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Perfect braided crossed modules and their
mod- \bm{q} analogues
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Abstract. In this paper, we consider the extension theory of braided crossed modules.
In particular, we prove the braided version of Norrie’s theorem and its mod-q analogues.
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1. Introduction

Crossed modules are known in many areas. For example, in non-Abelian
homological algebra, crossed modules play the role of coefficients for degree
two cohomology groups (see [1]). Alternatively, Brown and Spencer [8] ob-
tained certain crossed modules as the fundamental groupoids of topological
groups.

Higher dimensional groupoids are known too. For example, Brown and
Higgins [5] defined the fundamental double groupoid of a pair of spaces, and
Loday [16] developed the point of view to the fundamental cat^{n}-group IIX
of a n-cube of spaces X. Among other results, he proved the equivalence
between cat^{2} -groups and crossed squares, and braided crossed modules ap-
peared as a special case of crossed squares. In the work of Bullejos and
Cegarra [9], braided crossed modules were used as coefficients for certain
degree three non-Abelian cohomology groups. More generally, Breen [1]
considered, as the objects of degree three non-Abelian cohomology groups,
the extensions of the form:

1arrow \mathcal{G}arrow Harrow k ,

where \mathcal{G} , H are crossed modules and k is a group. Thus it is quite natural to
consider the case where k is also a crossed module, braided crossed module
and so on.

By use of the Brown-Loday non-Abelian tensor product of groups,
Norrie [18] determined the universal central extensions of perfect crossed
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modules. The Brown-Loday non-Abelian tensor product of groups was
extended to mod-q tensor product by D. Conduch\’e and C. Rodriguez-
Fern\’andez, and Doncel-Ju\’arez and Grandje\’an L.-Valc\’arcel used this to ob-
tain the mod-g analogue of Norrie’s theorem.

In this paper, we shall consider the extension theory of braided crossed
modules and prove the braided version of Norrie’s theorem and its mod-q
analogues.

2. Preliminaries

We shall recall some definitions and properties of crossed modules and
braidings on them.

Definition 1 Let N and G be groups together with a homomorphism
\partial : Narrow G . This \partial : Narrow G is called a crossed module if G acts on N
and satisfies the following conditions:

(1) \partial(^{g}n)=g\partial(n)g^{-1} . g\in G , n\in N ,
(2) \partial(n)n’=nn’n^{-1} , n , n’\in N .

Example 1. For a group G , the identity map Garrow G together with the
action gg’=gg’g^{-1} defines a crossed module.

Definition 2 Let (M, P, \partial) , (N, G, \partial’) be crossed modules. A crossed
module morphism (\varphi, \psi) : (M, P)arrow(N, G) , is a pair of group hom0-
morphism \varphi : Marrow N and \psi : Parrow G , such that

(1) \psi\partial=\partial’\varphi ,
(2) \varphi(^{g}n)=\psi(g)_{\varphi(n)} , g\in P , n\in M .

When \varphi and \psi are surjective, the morphism is called an extension.

Definition 3 For a non-negative integer q , the q-center of a crossed mod-
ule Narrow G is the crossed module

(N^{G})^{q}arrow Z(G)^{q}\cap St_{G}(N) , where
(N^{G})^{q}=\{n\in N;n^{q}=1, gn=n, g\in G\}

Z^{q}(G)=\{g\in Z(G);g^{q}=1\}

In particular, we call the 0-center the center of Narrow G .

Definition 4 An extension of a crossed module is called q-central if the
crossed module ker\varphiarrow kerip is contained in the q-center of the crossed
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module Narrow G . In particular, we call the 0-centeral extension the centeral
extension.

Definition 5 When Narrow G is a crossed module, the g-commutator
crossed module is defined as a crossed module

D_{G}^{q}(N)arrow[G, G]^{q}

where D_{G}^{q}(N) is the subgroup of N generated by

\{^{g}nn^{-1}r^{q}; g\in G, n, r\in N\}

and [G, G]^{q} is the subgroup of G generated by

\{[g, h]k^{q}; g, h, k\in G\}

In particular, we call the 0-commutator crossed module the commutator
crossed module.

Definition 6 A crossed module Narrow G is called q -perfect if it coincides
with the q-commutator crossed module. In particular, we call the O-perfect
crosed module the perfect crosed module.

