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Point separation of a two-sheeted disc by
bounded analytic functions

(To Professor Mitsuru Nakai on his sixtieth birthday)
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Abstract. Let \pi : \overline{\triangle}arrow\triangle be a tw0-sheeted unlimited covering of the open unit disc
\triangle , and a_{n} be its ramification points. Taking mutually disjoint closed discs \triangle_{\mathfrak{n}}= { z :
|z-a_{n}|\leq r_{n}\} in \triangle , we let \overline{D}=\pi^{-1}(\triangle\backslash \cup\triangle_{n}) . For a_{n}=1- \frac{1}{n} , the points of Riemann

surface \overline{D} are separated or not separated by bounded analytic functions depending on
the sizes of radii r_{n} . We show the sharpness of such a condition on r_{n} . We also obtain a
similar result for the case a_{nj}=(1-2^{-n})e^{2\pi ij/2^{n}}

Key words: point separation, bounded analytic function, tw0-sheeted disc, Riemann sur-
face.

1. Introduction and Main Results

Let \triangle=\{z:|z|<1\} be the open unit disc in the complex plane \mathbb{C} . Let
\pi : \triangle-arrow\triangle be a tw0-sheeted unlimited covering of \triangle whose ramification
points, say a_{n} , does not accumulate in \triangle . Throughout this paper, we
denote \tilde{D}=\pi^{-1}(D) for any subdomain D of \triangle . In this paper, we consider
the problem when the points of \overline{D} are separated \underline{b}y bounded analytic
functions, that is, for an\underline{y} pair of distinct points a , b in D , there is a bounded
analytic function f on D such that f(a)\neq f(b) . The purpose of this paper
is to show a sharpness of the non-separating conditions given in [6] by
improving the separating conditions given there.

We are interested in this problem from several aspects. First, if a given
Riemann surface admits a non constant bounded analytic function, then
the next problem to be asked is the point separation. Here, we have some
general theories (e.g. [1], [7]). However, our knowledge in this area is still
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quite limited. In fact, we have to solve the problem directly by constructing
a bounded analyitc function. Second, the construction of a bounded analytic
function on a Riemann surfece, is not a matter of triviality, even in a simple
case like the tw0-sheeted domain \overline{D} . Our construction, which we have found
by (‘trial and success,” may have own interests. Third, the points of the
domain \overline{D} are separated by bounded an\underline{a}lytic function, then the pole set
of domain \overline{D} turns out to be the whole D , which incereses the number of
examples to which the theory in [2] can apply.

It is known [8] that the points of \triangle- is separated by bounded analytic
functions if and only if \{a_{n}\} satisfies the Blaschke condition, that is, \sum(1-

|a_{n}|)<\infty .
Now, in what follows we always assume that \sum(1-|a_{n}|)=\infty . In this

case, choosing a sequence of closed discs \triangle_{n}=\{z : |z-a_{n}|\leq r_{n}\} satisfying
the condition

\triangle_{n}\subset\triangle and \triangle_{n}\cap\triangle_{m}=\emptyset (n\neq m) , (1)

we define a subdomain D of \triangle by

D=\triangle\backslash \cup\triangle_{n}n . (2)

Then, it may happen that the points of \overline{D} are separated by bounded an-
alytic functions, while it depends on the distribution of ramificaiton points
\{a_{n}\} and the sizes of radii \{r_{n}\}([3], [4], [5], [6]) . We are interested in
studying how the sizes of r_{n} are related with the ramification points a_{n} .
A sequence of closed discs \triangle_{n} (more simply, a sequence of the radii r_{n} ) is
called admissible if \triangle_{n} satisfies condition (1).

The following two theorems were obtained in [6].

Theorem A Let a_{n}=1- \frac{1}{n} and radii r_{n} be admissible.
(a) If there is a positive sequence \{\eta_{n}\} such that \sum_{n=1}^{\infty}\frac{1}{\eta_{n}}<\infty and

r_{n} \leq(\frac{1}{n})^{\eta_{n}} , then the points of \overline{D} are not separated by bounded
analytic functions.

(b) It is p\underline{o}ssible to choose r_{n} so that the points of the covering d0-
main D are separated by bounded analytic functions.

