x_{0},y)}=\frac{f_{\sigma}(x)}{f_{\sigma}(x_{0})} ,

where f’s are the harmonic functions in Lemma 3 below. Thus, from the
definition of Martin boundary [12], each end of M, E_{\sigma} , corresponds to a
Martin boundary point.

From the point of view of Martin boundary, the following lemma is
natural.

Lemma 2 Let h be a nonnegative harmonic function on E_{\sigma} . Then there
exists a nonnegative constant a with 0\leq a<\infty and \lim_{xarrow\infty}h(x)=a .

Proof. Using Harnack inequality, completely similar to the proof of [13,
Theorem 3.3], one can show that \lim_{xarrow\infty}h(x) exists (also see [10, Section 5]).
On the other hand, by Lemma 1, there exists a barrier g_{\sigma} with \lim_{xarrow\infty}g_{\sigma}(x)=

1 and g_{\sigma}|_{\partial E_{\sigma}}=0 . If \lim_{xarrow\infty}h(x)=\infty , one can fix y\in E_{\sigma} and choose a

positive number A with \frac{h(y)}{A}<g_{\sigma}(y) . But Maximum principle implies

\frac{h(x)}{A}\geq g_{\sigma}(x) , \forall x\in E_{\sigma} . This is a contradiction. \square

From the existence of barrier functions in Lemma 1, we also have the
following

Lemma 3 (1). There exists a unique positive harmonic functions f_{\sigma} on
M satisfying lim f_{\sigma}(x)=1 and lim =0;(2) . Any bounded

x(\in E_{\sigma})arrow\infty x(\not\in E_{\sigma})arrow\infty

harmonic function is a combination of \{f_{1}, \ldots, f_{s}\} .

Its proof is similar to [13, Section 6, Theorem 6.1]. We omit it.
Finally, we state two lemmas, which are useful in the sequel develop-

ment. They can be found in [1] and [8] respectively. Firstly, we give a
definition: geodesic convex ball B_{Q}(\tau) of N^{n} . Let N^{n} be a Riemannian
manifold, B_{Q}(\tau) be a geodesic convex ball in N^{n} , i.e., the geodesic ball
centered at Q with radius \tau , \tau<\frac{\pi}{2\sqrt{\kappa}} , and B_{Q}(\tau) lies inside the cut-locus

of Q , here \kappa is an upper bound of the sectional curvature of N, \kappa\geq 0 . In
addition, \Omega always denotes a bounded domain with smooth boundary in a
complete noncompact manifold.
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Lemma 4 Given \varphi
\in C^{0}(\partial\Omega, B_{Q}(\tau)) , let u \in C^{0}(\overline{\Omega}, B_{Q}(\tau))\cap

C^{\infty}(\Omega, B_{Q}(\tau)) be a harmonic map on \Omega which equals \varphi on \partial\Omega . With re-
spect to geodesic normal coordinates centered at p, \varphi may also be viewed
as being R^{n} -valued. Let h : \overline{\Omega}arrow R^{n} be the harmonic extension of \varphi , i.e. ,
h= (h^{1}, . . , h^{n}) , where h^{i} is a harmonic function for each i and h|_{\partial\Omega}=\varphi .
Let v : \overline{\Omega}arrow R be the harmonic extension of \frac{1}{2}|\varphi|^{2}=\frac{1}{2}\sum_{i=1}^{n}(\varphi^{i})^{2} . Then,
there exists a constant C>0 , depending only on the geometry of B_{Q}(\tau)

such that

[ \rho(u(x), h(x))]^{2}\leq C(v(x)-\frac{1}{2}|h(x)|^{2}) x\in\Omega , (4)

where \rho is the distance function on N .