Based on the earlier works of Dennis [12] and Miller [17], Brown and
Loday [6] defined the notion of non-Abelian tensor product M\otimes N of two
crossed modules. Later, the notion of mod-q exterior product of groups, for
a non-negative integer q , was introduced by Ellis [14], and Brown [3] defined
the mod-q non-Abelian tensor product G\otimes^{q}G of group G .

The following definition of the mod-q non-Abelian tensor product of
crossed modules is due to Conduch\’e and Rodriguez-Fern\’andez [11].

Definition 7 Let (M, G, \partial) , (N, G, \partial’) be two crossed modules and q a
non-negative integer. Then the tensor product M\otimes^{q}N is defined as a
group generated by the symbols

a\otimes^{q}b(a\in M, b\in N) and \{k\}(k\in M\cross_{G}N)

with the following relations:
(1) a\otimes^{q}bc=(a\otimes^{q}b)(^{b}a\otimes^{qb}c) ,
(2) ab\otimes^{q}c=(^{a}b\otimes^{qa}c)(a\otimes^{q}c) ,
(3) \{k\}(a\otimes^{q}b)\{k\}^{-1}=\alpha(k)^{q}a\otimes^{q\alpha(k)^{q}}b ,

(4) [\{k\}, \{h\}]=\pi_{1}(k)^{q}\otimes^{q}\pi_{2}(h)^{q} ,
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(5) \{kh\}=\{k\}(\Pi(\pi_{1}(k)^{-1}\otimes^{q}(^{\alpha(k)^{1-q+i}}\pi_{2}(h))^{i}))\{h\} ,
(6) \{(a^{b}a^{-1a},bb^{-1})\}=(a\otimes^{q}b)^{q}

where \alpha=\partial\circ\pi_{1} .

Note that the Brown-Loday non-Abelian tensor product M\otimes N can be
regarded as the special case where the generators are just a\otimes^{0}b(a\in M, b\in

N) and the relations are just (1) and (2). Besides, it was shown in [6] that,
for a group G , the following identities hold in G\otimes G :

(a) (a\otimes b)(c\otimes d)(a\otimes b)^{-1}=[a,b]c\otimes[a,b]d ,
(b) [a, b]\otimes c=(a\otimes b)(^{c}a\otimes cb) ,
(c) a\otimes[b, d]=(^{a}b\otimes ac)(b\otimes c)^{-1} .

for all a , b , c\in G , [a, b]=aba^{-1}b^{-1} .
We next consider braidings on crossed modules.

Definition 8 A braiding on a crossed module \partial : Narrow G is a map
\{ , \} : G\cross Garrow N (bracket operation) satisfying the following conditions:

(1) \partial\{a, b\}=aba^{-1}b^{-1}

(2) \{\partial(n), b\}=n^{b}n^{-1}

(3) \{a, \partial(n)\}=nna-1

(4) \{a, bc\}=\{a, b\}^{b}\{a, c\}

(5) {a6, c} =a\{b, c\}\{a, c\} , a , b , c\in G , n\in N .

Example 2. There are canonical braidings on the crossed modules id :
Garrow G and G\otimes Garrow G , a\otimes b\mapsto[a, b] by the following maps:

G\cross Garrow G , (a, b)\mapsto[a, b]=aba^{-1}b^{-1} ,
G\cross Garrow G\otimes G , (a, b)\mapsto a\otimes b .

Definition 9 A morphism between two braided crossed modules is defined
as a crossed module morphism which preserves the braiding structures. In
particular, a q-central extension of a braided crossed module is a g-central
extension of the underlying crossed module which preserves the braiding
structures.

3. Canonical braidings and their universalities

To construct new braidings, we start from the following observation:
\partial

Proposition 1 If a crossed module Narrow G has a braiding \{ , \} , then

there is a group homomorphism G\otimes Garrow Nf , a\otimes b\mapsto\{a, b\} .
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Proof. Let us check that f preserves the defining relations in G\otimes G . By
the definitions, we have

f(a\otimes bc)=\{a, bc\}=\{a, b\}^{b}\{a, c\} ,
f(a\otimes b)f(^{b}a\otimes b_{c)}=\{a, b\}\{^{bb}a,c\} .

But by a result of Conduch\’e [10], any braiding is equivariant (i.e., a\{b, c\}

=\{^{a}b^{ a},c\}) , so that f(a\otimes bc)=f(a\otimes b)f(^{b}a\otimes b_{c)} . The other relation can
be proved by the same computation. \square

We next consider the q-tensor analogues. The main difference is the
existence of the elements \{k\} , and to construct a well behaved map on
G\otimes^{q}G , we assume that crossed modules Narrow G are q-central extensions
of G .