Theorem B Let a_{nj}=(1-2^{-n})e^{2\pi ij/2^{n}}(0\leq j<2^{n}, n\geq 1) and radii
r_{nj} be admissible.

(a) If there is a positive sequence \{\eta_{n}\} such that \sum_{n=1}^{\infty}\frac{1}{\eta_{n}}<\infty and
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r_{nj}\leq 2^{-\eta_{n}} , then the points of \overline{D} are not separated by bounded
analytic functions.

(b) Il is p\underline{o}ssible to choose r_{nj} so that the points of the covering d0-
main D are separated by bounded analytic functions.

The parts (b) were proved there in the following way: First, one can
find a sequence of discs \triangle_{k}’ with center a_{k} such that the interiors of these
discs are mutually disjoint and such that \triangle_{2k-1}’ touches with \triangle_{2k}’ at a
point, where one may consider a suitable renumbering for the sequence
a_{nj} . Second, one replaces \triangle_{k}’ by a smaller ones \triangle_{k} so as to be admissible.
Finally, if one choose \triangle_{k} ’s so 1\arg\underline{e} that \triangle_{2k-1} almost touches with \triangle_{2k} ,
the points of the covering domain D can be separated by bounded analytic
functions.

Because of this way of proof, it was not able to determine whether the
conditions stated in the parts (a) are sharp or not. Our aim is to show that
these conditions are acutually sharp in a sense.

Meanwhile, our answer is not complete by any means. We shall leave
some problems which may improve our results. This sort of problems could
be completely answered if one would give a necessary and sufficient condi-
tion. However, a consideration shows that it seems to be quite difficult, or
might be impossible to do so; for instance, sizes of r_{n_{k}} have no importance
for any subsequence a_{n_{k}} satisfying the Blaschke condition.

Throughout this paper, we denote by \{\sigma_{n}\} an arbitrary sequence of
positive numbers satisfying

0< \lim_{narrow}\inf_{\infty}\sigma_{n}\leq\lim_{narrow}\sup_{\infty}\sigma_{n}<\infty .

Theorem 1 Let a_{n}=1- \frac{1}{n} and let r_{n}=e^{-\sigma_{n}n^{p}} be an admissible sequence.
Then, the points of the covering domain \tilde{D} are separated by bounded analytic
functions if 0<p\leq 1 , and not separeated if p>1 .

Theorem 2 Let a_{nj}=(1-2^{-n})e^{2\pi ij/2^{n}}(0\leq j<2^{n}, n\geq 1) and let
r_{nj}=\sigma_{n}2^{-n^{p}} be an admissible sequence. Then, the points of the covering
domain D are separated by bounded analytic functions if p=1 , and not
separeated if p>1 .

In Theorem 2, the case p<1 is excluded because the sequence r_{nj} is
then not admissible.
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The “not separated” parts of the theorems immediately follows from
the parts (a) of Theorem A and B , respectively. We only have to show the
“separated” parts.

2. Proof of Theorem 1

Set

Q_{k,N}(z)= \prod_{j=k}^{N}q4j-3(z) , q_{n}(z)= \frac{(n-z)(n+3-z)}{(n+1-z)(n+2-z)} .

First, we estimate the growth of functions Q_{k,N} on the domain

G=\mathbb{C}\backslash \cup G_{n}n=1\infty , G_{n}=\{z ^{:} |z-n|\leq\rho_{n}\} ,

where 0< \rho_{n}<\frac{1}{2} .
The following estimate implies that the infinite product Q=Q_{1,\infty}

converges to a meromorphic function on the complex plane \mathbb{C} .

Estimate 2.1 If z\in\partial G_{4k-2}\cup\partial G_{4k-1} , then

|Q_{1,k-1}(z)|\leq e^{3} (3)

|q4k-3(z)| \leq\frac{8}{\min(\rho_{4k-2},\rho_{4k-1})} (4)

|Q_{k+1,N}(z)|\leq e^{3} (5)

Proof If |z-1|=\rho_{1} , then

|q0(z)| \leq\frac{(1+\rho_{1})(2+\rho_{1})}{\rho_{1}(1-\rho_{1})}\leq\frac{15}{2\rho_{1}}<\frac{8}{\rho_{1}} .

In the same way, if |z-2|=\rho_{2} , then

|q0(z)| \leq\frac{8}{\rho_{2}} .