Lemma 5 Let h= (h^{1}, \ldots, h^{n}) be normal coordinates on B_{Q}(2\tau) such
that Q has coordinates (0, \ldots, 0) . Denote by gik(h) , \Gamma_{ik}^{l}(h) , and \Gamma_{ikl}(h)

the metric and Christoffel symbols, respectively, in this coordinates system.
Then for all h satisfying |h|=( \sum_{i=1}^{n}h^{i}h^{i})^{\frac{1}{2}}\leq 2\tau<\frac{\pi}{\sqrt{\kappa}} and all \xi\in R^{n} we
have the following estimates

\Gamma_{ik}^{l}(h)h^{l}\xi^{i}\xi^{k}\leq\{\delta_{ik}-a_{\kappa}(|h|)g_{ik}(h)\}\xi^{i}\xi_{J}^{k}. (5)

where

a_{\kappa}(t)=\{

t\sqrt{\kappa}ctg(t\sqrt{\kappa}) , \kappa>0,0\leq t<\frac{\pi}{\sqrt{\kappa}} ,

1, \kappa=0,0\leq t<\infty

3. The proof of Theorem 1

Similar to the method of [1] and [17], we will use bounded harmonic
functions on M obtained in Lemma 3 to approximate harmonic maps. Its
key is Lemma 4. Let ends of M be E_{1} , . , E_{s}(s\geq 2) , correspondingly, one
has positive harmonic functions f_{1} , \ldots , f_{s} satisfying

\{

lim f_{\sigma}(x)=1 ,
x(\in E_{\sigma})arrow\infty

lim f_{\sigma}(x)=0 .
x(\not\in E_{\sigma})arrow\infty

One can fix a normal coordinate on B_{Q}(\tau) as in Lemma 5 and set the
corresponding coordinate of p_{\sigma} being ( h_{\sigma}^{1} , \ldots , (h_{\sigma}^{n}) . Construct n functions
\sum_{\sigma=1}^{s}h_{\sigma}^{k}f_{\sigma} , 1\leq k\leq n , which are harmonic. Setting h=( \sum_{\sigma=1}^{s}h_{\sigma}^{1}f_{\sigma} , . . .
\sum_{\sigma=1}^{s}h_{\sigma}^{n}f_{\sigma}) , under the above normal coordinate of B_{Q}(\tau) , h defines a map
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from M to B_{Q}(\tau) , denoted still by h . This is because lim h(x)=p_{\sigma}
x(\in E_{\sigma})arrow\infty

(\sigma=1, , s) and maximum principle implies

\sum_{k=1}^{n}(\sum_{\sigma=1}^{s}h_{\sigma}^{k}f_{\sigma}(x))^{2}\leq\tau^{2} , \forall x\in M .

Choosing \{R_{i}\}_{i}^{\infty} with R_{1}<R_{2}< , . . , <R_{l}arrow\infty , as l – \infty , and fixing
x_{0}\in M . B_{x_{0}}(R_{i}) is a geodesic ball at x_{0} with radius R_{i} . By means of
[8, Theorem 1] and [9, Theorem 1], there exists a uniquely harmonic map
u_{i} : B_{x_{0}}(R_{i}) – B_{Q}(\tau) with u_{i}|_{\partial B_{x_{0}}(R_{i})}=h|_{\partial B_{x_{0}}(R_{i})} . On the other hand,
[3, Theorem 4] implies \{u_{i}\}_{i=1}^{\infty} uniformly converges to a harmonic map on
arbitrary compact subset of M, u:Marrow B_{Q}(\tau) . From Lemma 4, one has

[ \rho(u_{i}(x), h(x))]^{2}\leq C(v_{i}(x)-\frac{1}{2}|h(x)|^{2}) , \forall x\in B_{x_{0}}(R_{i}) ,

where v_{i} is the harmonic extension of \frac{1}{2}|h(x)|^{2}|_{\partial B_{x_{0}}(R_{i})} , C depends only on
the geometry of B_{Q}(\tau) .

Now,we set w= \frac{1}{2}\sum_{\sigma=1}^{s}\sum_{k=1}^{n}(h_{\sigma}^{k})^{2}f_{\sigma} , which is harmonic on M and has
the same behavior at infinity as \frac{1}{2}|h(x)|^{2} . It is obvious that v_{i}(x)- \frac{1}{2}|h(x)|^{2}<

w(x)- \frac{1}{2}|h(x)|^{2} , on B_{x_{0}}(R_{i}) . Thus, one has

[ \rho(u_{i}(x), h(x))]^{2}\leq C(w(x)-\frac{1}{2}|h(x)|^{2}) , \forall i .

