Perfect braided crossed modules and their mod- q analogues

Takeo Fukushi
(Received September 20, 1996; Revised July 9, 1997)

Abstract

In this paper, we consider the extension theory of braided crossed modules. In particular, we prove the braided version of Norrie's theorem and its mod- q analogues.

Key words: crossed module, braided crossed module, mod- q non-Abelian tensor product.

1. Introduction

Crossed modules are known in many areas. For example, in non-Abelian homological algebra, crossed modules play the role of coefficients for degree two cohomology groups (see [1]). Alternatively, Brown and Spencer [8] obtained certain crossed modules as the fundamental groupoids of topological groups.

Higher dimensional groupoids are known too. For example, Brown and Higgins [5] defined the fundamental double groupoid of a pair of spaces, and Loday [16] developed the point of view to the fundamental cat^{n}-group $\Pi \mathrm{X}$ of a n-cube of spaces X . Among other results, he proved the equivalence between $c a t^{2}$-groups and crossed squares, and braided crossed modules appeared as a special case of crossed squares. In the work of Bullejos and Cegarra [9], braided crossed modules were used as coefficients for certain degree three non-Abelian cohomology groups. More generally, Breen [1] considered, as the objects of degree three non-Abelian cohomology groups, the extensions of the form:

$$
1 \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow k,
$$

where \mathcal{G}, \mathcal{H} are crossed modules and k is a group. Thus it is quite natural to consider the case where k is also a crossed module, braided crossed module and so on.

By use of the Brown-Loday non-Abelian tensor product of groups, Norrie [18] determined the universal central extensions of perfect crossed
modules. The Brown-Loday non-Abelian tensor product of groups was extended to mod- q tensor product by D . Conduché and C. RodriguezFernández, and Doncel-Juárez and Grandjeán L.-Valcárcel used this to obtain the $\bmod -q$ analogue of Norrie's theorem.

In this paper, we shall consider the extension theory of braided crossed modules and prove the braided version of Norrie's theorem and its mod- q analogues.

2. Preliminaries

We shall recall some definitions and properties of crossed modules and braidings on them.

Definition 1 Let N and G be groups together with a homomorphism $\partial: N \longrightarrow G$. This $\partial: N \longrightarrow G$ is called a crossed module if G acts on N and satisfies the following conditions:
(1) $\partial\left({ }^{g} n\right)=g \partial(n) g^{-1}, g \in G, n \in N$,
(2) $\partial(n) n^{\prime}=n n^{\prime} n^{-1}, n, n^{\prime} \in N$.

Example 1. For a group G, the identity map $G \longrightarrow G$ together with the action ${ }^{g} g^{\prime}=g g^{\prime} g^{-1}$ defines a crossed module.

Definition 2 Let $(M, P, \partial),\left(N, G, \partial^{\prime}\right)$ be crossed modules. A crossed module morphism $(\varphi, \psi):(M, P) \longrightarrow(N, G)$, is a pair of group homomorphisms, $\varphi: M \longrightarrow N$ and $\psi: P \longrightarrow G$, such that
(1) $\psi \partial=\partial^{\prime} \varphi$,
(2) $\varphi\left({ }^{g} n\right)=\psi(g) \varphi(n), g \in P, n \in M$.

When φ and ψ are surjective, the morphism is called an extension.
Definition 3 For a non-negative integer q, the q-center of a crossed module $N \longrightarrow G$ is the crossed module

$$
\begin{aligned}
& \left(N^{G}\right)^{q} \longrightarrow Z(G)^{q} \cap S t_{G}(N), \quad \text { where } \\
& \left(N^{G}\right)^{q}=\left\{n \in N ; n^{q}=1,{ }^{g} n=n, g \in G\right\} \\
& Z^{q}(G)=\left\{g \in Z(G) ; g^{q}=1\right\}
\end{aligned}
$$

In particular, we call the 0 -center the center of $N \longrightarrow G$.
Definition 4 An extension of a crossed module is called q-central if the crossed module $\operatorname{ker} \varphi \longrightarrow k e r \psi$ is contained in the q-center of the crossed
module $N \longrightarrow G$. In particular, we call the 0 -centeral extension the centeral extension.

Definition 5 When $N \longrightarrow G$ is a crossed module, the q-commutator crossed module is defined as a crossed module

$$
D_{G}^{q}(N) \longrightarrow[G, G]^{q}
$$

where $D_{G}^{q}(N)$ is the subgroup of N generated by

$$
\left\{{ }^{g} n n^{-1} r^{q} ; g \in G, n, r \in N\right\}
$$

and $[G, G]^{q}$ is the subgroup of G generated by

$$
\left\{[g, h] k^{q} ; g, h, k \in G\right\}
$$

In particular, we call the 0 -commutator crossed module the commutator crossed module.