Since q_{n}(z)=q_{0}(z-n) , this proves (4). Next, note that

1-q_{n}(z)= \frac{2}{(n+1-z)(n+2-z)} .
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If |m-n|\geq 4 and z\in\partial G_{m+1}\cup\partial G_{m+2} , then

dist (\{n+1, n+2\}, z)\geq|n-m|-3 .

Therefore,

|1-q_{n}(z)| \leq\frac{2}{(|m-n|-3)^{2}} .

If z\in\partial G_{4k-2}\cup\partial G_{4k-1} , then

\sum_{j=k+1}^{N}|1-q4j-3(z)|\leq\sum_{j=k+1}^{\infty}\frac{2}{(4j-4k-3)^{2}}=\sum_{j=1}^{\infty}\frac{2}{(4j-3)^{2}}

\leq 2+\frac{1}{8}\sum_{j=2}^{\infty}\frac{1}{(j-1)^{2}}<3 .

Since |x|\leq e^{|x|-1}\leq e^{|1-x|} ,

|Q_{k+1,N}(z)| \leq\exp(\sum_{j=k+1}^{N}|1-q_{4j-3}(z)|)<e^{3}

This proves (5). In a similar way, we have

\sum_{j=1}^{k-1}|1-q_{4j-}s(z)|\leq\sum_{j=1}^{k-1}\frac{2}{(4j-4k-3)^{2}}=\sum_{j=1}^{\infty}\frac{2}{(4j-3)^{2}}<3 ,

and we see (3). \square

Lemma 2.2 Let \sigma be a positive constant. Then, the function g(z)=
e^{-\sigma z}Q(z) is bounded on the domain

G’=\{z : ^{\Re_{Z}}>0\}\backslash \cup G_{n}n=1\infty , G_{n}=\{z ^{:} |z-n|\leq\rho_{n}\}

whenever lim \sup_{narrow\infty}[mathring]_{\frac{1g1/\rho_{n}}{n}}<\sigma .

Proof. Since it suffices to prove the boundedness of function g on a larger
domain than given domain G’ , we may replace positive numbers \rho_{n} by
smaller ones so that 0< \rho_{n}<\frac{1}{2} and \rho_{n}\geq\rho_{n+1} . Set g_{N}(z)=e^{-\sigma z}Q_{1,N} , If
z\in\partial G_{4k-2}\cup\partial G_{4k-1} , then by Estimate 2.1

|g_{N}(z)|\leq e^{-\sigma(4k-3)} \frac{8e^{6}}{\rho 4k-1}=8e^{-\sigma(4k-1)+\log(1/\rho_{4k-1})}e^{2\sigma+6} .
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By the assumption, we find a number k_{0} , independent of N , such that
-\sigma(4k-1)+\log(1/\rho_{4k-1})<0 when k>k_{0} . By the maximum modulus
principle, we see that g_{N} is bounded on the domain G’ . Letting N - \infty ,
we are done. \square

Proof of Theorem 1. As we noted after the statement of the theorems,
we only consider the case p\leq 1 . By the same reason as in the proof of
the preceding lemma, it is sufficient to prove the theorem for p=1 . The
transformation \psi(z)=\frac{1}{1-z} maps the closed disc \triangle_{n} onto the closed disc with

diameter, the line segment [n- \frac{n^{2}r_{n}}{1+nr_{n}}, n+ \frac{n^{2}r_{n}}{1-nr_{n}}] . If we set \rho_{n}=\frac{n^{2}r_{n}}{1+nr_{n}} ,

then the domain G’ defined in Lemma 2.2 includes the set \psi(D) . Since

\lim_{narrow}\sup_{\infty}\frac{\log 1/\rho_{n}}{n}=\lim_{narrow}\sup_{\infty}\frac{\log(1+ne^{-\sigma_{n}n})+\sigma_{n}n-2\log n}{n}

= \lim_{narrow}\sup_{\infty}\sigma_{n} ,

it follows that e^{-\sigma z}Q(z) is bounded on \phi(D) if we choose the number \sigma so
large that lim \sup_{narrow\infty}\sigma_{n}<\sigma . Now, any pair of distinct points of \overline{D} can be

separated by one of two functions \sqrt{e^{-\sigma\psi(z)}Q(\psi(z))} and z\circ\pi on \overline{D} . \square

We close this section with two comments.
Using P(z)= \prod_{n=1}^{\infty}\frac{z-a_{4n-3}}{z-a_{4n-2}}\frac{z-a_{4n}}{z-a_{4n-1}} in place of Q(\psi(z)) , one can prove

Theorem 1 rather directly without using domain transformation \psi(z) , while
one may need a little more efforts to estimate the function P(z) .