Hence, [ \rho(u(x), h(x))]^{2}\leq C(w(x)-\frac{1}{2}|h(x)|^{2}) , i.e., u is harmonic and u(x) –

p_{\sigma} as x\in E_{\sigma} , x-\infty(\sigma=1, \ldots, s) .
From [9], we know that u is unique, we interpret as follows: Let u_{1} be

another harmonic map M – B_{Q}(\tau) with u_{1}(x) –
p_{\sigma} as x\in E_{\sigma} , x – \infty

(\sigma=1, \ldots, s) . From [9, Theorem 1], we have that the following function
on B_{x_{0}}(R_{i}) satisfies maximum principle:

\rho_{i}(x)=\frac{q_{k}(\rho(u(x),u_{1}(x)))}{cos(\sqrt{\kappa}\rho(Q,u(x)))cos(\sqrt{\kappa}\rho(Q,u_{1}(x)))}

where q_{k} : Rarrow R , defined by

q_{k}(t)=\{

\frac{(1-cos\sqrt{\kappa}t)}{\kappa} , \kappa>0

\frac{t^{2}}{2} , \kappa=0 .
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Obviously, \rho_{i}(x)-*0 as i -arrow\infty , i.e. , u=u_{1} .
Remained is to prove the energy finiteness. The uniqueness of u_{i} implies

that its energy is minimal i.e.,

\int_{B_{x_{0}}(R_{i})}|\nabla u_{i}|^{2}\leq\int_{B_{x_{0}}(R_{i})}|\nabla h|^{2}
, \forall i ,

hence, one has

\int
| \nabla u_{i}|^{2}\leq\int_{M}|\nabla h|^{2} ,

B_{x_{0}}(R)

for any R>0 with R_{i}>R . Thus

\int
| \nabla u|^{2}\leq\int_{M}|\nabla h|^{2}-

B_{x_{0}}(R)

So, we only need to prove \int_{M}|\nabla h|^{2}<\infty . To this aim, it is sufficient

to prove \int_{M}|\nabla f_{\sigma}|^{2}<\infty , \sigma=1 , , s . Noting the construction of f_{\sigma} and

Lemma 1, this is easy to prove. Thus we complete the proof of Theorem 1.

Remark 2. In Theorem 1, we assume s\geq 2 . In case of s=1 , by the
discussion of the uniqueness, it is easy to see that no nonconstant harmonic
map u:Marrow B_{Q}(\tau) with u(x)arrow p\in B_{Q}(\tau) as xarrow\infty , which is also true
for the harmonic map u:M – B_{Q}(\tau) with lim u(x)=p\in B_{Q}(\tau) for

x(\in M)arrow\infty

s\geq 2 .

4. The proofs of Theorem 2 and Corollary 1

In order to make Theorem 2 more general than that stated, we con-
sider the Green function on each end E_{\sigma} (\sigma=1, . , s) and its properties.
Equivalently, we consider the Green function on V\backslash B_{p}(r_{0}) as in Lemma
1. Choosing \{R_{i}\}_{i=1}^{\infty} with 5r_{0}<R_{1}<R_{2}< , \ldots , <R_{l}arrow\infty , as larrow\infty ,
by means of [5, Theorem 1.1], there exists a Green function G_{i}(x, y) on
B_{p}(R_{i})\backslash B_{p}(r_{0}) with respect to Dirichlet boundary value satisfying that for
any x , y\in B_{p}(R_{i})\backslash B_{p}(r_{0})

G_{i}(x, y)\leq K_{1}(m, \lambda, \Lambda)|x-y|^{2-m} ,
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holds and for any x , y\in B_{p}(R_{i})\backslash B_{p}(r_{0}) with |x-y| \leq\frac{1}{2}dist (y, \partial B_{p}(R_{i})\cup

\partial B_{p}(r_{0}))

G_{i}(x, y)\geq K_{2}(m, \lambda, \Lambda)|x-y|^{2-m} ,

holds. Thus one can use the multiplities of |x-y|^{2-m} as a barrier function
and show \{G_{i}(x, y)\}_{i=1}^{\infty} uniformly converges to a Green function, denoted
by G(x, y) , on any compact subset of V\backslash B_{p}(r_{0}) , which satisfies that for
x\in V\backslash B_{p}(r_{0}) , G(x, y)|_{\partial B_{p}(r_{0})}=0 and \lim_{yarrow\infty}G(x, y)=0 . In addition, for

x , y\in V\backslash B_{p}(r_{0})