Definition 6 A crossed module $N \longrightarrow G$ is called q-perfect if it coincides with the q-commutator crossed module. In particular, we call the 0 -perfect crosed module the perfect crosed module.

Based on the earlier works of Dennis [12] and Miller [17], Brown and Loday [6] defined the notion of non-Abelian tensor product $M \otimes N$ of two crossed modules. Later, the notion of mod- q exterior product of groups, for a non-negative integer q, was introduced by Ellis [14], and Brown [3] defined the mod- q non-Abelian tensor product $G \otimes^{q} G$ of group G.

The following definition of the mod- q non-Abelian tensor product of crossed modules is due to Conduché and Rodríguez-Fernández [11].
Definition 7 Let $(M, G, \partial),\left(N, G, \partial^{\prime}\right)$ be two crossed modules and q a non-negative integer. Then the tensor product $M \otimes^{q} N$ is defined as a group generated by the symbols

$$
a \otimes^{q} b(a \in M, b \in N) \quad \text { and } \quad\{k\}\left(k \in M \times_{G} N\right)
$$

with the following relations:
(1) $a \otimes^{q} b c=\left(a \otimes^{q} b\right)\left({ }^{b} a \otimes^{q}{ }^{b} c\right)$,
(2) $a b \otimes^{q} c=\left({ }^{a} b \otimes^{q}{ }^{a} c\right)\left(a \otimes^{q} c\right)$,
(3) $\{k\}\left(a \otimes^{q} b\right)\{k\}^{-1}={ }^{\alpha(k)^{q}} a \otimes^{q \alpha(k)^{q}} b$,
(4) $[\{k\},\{h\}]=\pi_{1}(k)^{q} \otimes^{q} \pi_{2}(h)^{q}$,
(5) $\quad\{k h\}=\{k\}\left(\Pi\left(\pi_{1}(k)^{-1} \otimes^{q}\left({ }^{\alpha(k)^{1-q+i}} \pi_{2}(h)\right)^{i}\right)\right)\{\mathrm{h}\}$,
(6) $\left\{\left(a^{b} a^{-1},{ }^{a} b b^{-1}\right)\right\}=\left(a \otimes^{q} b\right)^{q}$
where $\alpha=\partial \circ \pi_{1}$.
Note that the Brown-Loday non-Abelian tensor product $M \otimes N$ can be regarded as the special case where the generators are just $a \otimes^{0} b(a \in M, b \in$ $N)$ and the relations are just (1) and (2). Besides, it was shown in [6] that, for a group G, the following identities hold in $G \otimes G$:
(a) $(a \otimes b)(c \otimes d)(a \otimes b)^{-1}={ }^{[a, b]} c \otimes^{[a, b]} d$,
(b) $[a, b] \otimes c=(a \otimes b)\left({ }^{c} a \otimes{ }^{c} b\right)$,
(c) $a \otimes[b, d]=\left({ }^{a} b \otimes{ }^{a} c\right)(b \otimes c)^{-1}$,
for all $a, b, c \in G,[a, b]=a b a^{-1} b^{-1}$.
We next consider braidings on crossed modules.
Definition 8 A braiding on a crossed module $\partial: N \longrightarrow G$ is a map $\{\}:, G \times G \longrightarrow N$ (bracket operation) satisfying the following conditions:
(1) $\partial\{a, b\}=a b a^{-1} b^{-1}$
(2) $\{\partial(n), b\}=n^{b} n^{-1}$
(3) $\{a, \partial(n)\}={ }^{a} n n^{-1}$
(4) $\{a, b c\}=\{a, b\}^{b}\{a, c\}$
(5) $\{a b, c\}={ }^{a}\{b, c\}\{a, c\}, a, b, c \in G, n \in N$.

Example 2. There are canonical braidings on the crossed modules id: $G \longrightarrow G$ and $G \otimes G \longrightarrow G, a \otimes b \longmapsto[a, b]$ by the following maps:

$$
\begin{aligned}
& G \times G \longrightarrow G,(a, b) \longmapsto[a, b]=a b a^{-1} b^{-1} \\
& G \times G \longrightarrow G \otimes G,(a, b) \longmapsto a \otimes b
\end{aligned}
$$

Definition 9 A morphism between two braided crossed modules is defined as a crossed module morphism which preserves the braiding structures. In particular, a q-central extension of a braided crossed module is a q-central extension of the underlying crossed module which preserves the braiding structures.