It might be an interesting problem to determine whether the points of
\overline{D} are separated by bounded analytic functions or not, when r_{n}=( \frac{1}{n})^{\sigma_{n}n}

in Theorem 1.

3. Proof of Theorem 2

For given real number 0<\rho<1 and positve integer m , we put \omega_{m}=

e^{2\pi i/2m} , a_{j}=\rho\omega_{m}^{j} and

P_{m}^{\rho}(z)= \prod_{j=0}^{m-1}\frac{a_{2j}}{|a_{2j}|}\frac{1-\overline{a}_{2j^{Z}}}{a_{2j}-z}\frac{|a_{2j+1}|}{a_{2j+1}}\frac{a_{2j+1}-z}{1-\overline{a}_{2j+1^{Z}}}

= \frac{1-\rho^{m_{Z}m}}{\rho^{m}-z^{m}}\frac{\rho^{m}+z^{m}}{1+\rho^{m_{Z}m}} . (6)
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It follows that

P_{m}^{\rho}(z)-1= \frac{2(1-\rho^{2m})z^{m}}{(\rho^{m}-z^{m})(1+\rho^{m}z^{m})} (7)

|P_{m}^{\rho}(z)|^{2}-1= \frac{4(1-\rho^{2m})(1-|z|^{2m})\rho^{m}\Re z^{m}}{|\rho^{m}-z^{m}|^{2}|1+\rho^{m}z^{m}|^{2}} . (8)

Lemma 3.1 If 0<\sigma<1 , then there is an integer N_{\sigma} and a positive
constant c_{\sigma} such that

c_{\sigma}<|1-(1+ \frac{z}{m})^{m}|\leq 4

for all complex numbers z and intergers m with \sigma\leq|z|\leq 1 and m\geq N_{\sigma} .

Proof. Since

|1+ \frac{z}{m}|^{m}\leq(1+\frac{|z|}{m})^{m}\leq(1+\frac{1}{m})^{m}<e<3 ,

the second inequality holds. To prove the first inequality, we note that
(1+ \frac{z}{m})^{m} converges to e^{z} uniformly in z for |z|\leq 1 . Let c_{\sigma}= \frac{1}{2}\inf\{|1-e^{z}| :
\sigma\leq|z|\leq 1\} . Then, c_{\sigma}>0 . Hence, there exists an integer N_{\sigma} such that

|(1+ \frac{z}{m})^{m}-e^{z}|\leq c_{\sigma}

for |z|\leq 1 and m\geq N_{\sigma} . This proves the first inequality. \square

The next lemma is elementary.

Lemma 3.2 If 0<x<m , then (1- \frac{x}{m})^{m} is decreasing in x and increas-
ing in m . In particular, (1- \frac{x}{m})^{m}\leq e^{-c} if 0<c\leq x<m .

Estimate 3.3 If |z|<\rho , then

|P_{m}^{\rho}(z)-1|< \frac{2|z|^{m}}{(\rho^{m}-|z|^{m})(1-|z|^{m})}

Proof. From (7),

|P_{m}^{\rho}(z)-1| \leq\frac{2(1-\rho^{2m})|z|^{m}}{(\rho^{m}-|z|^{m})(1-|z|^{m})}<\frac{2|z|^{m}}{(\rho^{m}-|z|^{m})(1-|z|^{m})} .