G(x, y)\leq K_{1}(m, \lambda, \Lambda)|x-y|^{2-m} (6)

holds and for x , y\in V\backslash B_{p}(2r_{0}) with |x-y| \leq\frac{1}{2}dist(y, \partial B_{p}(r_{0}) )

G(x, y)\geq K_{1}(m, \lambda, \Lambda)|x-y|^{2-m} (7)

holds. Thus, from (6) and (7), one can easily deduce that for any x\in

V\backslash B_{p}(r_{0}) with d(x,p)\geq 2r_{0} and some real number q>1
sup max G(x, y)<\infty , (8)

d(x,p)\geq 2r_{0}\partial B_{x}(r_{0})

\int |G(x, y)|^{q}<\infty . (9)
B_{x}(r_{0})

Remark 3. The estimates (8), (9) are the conditions imposed on the Green
function in [17]. In the present setting, because of excellent property of
Laplace-Beltrami operator on each end, these conditions are naturally sat-
isfied. It should be pointed out that the conditions in [17] are imposed on
the Green function of M . In fact, it is unnecessary. Because each end of the
manifolds discussed in [17] is large, on which there exists a positive Green
function with respect to Dirichlet boundary value, so we only need that the
Green function on each end satisfies (8), (9). Finally, the proof of Fatou
property in [17] is completely similar to what we will do here. The following
example also shows that such conditions are not reasonable: Suppose that
each end is isometric to R^{3}\backslash B_{O}(1) . On R^{3}\backslash B_{O}(1) , the Green function is

G(X, X_{0})= \frac{1}{4\pi}[\frac{1}{\sqrt{(x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}}}
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- \frac{1}{\sqrt{R_{0}^{2}R^{2}-2(xx_{0}+yy0+zz_{0})+1}}] ,

where X=(x, y, z) , X_{0}=(x_{0}, y_{0}, z_{0}) , R_{0}=|X_{0}| , R=|X| . It is easy
to check that the above Green function satisfies (8), (9). (The case of
R^{m}\backslash B_{O}(1) is similar.)

Proposition 1 Let (V, \gamma) be a simply Riemannian manifold, for p\in V_{-}

B_{p}(r_{0}) be a geodesic ball centered at p with radius r_{0} . Suppose that u :
V\backslash B_{p}(r_{0}) - B_{Q}(\tau) is harmonic with bounded energy density and finite
energy. Then \exists p\in B_{Q}(\tau),\lim_{xarrow\infty}u(x)=p .

Proof. Fix a normal coordinate on B_{Q}(\tau) as before. Setting

|u(x)|^{2}= \sum_{i=1}^{n}|u^{i}(x)|^{2} .

a direct computation shows

\frac{1}{2}\triangle|u|^{2}=|\nabla u|^{2}+u^{l}\triangle u^{l}

=|\nabla u|^{2}-u^{l}\Gamma_{ij}^{l}u_{\alpha}^{i}u_{\beta}^{j}\gamma^{\alpha\beta} ,

where (\gamma^{\alpha\beta})^{-1} is the metric on V. \Gamma_{ij}^{l} as in Lemma 5. Using Lemma 5, one
has

\frac{1}{2}\triangle|u|^{2}\geq|\nabla u|^{2}-\{\delta_{ij}-a_{\kappa}(|u|)g_{ij}(u)\}u_{\alpha}^{i}u_{\beta}^{j}\gamma^{\alpha\beta}

=a_{\kappa}(|u|)e(u)\geq 0 , (10)

where (g_{ij}) , a_{\kappa} as in Lemma 5, e(u) is the energy density of u , a_{\kappa}(|u|)>0

for |u|< \frac{\pi}{2\sqrt{\kappa}} .

Let G_{i}(x, y) be the Green function at the beginning of this section.
Considering

B_{p}(R) \backslash \int_{i}\triangle|u|^{2}(y)G_{i}(x, y)dyB_{p}(r_{0}) ’ denoted by f_{i} , it satisfies

\{

\triangle f_{i}=-\triangle|u|^{2} , on B_{p}(R_{i})\backslash B_{p}(r_{0}) ,

f_{i}|\partial B_{p}(R_{i})\cup\partial B_{p}(r_{0})=0 .