3. Canonical braidings and their universalities

To construct new braidings, we start from the following observation:
Proposition 1 If a crossed module $N \stackrel{\partial}{\longrightarrow} G$ has a braiding $\{$,$\} , then$ there is a group homomorphism $G \otimes G \xrightarrow{f} N, a \otimes b \longmapsto\{a, b\}$.

Proof. Let us check that f preserves the defining relations in $G \otimes G$. By the definitions, we have

$$
\begin{aligned}
& f(a \otimes b c)=\{a, b c\}=\{a, b\}^{b}\{a, c\} \\
& f(a \otimes b) f\left({ }^{b} a \otimes{ }^{b} c\right)=\{a, b\}\left\{{ }^{b} a,{ }^{b} c\right\}
\end{aligned}
$$

But by a result of Conduché [10], any braiding is equivariant (i.e., ${ }^{a}\{b, c\}$ $=\left\{{ }^{a} b,{ }^{a} c\right\}$), so that $f(a \otimes b c)=f(a \otimes b) f\left({ }^{b} a \otimes{ }^{b} c\right)$. The other relation can be proved by the same computation.

We next consider the q-tensor analogues. The main difference is the existence of the elements $\{k\}$, and to construct a well behaved map on $G \otimes \otimes^{q} G$, we assume that crossed modules $N \longrightarrow G$ are q-central extensions of G.

Proposition 2 When a crossed module $\partial: N \longrightarrow G$ is a q-central extension of G and has a braiding $\{$,$\} , there is a group homomorphism$ $f: G \otimes^{q} G \longrightarrow N, a \otimes b \longmapsto\{a, b\},\{k\} \longmapsto s(k)^{q}(s$ is a section of $\partial)$.

Proof. We have to check that f preserves the relations (3)-(6) in mod- q tensor product. We first consider the relation (3). Then we have $f\left(\{k\}\left(a \otimes^{q} b\right)\{k\}^{-1}\right)=s(k)^{q}\{a, b\} s(k)^{-q}={ }^{k^{q}}\{a, b\}=\left\{{ }^{k^{q}} a,{ }^{k^{q}} b\right\}=f\left({ }^{k^{q}} a \otimes^{q}\right.$ $\left.k^{q} b\right)$. We next consider the relation (4). Then we have $f([\{k\},\{h\}])=$ $\left[s(k)^{q}, s(h)^{q}\right]=s(k)^{q} s(h)^{q}\left(s(h)^{q}\right)^{-1}=k^{q} s(h)^{q}\left(s(h)^{q}\right)^{-1}=\left\{k^{q}, h^{q}\right\}$. For the relation (5), we have $f(\{k h\})=s(k h)^{q}=(s(k) s(h))^{q}=s(k)^{q}\left({ }^{q-1}\right.$ $\left[\left(s(k)^{-1},\left({ }^{(k)^{1-q+i}} h\right)^{i}\right]\right) s(h)^{q}=s(k)^{q}\left({ }^{q-1}\left\{k^{-1},\left({ }^{(k)^{1-q+i}} h\right)^{i}\right\}\right) s(h)^{q}$. Finally, we consider the relation (6). Then we have $\mathrm{f}\left(\left\{\left(k^{h} k^{-1},{ }^{k} h h^{-1}\right)\right\}\right)=s([k, h])^{q}$, and because $\mathrm{s}([\mathrm{k}, \mathrm{h}])$ and $\{\mathrm{k}, \mathrm{h}\}$ have the same image under $\partial, s([k, h])^{q}$ coincides with $\{k, h\}^{q}$.

We proceed to construct a canonical braiding on $\rho: N \otimes G \longrightarrow G \otimes G$ when $N \longrightarrow G$ is braided with a braiding $\{$,$\} . Define \underline{\{,\}}: G \otimes G \times G \otimes$ $G \longrightarrow N \otimes G$ by

$$
\underline{\{,\}}:(a \otimes b, c \otimes d) \longmapsto\{a, b\} \otimes[c, d] .
$$

Then we have the following proposition:
Proposition $3 \underline{\{ }\}$ satisfies the braiding conditions.
Proof. The proof is by computations:

We first consider the identity (1). If we take $a=a \otimes b, b=c \otimes d$, we have $\rho(\underline{\{a \otimes b, c \otimes d\}})=\rho(\{a, b\} \otimes[c, d])=\partial\{a, b\} \otimes[c, d]=[a, b] \otimes[c, d]$, so that we need the following identity:

$$
(a \otimes b)(c \otimes d)(a \otimes b)^{-1}(c \otimes d)^{-1}=[a, b] \otimes[c, d]
$$

but this is the product of (a) and (b) in page 4.
The identities (2) and (3) are proved by a result in Brown, Loday [6]. Alternatively, one can prove them using a technique which will be described in Lemma 1 .