\square



560 M. Hayashi and T. Kato

Estimate 3.4 Let 0<\sigma<1,0<\rho<1 and let \triangle_{j}=\{z:|z-a_{j}|\leq\frac{\rho\sigma}{m}\} .
If m\geq N_{\sigma} , then

|P_{m}^{\rho}(z)| \leq\frac{8}{c_{\sigma}} \frac{1}{1-\rho^{m}} on \triangle\backslash \cup\triangle_{2j}m-1j=0

Proof. Since |P_{m}^{\rho}(z)|=1 on |z|=1 , we have only to estimate P_{m}^{\rho} on
\partial\triangle_{2j} , 0\leq j<m . Noting a rotation invariance by angle \omega_{m} , we may
consider only the case j=0. Let |z- \rho|=\frac{\rho\sigma}{m} , or z= \rho(1+\frac{\sigma}{m}e^{i\theta}) . By the
sake of Lemma 3.1, it follows from (6) that

|P_{m}^{\rho}(z)| \leq\frac{2}{\rho^{m}|1-(1+\frac{\sigma}{m}e^{i\theta})^{m}|}
\frac{\rho^{m}|1+(1+\frac{\sigma}{m}e^{i\theta})^{m}|}{1-\rho^{m}}

\leq\frac{24}{c_{\sigma}} \frac{1}{1-\rho^{m}}

\square

Estimate 3.5 If \rho<|z|<1 , then

||P_{m}^{\rho}(z)|^{2}-1| \leq\frac{8(1-|z|^{2m})|_{z}^{E}|^{m}}{(1-|_{z}^{e}|^{m})^{2}|1-\rho^{m}|} .

Proof. From (8),

||P_{m}^{\rho}(z)|^{2}-1| \leq\frac{4(1-\rho^{2m})(1-|z|^{2m})\rho^{m}|\Re z^{m}|}{(|z^{m}|-\rho^{m})^{2}(1-\rho^{m})^{2}}

\leq\frac{4(1+\rho^{m})(1-|z|^{2m})|_{z}^{\mu}|^{m}}{(1-|_{z}^{E}|^{m})^{2}(1-\rho^{m})}

8 (1-|z|^{2m})|_{z}^{E}|^{m}

\leq\overline{(1-|_{z}^{E}|^{m})^{2}|1-\rho^{m}|}
.

\square

Now, let \{\rho_{n}\} be a strictly increasing sequence of positive numbers with
\rho_{n}arrow 1 , and let \{m_{n}\} be an increasing sequence of positive integers. Put

a_{nj}=\rho_{n}\omega_{m_{n}}^{j} (0\leq j<m_{n})

P(z)= \prod_{n=1}^{\infty}P_{n}(z) , P_{n}(z)=P_{m_{n}^{n}}^{\rho}(z)
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D=\triangle\backslash \cup\cup^{n}n=1j=1\infty m_{\triangle_{nj}} , \triangle_{nj}=\{z : |z-a_{nj}|\leq r_{n}\} , r_{n}= \frac{\sigma_{n}}{m_{n}}

Proposition 3.6 Let \{\triangle_{nj}\} be an admissible sequence of closed discs,

defined as above. If there are constants \delta , M_{1} and M_{2} (independent of k )
such that

\lim_{karrow\infty}m_{k}=\infty
(9)

( \frac{\rho_{k}}{\rho_{k+1}})^{m_{k}}\leq\delta<1 (/or sufficiently large k ) ( 10)

\sum_{n=1}^{k-1}(1-\rho_{k}^{2m_{n}})(\frac{\rho_{n}}{\rho_{k}})^{m_{n}}\leq M_{1} (11)

\sum_{n=k+1}^{\infty}(\frac{\rho_{k}}{\rho_{n}})^{m_{n}}\leq M_{2} . (12)

Then, the points of the covering domain \overline{D} is separated by bounded analytic

functions.
Proof. Since any pair of distinctpoints- of \overline{D} can be separeted by one of
two functions \sqrt{P(z)} and z\circ\pi on D , it is enough to prove the boundedness
of function P(z) . Noting lim inf \sigma_{n}/\rho_{n}=\lim inf \sigma_{n}>0 , we find a constant
\sigma such that 0<\sigma<1 and \sigma\rho_{n}<\sigma_{n} for all n . It suffices to prove the
boundedness of P(z) for r_{n}= \frac{\sigma\rho_{n}}{m_{n}} . Also, replacing integer N_{\sigma} in Lemma 3.1
to a larger one, if necessary, we may assume that (10) holds for k\geq N_{\sigma} .
Let z\in\partial\triangle_{kj} , k>N_{\sigma} . Note that \rho_{k-1}\leq|z|\leq\rho_{k+1} . If N_{\sigma}\leq n<k-1 ,
then

\rho_{n}^{m_{n}}\leq(\frac{\rho_{n}}{\rho_{k-1}})^{m_{n}}\leq(\frac{\rho_{n}}{\rho_{n+1}})^{m_{n}}\leq\delta .