Maximum principle implies f_{i}\leq\tau^{2} , so V \backslash B\int_{p(0)}\triangle|u|^{2}(y)G(x, y)dyr ’ denoted
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by f(x) , is not greater than \tau^{2} . By (10), one has

\int e(u)G(x, y)dy<\infty .
V\backslash B_{p}(r_{0})

On the other hand, |\triangle u^{l}|\leq Ce(u) , C depending only on the geometry
of B_{Q}(\tau) . Thus, one can define

f^{l}= \int_{V\backslash B_{p}(ro)}\triangle u^{l}(y)G(x, y)dy+u^{l}
, 1\leq l\leq n . (11)

Obviously, f^{l} is harmonic. Lemma 2 implies there exists a real number
a^{l} with

f^{l}(x)arrow a^{l} . as xarrow\infty .

If we can prove that lim \int \triangle u^{l}(y)G(x, y)dy exists, then the
xarrow\infty_{V\backslash B_{p}(r_{0})}

proposition 1 is proved. To this aim, we claim that under the conditions of
Proposition 1, one has

\int \triangle u^{l}(y)G(x, y)dyarrow 0,1\leq l\leq n , as xarrow\infty . (12)
V\backslash B_{p}(r_{0})

Since \int e(u)dy<\infty , for any sufficiently small \epsilon>0 , there exists
V\backslash B_{p}(r_{0})

sufficiently large R>0 with \int |\triangle u^{l}|<\epsilon . Fix R>5r_{0} and consider
V\backslash B_{p}(R)

the integral \int \triangle u^{l}(y)G(x, y)dy . Assuming that dist (p, x) is sufficiently
V\backslash B_{p}(R)

large and satisfies B_{x}(r_{0})\subset V\backslash B_{p}(R) , one has

| \int_{V\backslash B_{p}(R)}\triangle u^{l}(y)G(x, y)dy|

\leq|\int_{(V\backslash B_{p}(R))\backslash B_{x}(r_{0})}\triangle u^{l}(y)G(x, y)dy|+|\int_{B_{x}(r_{0})}\triangle u^{l}(y)G(x, y)dy|

\leq\max G(x, y)\int_{(V\backslash B_{p}(R))\backslash B_{x}(r_{0})}\partial B_{x}(r_{0})|\triangle u^{l}(y)|dy
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+( \int_{B_{x}(ro)}|\triangle u^{l}(y)|^{r}dy)^{\frac{1}{r}}(\int_{B_{x}(r_{0})}|G(x, y)|^{q}dy)\frac{1}{q}

where \frac{1}{r}+\frac{1}{q}=1 . Since |\triangle u^{l}|<\infty , using (8), (9), the right hand side of
the above inequality is sufficiently small.

In the following, we consider the integral \int_{B_{p}(R)\backslash B_{p}(r_{0})}\triangle u^{l}(y)G(x, y)dy .
Firstly, we observe the behavior G(x, y) with respect to y on B_{p}(R)\backslash B_{p}(r_{0}) .
Assuming that d(x,p) is sufficiently large, the maximum value of G(x, y) on
B_{p}(R)\backslash B_{p}(r_{0}) is achieved on \partial B_{p}(R) , say, point y_{R}(x)\in\partial B_{p}(R) . Hence,

| \int_{B_{p}(R)\backslash B_{p}(r_{0})}\triangle u^{l}(y)G(x, y)dy|\leq\int_{B_{p}(R)\backslash B_{p}(r_{0})}|\triangle u^{l}(y)|G(x, y_{R}(x))dy

\leq CG(x, y_{R}(x)) ,

where C is a constant. From (6), one has that the left hand side of the above
inequality goes to 0 as xarrow\infty . Thus, we complete the proof of Proposition
1, also Theorem 2. \square

Using Proposition 1, (10) and Maximum principle, Corollary 1 can be
easily obtained.

Remark 4. From Proposition 1, we can slightly change the image of the
harmonic map u in Theorem 2, by only requiring that u(E_{\sigma}) ’s be contained
in some geodesic convex balls. It is easy to see that in this case Corollary 1
does not hold by using the work due to Schoen and Yau [16]. When M^{m} is
homeomorphic to R^{m} , Z. R. Jin obtained some results in some special cases
(See [10]).
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