We next consider the identity (4). If we take $a=a \otimes b$ and $b c=$ $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)$, we have $\left\{a \otimes b,(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)\right\}=\{a, b\} \otimes[c, d]\left[c^{\prime}, d^{\prime}\right]$. On the other hand, we have $\{a \otimes b, c \otimes d\} \not\}^{\otimes \otimes d}\left\{a \otimes b, c^{\prime} \otimes d^{\prime}\right\}=(\{a, b\} \otimes$ $[c, d])^{c \otimes d}\left(\{a, b\} \otimes\left[c^{\prime}, d^{\prime}\right)=(\{a, b\} \otimes[c, d])\left({ }^{[c, d]}\{a, b\} \otimes{ }^{[c, d]}\left[c^{\prime}, d^{\prime}\right]\right)=\{a, b\} \otimes\right.$ $[c, d]\left[c^{\prime}, d^{\prime}\right]$.

Finally, we consider the identity (5). If we take $a b=(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)$ and $c=c \otimes d$, we have $\left\{(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right), c \otimes d\right\}=\{a, b\}\left\{a^{\prime}, b^{\prime}\right\} \otimes[c, d]$. On the other hand, ${ }^{a \otimes b}\left\{a^{\prime} \otimes b^{\prime}, c \otimes d\right\}\{a \otimes b, c \otimes d\}={ }^{a \otimes b}\left(\left\{a^{\prime}, b^{\prime}\right\} \otimes[c, d]\right)(\{a, b\} \otimes$ $[c, d])=\left({ }^{[a, b]}\left\{a^{\prime}, b^{\prime}\right\} \otimes{ }^{[a, b]}[c, d]\right)(\{a, b\} \otimes[c, d])=\left({ }^{\{a, b\}}\left\{a^{\prime}, b^{\prime}\right\} \otimes{ }^{\{a, b\}}[c, d]\right)$ $(\{a, b\} \otimes[c, d])=\{a, b\}\left\{a^{\prime}, b^{\prime}\right\} \otimes[c, d]$.

Remark 1. In (4), (5) the property $\partial(\{a, b\})=[a, b]$ and ${ }^{\partial(n)} n^{\prime}=n n^{\prime} n^{-1}$ were used.

When a crossed modules $N \longrightarrow G$ is a q-central extension of G and equipped with a braiding $\{$,$\} , one can use Proposition 2 to define a$ canonical braiding ${\underline{\{,}\}^{q}}^{q}$ on $N \otimes^{q} G \longrightarrow G \otimes^{q} G$.

Before checking the braiding conditions, we prove the next lemma.
Lemma 1 In $N \otimes^{q} G$, the next identities hold:
(a) $a^{b} a^{-1} \otimes^{q} h^{q}=\left(a \otimes^{q} b\right)\left(h^{q} a \otimes^{q} h^{q} b\right)^{-1}$,
(b) $\{n\}^{q} \otimes^{q}[a, b]=\{n\}\{[a, b] n\}^{-1}$,
(c) $n^{q} \otimes^{q} h^{q}=\{n\}\left\{h^{q} n\right\}^{-1}$.

Proof. Recall that for two crossed modules (M, G, ∂) and (N, G, ∂^{\prime}), Doncel-Juárez and Grandjeán L.-Valcárcel constructed the following crossed module $\rho: M \otimes^{q} N \longrightarrow G \otimes^{q} G$:

$$
\rho(m \otimes n)=\partial(m) \otimes \partial^{\prime}(n), \rho(\{k\})=\left\{\partial\left(\pi_{1}(k)\right)\right\}
$$

$$
\begin{gathered}
(a \otimes b)(m \otimes n)={ }^{[a, b]} m \otimes{ }^{[a, b]} n,{ }^{(a \otimes b)}(\{k\})=\left\{{ }^{[a, b]} k\right\}, \\
\{h\}(m \otimes n)={ }^{h^{q}} m \otimes{ }^{h^{q}} n,{ }^{\{h\}}(\{k\})=\left\{{ }^{h^{q}} k\right\}, \\
\left([a, b]=a b a^{-1} b^{-1}, a, b, h \in G, m \in M, n \in N, k \in M \times_{G} N, \pi_{1}: M \times_{G}\right.
\end{gathered}
$$ $N \longrightarrow M)$, and proved that $N \otimes^{q} G \longrightarrow G \otimes^{q} G$ becomes the universal central extension of a crossed module $N \longrightarrow G$.