By Estimate 3.5,

||P_{n}(z)|-1| \leq||P_{n}(z)|^{2}-1|\leq\frac{8(1-\rho_{k-1}^{2m_{n}})(\frac{\rho_{n}}{\rho_{k-1}})^{m_{n}}}{(1-(\begin{array}{l}B\underline{n}-\rho_{k}1\end{array}))^{2}(1-\rho_{n}^{m_{n}})}

\leq\frac{8}{(1-\delta)^{3}}(1-\rho_{k-1}^{2m_{n}})(\frac{\rho_{n}}{\rho_{k-1}})^{m_{n}}
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and hence, (11) yields

\sum_{n=N_{\sigma}}^{k-2}||P_{n}(z)|-1|\leq\frac{8M_{1}}{(1-\delta)^{3}} .

If n=k-1 , k , k+1 , then

\rho_{n}^{m_{\eta}}\leq(\frac{\rho_{n}}{\rho_{n+1}})^{m_{n}}\leq\delta .

By Estimate 3.4,

|P_{n}(z)| \leq\frac{8}{c_{\sigma}} \frac{1}{1-\rho_{n}^{m_{n}}}\leq\frac{8}{c_{\sigma}(1-\delta)} .

If k+1<n , then

\rho_{k+1}^{m_{n}}\leq(\frac{\rho_{k+1}}{\rho_{n}})^{m_{n}}\leq(\frac{\rho_{n-1}}{\rho_{n}})^{m_{n-1}}\leq\delta ,

where we use m_{n-1}\leq m_{n} . By Estimate 3.3,

|P_{n}(z)-1| \leq\frac{2(\frac{\rho_{k+1}}{\rho_{n}})^{m_{n}}}{(1-(\frac{\rho_{k+1}}{\rho_{n}})^{m_{n}})(1-\rho_{k+1}^{m_{n}})}\leq\frac{2}{(1-\delta)^{2}}(\frac{\rho_{k+1}}{\rho_{n}})^{m_{n}}

and hence, (12) yields

\sum_{n=k+2}^{\infty}|P_{n}(z)-1|\leq\frac{2M_{2}}{(1-\delta)^{2}} .

Combining these inequalities, we have

|P| \leq|\prod_{n<N_{\sigma}}P_{n}|
\prod_{n=N_{\sigma}}^{k-2}|P_{n}| |P_{k-1}| |P_{k}| |P_{k+1}| \prod_{n=k+2}^{\infty}|P_{n}|

\leq|\prod_{n<N_{\sigma}}P_{n}|
. exp ( \frac{8M_{1}}{(1-\delta)^{3}}) \{\frac{8}{c_{\sigma}(1-\delta)}\}^{3} , exp ( \frac{2M_{2}}{(1-\delta)^{2}})

This completes the proof. \square

Proof of Theorem 2. Set \rho_{n}=1-2^{-n} and m_{n}=2^{n} . It follows from
Lemma 3.2 that

( \frac{\rho_{k}}{\rho_{k+1}})^{m_{k}}=(1-\frac{1}{2^{k+1}}\frac{1}{1-2^{-k-1}})^{2^{k}}\leq e^{-\frac{1}{2}}=\delta<1 .
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Ifn<k , then ( \frac{\rho_{n}}{\rho_{k}})^{m_{n}}\leq(\begin{array}{l}-\triangle n-\rho_{n}1\end{array})
m_{n}\leq\delta . Since l- nx\leq(1-x)^{n} for 0<x<1 ,

we have 1- \rho_{k}^{2m_{n}}=1-(1-\frac{1}{2^{k}})^{2^{n+1}}\leq\frac{2^{n+1}}{2^{k}}=2^{n-k+1} . Hence,

\sum_{n=1}^{k-1}(1-\rho_{k}^{2m_{n}})(\frac{\rho_{n}}{\rho_{k}})^{m_{n}}\leq\delta\sum_{n=1}^{k-1}2^{n-k+1}<2\delta=M_{1} .