To prove the identities $(a) \sim(c)$, we use the universality of $N \otimes^{q} G$, and show that, for any q-central extension $\left(X_{1}, X_{2}, \partial^{\prime}\right)$ of (N, G, ∂), the unique $\operatorname{map} \varphi_{1}: N \otimes^{q} G \longrightarrow X_{1}$ defined by $\varphi_{1}\left(n \otimes^{q} g\right)=s_{1}(n)^{s_{2}(g)} s_{1}(n)^{-1}, \varphi_{1}(\{h\})=$ $s_{1}(h)^{q}$, where s_{1} and s_{2} are sections of $\psi_{1}: X_{1} \rightarrow N$ and $\psi_{2}: X_{2} \rightarrow G$ respectively, preserves the relations.

We first check the identity (a). By the definition, we have

$$
\varphi_{1}\left(a^{b} a^{-1} \otimes^{q} h^{q}\right)=s_{1}\left(a^{b} a^{-1}\right)^{s_{2}\left(h^{q}\right)} s_{1}\left(a^{b} a^{-1}\right)^{-1}
$$

But because $s_{1}\left(a^{b} a^{-1}\right)^{s_{2}\left(h^{q}\right)} s_{1}\left(a^{b} a^{-1}\right)^{-1}$ has a form $x^{y} x^{-1}$ in X_{1}, we can change $s_{1}\left(a^{b} a^{-1}\right)$ to $s_{1}(a)^{s_{2}(b)} s_{1}(a)^{-1}$. Then we have

$$
\begin{aligned}
& s_{1}\left(a^{b} a^{-1}\right)^{s_{2}\left(h^{q}\right)} s_{1}\left(a^{b} a^{-1}\right)^{-1} \\
& \quad=\left(s_{1}(a)^{s_{2}(b)} s_{1}(a)^{-1}\right)^{s_{2}\left(h^{q}\right)}\left(s_{1}(a)^{s_{2}(b)} s_{1}(a)^{-1}\right)^{-1}
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \varphi_{1}\left((a \otimes b){\left.\left({ }^{h^{q}} a \otimes^{q} h^{q} b\right)^{-1}\right)} \quad=\left(s_{1}(a)^{s_{2}(b)} s_{1}(a)^{-1}\right) \varphi_{1}\left({h^{q}}^{q} a \otimes^{q h^{q}} b\right)^{-1}\right) \\
& \quad=\left(s_{1}(a)^{s_{2}(b)} s_{1}(a)^{-1}\right)\left(s_{1}\left({ }^{\left(h^{q}\right.} a\right)^{s_{2}\left(h^{q}\right.} b\right) \\
& \left.s_{1}\left(h^{q} a\right)^{-1}\right)^{-1}
\end{aligned}
$$

Hence we should prove the formula:

$$
s_{2}\left(h^{q}\right)\left(s_{1}(a)^{s_{2}(b)} s_{1}(a)^{-1}\right)^{-1}=\left(s_{1}\left(h^{q} a\right)^{s_{2}\left(h^{q} b\right)} s_{1}\left({ }^{h^{q}} a\right)^{-1}\right)^{-1},
$$

but notice that the latter has the form $\left(x^{y} x^{-1}\right)^{-1}$. Thus we can replace $s_{1}\left({ }^{h^{q}} a\right)$ by ${ }^{s_{2}\left(h^{q}\right)} s_{1}(a)$ and $s_{2}\left({ }^{h^{q}} b\right)$ by $s_{2}\left(h^{q}\right) s_{2}(b) s_{2}\left(h^{q}\right)^{-1}$.