If n>k , then it follows from Lemma 3.2 that

( \frac{\rho_{k}}{\rho_{n}})^{m_{n}}=(1-\frac{1}{2^{n}}\frac{2^{n-k}-1}{1-2^{-n}})^{2^{n}}\leq e^{-2^{n-k}+1}

Hence,

\sum_{n=k+1}^{\infty}(\frac{\rho_{k}}{\rho_{n}})^{m_{n}}\leq\sum_{\ell=1}^{\infty}e^{-2^{\ell}+1}=M_{2}<\infty .

The theorem now follows from the preceding proposition. \square

A variety of versions of Theorem 2 may be derived from Proposition 3.6.
Here, we state two such versions.

Theorem 3 (a) Let a_{nj}=(1- \frac{1}{n})e^{2\pi ij/n^{2}}(0\leq j<n^{2}) and let r_{nj}= \frac{\sigma}{n}\tau n

be an admissible sequence. Then, the points of the covering d0-
main \overline{D} are separated by bounded analytic functions.

(b) Let \{\rho_{n}\} be a strictly increasing positive sequence with \rho_{n}
-arrow 1 .

Let a_{nj}=\rho_{n}e^{2\pi ij/m_{n}}(0\leq j<m_{n}) and r_{nj}= \frac{\sigma_{n}}{m_{n}} be an admissi-
ble sequence. If intergers m_{n} increases sufficiently rapidly, then
the points of the covering domain \overline{D} are separaled by bounded
analytic functions.

Proof. (a) Set \rho_{n}=1-\frac{1}{n} and m_{n}=n^{2} . It follows from Lemma 3.2
that

( \frac{\rho_{n}}{\rho_{k}})^{m_{n}}=(1-\frac{1}{nk}\frac{k-n}{1-\frac{1}{k}})^{n^{2}}\leq e^{-\frac{(k-n)n}{k}} (n<k) ,

( \frac{\rho_{k}}{\rho_{n}})^{m_{n}}=(1-\frac{1}{nk}\frac{n-k}{1-\frac{1}{n}})^{n^{2}}\leq e^{-\frac{(n-k)n}{k}}\leq e^{-(n-k)} (n>k) .
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In particular,

( \frac{\rho_{k}}{\rho_{k+1}})^{m_{k}}=(1-\frac{1}{k^{2}})^{k^{2}}\leq e^{-1}=\delta<1 .

Noting 1-\rho_{k}^{2m_{n}}<1 , we have

\sum_{n=1}^{k-1}(1-\rho_{k}^{2m_{n}})(\frac{\rho_{n}}{\rho_{k}})^{m_{n}}\leq\sum_{n=1}^{k-1}e^{-\frac{(k-n)n}{k}}

\leq\sum_{n\leq\frac{k}{2}}e^{-\frac{n}{2}}+\sum_{\frac{k}{2}<n\leq k-1}e^{-\frac{(k-n)}{2}}

\leq 2\sum_{n=1}^{\infty}e^{-\frac{n}{2}}=M_{1}<\infty .

Also,

\sum_{n=k+1}^{\infty}(\frac{\rho_{k}}{\rho_{n}})^{m_{n}}\leq\sum_{n=k+1}^{\infty}e^{-(n-k)}=\sum_{n=1}^{\infty}e^{-n}=M_{2} .

Now we apply Proposition 3.6.
(b) Choose m_{k} so large that ( \frac{\rho_{k}}{\rho_{k+1}})^{m_{k}}\leq 2^{-k} . Then, (10) holds. Since

1-\rho_{k}^{2m_{n}}<1 and since ( \frac{\rho_{n}}{\rho_{k}})^{m_{n}}\leq(_{\overline{\rho}_{n}}^{1}\frac{n}{-1})^{m_{n}}\leq 2^{-n} for n<k , we have (11).

Also, ( \frac{\rho_{k}}{\rho_{n}})^{m_{n}}\leq(\frac{\rho_{n-1}}{\rho_{n}})^{m_{n-1}}\leq 2^{-(n-1)} for n>k . This implies (12), and we
apply Proposition 3.6, again. \square

It might be an interesting problem to determine whether the points of
\overline{D} are separated by bounded analytic functions or not, when r_{nj}=2^{-\sigma_{n}n}

in Theorem 2.
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