We next check the identity (b). By the definition, we have

$$
\begin{aligned}
\varphi_{1}\left(\{n\}^{q} \otimes^{q}[a, b]\right) & =s_{1}\left(n^{q}\right)^{s_{2}([a, b])} s_{1}\left(n^{q}\right)^{-1} \\
& =\left(s_{1}(n)^{q}\right)^{s_{2}([a, b])}\left(s_{1}(n)^{q}\right)^{-1}
\end{aligned}
$$

On the other hand, we have

$$
\varphi_{1}\left(\{n\}\left\{{ }^{[a, b]} n\right\}^{-1}\right)=s_{1}(n)^{q}\left(s_{1}\left({ }^{[a, b]} n\right)^{q}\right)^{-1}
$$

But because ${ }^{s_{2}([a, b])} s_{1}(n)$ and $s_{1}\left({ }^{[a, b]} n\right)$ have the same image by $\psi_{1}: X_{1} \longrightarrow$ N, one can see that, by the property of q-central extensions of a crossed module, ${ }^{s_{2}([a, b])}\left(s_{1}(n)^{q}\right)^{-1}$ coincides with $\left(s_{1}\left({ }^{[a, b]} n\right)^{q}\right)^{-1}$.

Finally, we check the identity (c). By the definition, we have

$$
\varphi_{1}\left(n^{q} \otimes^{q} h^{q}\right)=s_{1}\left(n^{q}\right)^{s_{2}\left(h^{q}\right)} s_{1}\left(n^{q}\right)^{-1}=s_{1}(n)^{q}\left({ }^{s_{2}\left(h^{q}\right)} s_{1}(n)\right)^{-q}
$$

On the other hand, we have

$$
\varphi_{1}\left(\{n\}\left\{^{h^{q}} n\right\}^{-1}\right)=s_{1}(n)^{q} s_{1}\left({ }^{h^{q}} n\right)^{-q}
$$

But one can easily see that ${ }^{s_{2}\left(h^{q}\right)} s_{1}(n)$ and $s_{1}\left({ }^{h^{q}} n\right)$ have the same image by ψ_{1}. Thus the result follows.
Proposition $4 \underline{\{,\}^{q}}$ becomes a braiding on $N \otimes^{q} G \longrightarrow G \otimes^{q} G$.
Proof. By the end of this proof, we denote $\{,\}^{q}$ by $\{$,$\} . When the$ elements $\{k\}$ do not appear in the relations, they are derived from the results for $\{$,$\} . So we consider the case where the elements \{k\}$ are appearing in the relations.

We first consider the relation (1). If we take $a=\{k\}$ and $b=c \otimes^{q} d$, we have $\rho \underline{\left\{\{k\}, c \otimes^{q} d\right\}}=\rho\left(s(k)^{q} \otimes^{q}\{c, d\}^{\prime}\right)=k^{q} \otimes^{q}[c, d]$. On the other hand, we have $\{k\}\left(c \otimes^{q} d\right)\{k\}^{-1}\left(c \otimes^{q} d\right)^{-1}=\left(k^{q} c \otimes^{q} k^{q} d\right)\left(c \otimes^{q} d\right)^{-1}$. Hence we need the identity:

$$
k^{q} \otimes^{q}[c, d]=\left(k^{q} c \otimes^{q k^{q}} d\right)\left(c \otimes^{q} d\right)^{-1}
$$

but this is the formula (c) applid to $\bmod -q$ tensor product with $\mathrm{a}=k^{q}$, $\mathrm{b}=\mathrm{c}, \mathrm{c}=\mathrm{d}$.

We next consider the relation (2). If we take $n=a \otimes^{q} b$ and $b=\{h\}$, then by the definition we have $\left\{\partial(a) \otimes^{q} b,\{h\}\right\}=\{\partial(a), b\} \otimes^{q} h^{q}=a^{b} a^{-1} \otimes^{q}$ h^{q}. On the other hand, we have $\left(a \otimes^{q} b\right)^{\{h\}}\left(a \otimes^{q} b\right)^{-1}=\left(a \otimes^{q} b\right)\left(h^{q} a \otimes^{q h^{q}} b\right)^{-1}$. Thus by Lemma 1 (a), they coincide. If we take $n=\{n\}$ and $b=a \otimes^{q} b$, then we have $\underline{\left\{\rho\{n\}, a \otimes^{q} b\right\}}=n^{q} \otimes^{q}[a, b]$. On the other hand, we have $\{n\}^{a \otimes^{q} b}\{n\}^{-1}=\{n\}\left\{^{[a, b]} n\right\}^{-1}$. Thus by Lemma 1 (b), they coincide. If we take $n=\{n\}$ and $b=\{h\}$, we have $\{\rho\{n\},\{h\}\}=n^{q} \otimes^{q} h^{q}$. On the other hand, we have $\{n\}^{\{h\}}\{n\}^{-1}=\{n\}{\left\{h^{h^{q}} n\right\}^{-1} \text {. Thus by Lemma 1 (c), they }}^{\text {(c) }}$ (coincide.

The relation (3) follows by the same computations.
We next consider the relation (4). If we take $a=\{k\}$ and $b c=$
$\left(a \otimes^{q} b\right)\left(c \otimes^{q} d\right)$, we have $\left\{\{k\},\left(a \otimes^{q} b\right)\left(c \otimes^{q} d\right)\right\}=s(k)^{q} \otimes^{q}[a, b][c, d]$. On the other hand, we have $\left\{\{k\}, a \otimes^{q} b\right\}^{\left(a \otimes^{q} b\right)}\left\{\{k\}, c \otimes^{q} d\right\}=\left(s(k)^{q} \otimes^{q}[a, b]\right)$ $\left({ }^{(a \otimes b)}\left(s(k)^{q} \otimes^{q}[c, d]\right)\right)=\left(s(k)^{q} \otimes^{q}[a, b]\right)\left({ }^{[a, b]} s(k)^{q} \otimes^{q}{ }^{[a, b]}[c, d]\right)=$ $s(k)^{q} \otimes^{q}[a, b][c, d]$. If we take $a=\{k\}$ and $b c=\{h\}\left(c \otimes^{q} d\right)$, we have $\underline{\left\{\{k\},\{h\}\left(c \otimes^{q} d\right)\right\}}=s(k)^{q} \otimes^{q} s(h)^{q}[c, d]$. On the other hand, we have $(\underline{\{\{k\},\{h\}\}})\left({ }^{\{h\}} \underline{\left\{\{k\}, c \otimes^{q} d\right\}}\right)=\left(s(k)^{q} \otimes^{q} s(h)^{q}\right)\left({ }^{\{h\}}\left(s(k)^{q} \otimes^{q}[c, d]\right)=\right.$ $\left.\left.\left(s(k)^{q} \otimes^{q} s(h)^{q}\right)\right)^{\frac{h^{q}}{} s(k)^{q} \otimes^{q h^{q}}}[c, d]\right)=s(k)^{q} \otimes^{q} s(h)^{q}[c, d]$. If we take $a=\{k\}$ and $b c=\left(c \otimes^{q} d\right)\{h\}$, we have $\{\{k\},(c \otimes d)\{h\}\}=s(k)^{q} \otimes^{q}[c, d] s(h)^{q}$. On the other hand, we have $\left\{\{k\}, c \otimes^{q} d\right\}^{\left(c \otimes^{q} d\right)}\{\{k\},\{h\}\}=\left(s(k)^{q} \otimes^{q}\right.$ $[c, d])^{c \otimes d}\left(s(k)^{q} \otimes^{q} s(h)^{q}\right)=\left(s(k)^{q} \otimes^{q}[c, d]\right)\left([c, d] s(k)^{q} \otimes^{q[c, d]} s(h)^{q}\right)=s(k)^{q} \otimes^{q}$ $[c, d] s(h)^{q}$.
(5) Omitted.

We have so far been concerned with constructing canonical braidings on the crossed modules $N \otimes G \longrightarrow G \otimes G$ and $N \otimes^{q} G \longrightarrow G \otimes^{q} G$. Since it is known that $N \otimes G \longrightarrow G \otimes G\left(N \otimes^{q} G \longrightarrow G \otimes^{q} G\right)$ are the universal (q universal) central extensions of perfect (q-perfect) crossed modules $N \longrightarrow$ G, it is quite natural to consider their braided version.

The next proposition shows that the canonical braidings $\{$,$\} on the$ crossed modules $N \otimes G \longrightarrow G \otimes G$ are compatible with $\{$,$\} .$

Proposition 5 The next diagram becomes commutative.

Proof. It is enough to show that the next diagrams commute:
(1) $(G \otimes G) \otimes(G \otimes G) \longrightarrow N \otimes G$

The diagram (1) becomes commutative because of the braiding condition (1). The triangle (2) also becomes commutative by the braiding
condition (2) for $\{$,$\} .$
Thus we know that the braided crossed module $(N \otimes G \longrightarrow G \otimes G, \underline{\{ }\}$, is an extension of $(N \longrightarrow G,\{\}$,$) . Furthermore, this braiding has a$ universal property.

Theorem 1 If $(N \longrightarrow G,\{\}$,$) is a perfect braided crossed module, and$ $\left(X_{1} \xrightarrow{\Omega} X_{2},\{,\}^{\prime}\right)$ is a central extension of it with a compatible braiding, then the next diagram becomes commutative.

Proof. Define
$r: G \otimes G \longrightarrow X_{1}$ to be $\mathrm{r}=\{,\}^{\prime} \circ s_{2}$ (by choosing a section
$s_{2}: G \longrightarrow X_{2}$ and extending it on $\left.G \otimes G\right)$,
$t: G \otimes G \longrightarrow X_{2}, a \otimes b \longmapsto\left[s_{2}(a), s_{2}(b)\right]$, by the same s_{2},
$\mathrm{p}=r \times t, \mathrm{q}=\Omega \times i d$.
Let us consider the next diagram and show that each triangle commutes.

By the definitions, the diagram (1) becomes naturally commutative because the diagram (*) is commutative.

The next diagram (2) also becomes commutative because the diagram $(* *)$ is commutative by the braiding condition (2) and the choice of r .
(2)

Finally let us see the next diagram commutes.

It follows again by the braiding condition (2) and the constructions.
Corollary 1 If $(N \longrightarrow G,\{\}$,$) is a q$-perfect braided crossed module with N being a q-central extension of G, then $\left(N \otimes^{q} G \longrightarrow G \otimes^{q} G, \underline{\left\{^{,}\right\}^{q}}\right)$ becomes the universal q-central extension of $i t$.

It follows because we can construct the similar maps by $r(\{k\})=\left(s_{1} \circ\right.$ $s(k))^{q}$ and $t(\{k\})=\left(\omega \circ s_{1} \circ s(k)\right)^{q}$.

References

[1] Breen L., Théorie de Schreier supérieure. Ann. Scient. Éc. Norm. Sup. 4^{e} série, t. 25 (1992), 465-514.
[2] Brown R., Computing homotopy types using crossed n-cubes of groups. in Adams Memorial Symposium on algebraic topology Vol 1, London Math. Soc. Lecture Notes Ser. 175 (1992), 187-210.
[3] Brown R., q-perfect groups and universal q-central extensions. Publ. Math. 34 (1990), 291-297.
[4] Brown R. and Gilbert N.D., Algebraic models of 3-types and autmorphic structures
for crossed modules. Proc. London Math. Soc. (3) 59 (1989), 51-73.
[5] Brown R. and Higgins P.J., On the connection between the second relative homotopy groups of some related spaces. Proc. London Math. Soc. (3) 36 (1978), 193-212.
[6] Brown R. and Loday J.-L., Van Kampen theorems for diagrams of spaces. Topology 26 (3) (1987), 311-335.
[7] Brown R. and Loday J.-L., Homotopical excision, and Hurewicz theorem, for ncubes of spaces. Proc. London Math. Soc. (3) 54 (1987), 176-192.
[8] Brown R. and Spencer C.B., \mathcal{G}-groupoids, crossed modules and the fundamental groupoid of a topological group. Proc. Kon. Nederl. Akad. Wet. 79 (1976), 296-302.
[9] Bullejos M. and Cegarra A., A 3-dimensional non-Abelian cohomology of groups with applications to homotopy classification of continuous maps Can. J. Math. vol. 43 (2) (1991), 265-296.
[10] Conduché D., Modules croisés généralisés de longueur 2. J. Pure Appl. Algebra 34 (1984), 155-178.
[11] Conduché D. and Rodriguez-Fernández C., Non-abelian tensor and exterior products modulo q and universal q-central relative extension. J. Pure Appl. Algebra 78 (2) (1992), 139-160.
[12] Dennis R.K., In search of new homology functors having a close relationship to K-theory. Preprint, Cornell University 1976.
[13] Doncel-Juárez L. and L.-Valcárcel R.-Grandjeán, q-perfect crossed modules. J. Pure Appl. Algebra 81 (1992), 279-292.
[14] Ellis G., An exterior product for the homology of groups with integral coefficients modulo q. Cahiers Topologie Géom. Différentiell Catégoriques, Vol. XXX-4 (1989), 339-343.
[15] Ellis G. and Steiner R., Higher-dimensional crossed modules and the homotopy groups of ($n+1$)-ads. J. Pure Appl. Algebra 46 (1987), 117-136.
[16] Loday J.-L., Spaces with finitely many non trivial homotopy groups. J. Pure Appl. Algebra 24 (1982), 179-202.
[17] Miller C., The second homology group of a group. Proceedings AMS (1952), 588595.
[18] Norrie K., Crossed modules and analogues of group theorem. Ph.D. Thesis, King's College, University of London, 1987.

10-14 Yanagida Kashiwagi-machi
Hiraka-machi, Minamitsugaru-gun
Aomori-ken 036-01, Japan