Proposition 2 When a crossed module \partial : Narrow G is a q -central ex-
tension of G and has a braiding \{ , \} , there is a group homomorphism
f : G\otimes^{q}Garrow N , a\otimes b\mapsto\{a, b\} , \{k\}\mapsto s(k)^{q} ( s is a section of \partial ).

Proof. We have to check that f preserves the relations (3)-(6) in mod-q
tensor product. We first consider the relation (3). Then we have
f(\{k\}(a\otimes^{q}b)\{k\}^{-1})=s(k)^{q}\{a, b\}s(k)^{-q}=k^{q}\{a, b\}=\{^{k^{q}k^{q}}a,b\}=f(^{k^{q}}a\otimes^{q}

k^{q}b) . We next consider the relation (4). Then we have f([\{k\}, \{h\}])=

[s(k)^{q}, s(h)^{q}]=s(k)^{q}s(h)^{q}(s(h)^{q})^{-1}=k^{q}s(h)^{q}(s(h)^{q})^{-1}=\{k^{q}, h^{q}\} . For

the relation (5), we have f(\{kh\})=s(kh)^{q}=(s(k)s(h))^{q}=s(k)^{q}(\Pi q-1

[(s(k)^{-1}, (^{(k)^{1-q+i}}h)^{i}])s(h)^{q}=s(k)^{q}(\Pi q-1\{k^{-1}, (^{(k)^{1-q+i}}h)^{i}\})s(h)^{q} . Finally,
we consider the relation (6). Then we have f(\{(k^{h}k^{-1k},hh^{-1})\})=s([k, h])^{q} ,
and because s([k,h]) and \{k,h\} have the same image under \partial , s([k, h])^{q} co-
incides with \{k, h\}^{q} . \square

We proceed to construct a canonical braiding on \rho : N\otimes G – G\otimes G

when Narrow G is braided with a braiding \{ . \} . Define \underline{\{,\}} : G\otimes G\cross G\otimes

Garrow N\otimes G by

\underline{\{,\}} : (a\otimes b, c\otimes d)\mapsto\{a, b\}\otimes[c, d] .

Then we have the following proposition:

Proposition 3 \underline{\{,\}} satisfies the braiding conditions.

Proof. The proof is by computations:
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We first consider the identity (1). If we take a=a\otimes b , b=c\otimes d , we
have \rho(\underline{\{a\otimes b,c\otimes d\}})=\rho(\{a, b\}\otimes[c, d])=\partial\{a, b\}\otimes[c, d]=[a, b]\otimes[c, d] , so
that we need the following identity:

(a\otimes b)(c\otimes d)(a\otimes b)^{-1}(c\otimes d)^{-1}=[a, b]\otimes[c, d] ,

but this is the product of (a) and (b) in page 4.
The identities (2) and (3) are proved by a result in Brown, Loday [6].

Alternatively, one can prove them using a technique which will be described
in Lemma 1.

We next consider the identity (4). If we take a=a\otimes b and bc=
(c\otimes d)(c’\otimes d’) , we have \underline{\{a\otimes b,(c\otimes d)(c’\otimes d’)\}}=\{a, b\}\otimes[c, d][c’, d’] .
On the other hand, we have \underline{\{a\otimes b,c\otimes d\}}^{c\otimes d}\{a\otimes b, c’\otimes d’\}=(\{a, b\}\otimes

[c, d])^{c\otimes d}(\{a, b\}\otimes[c’, d’)=(\{a, b\}\otimes[c, d])(^{[c,d]}\{\overline{a,b\}\otimes[c,d][c’,d}’])=\{a, b\}\otimes

[c, d][c’, d’] .
Finally, we consider the identity (5). If we take ab=(a\otimes b)(a’\otimes b’) and

c=c\otimes d , we have \underline{\{(a\otimes b)(a’\otimes b’),c\otimes d\}}=\{a, b\}\{a’, b’\}\otimes[c, d] . On the
other hand, a\otimes b\{a’\otimes b’, c\otimes d\}\{a\otimes b, c\otimes d\}=a\otimes b(\{a’, b’\}\otimes[c, d])(\{a, b\}\otimes

[c, d])=(^{[a,b]}\{a’\overline{b’\}\otimes[a,b][c,d])(\{a,b\}\otimes[c,},d])=(^{\{a,b\}}\{a’, b’\}\otimes\{a,b\}[c, d])

(\{a, b\}\otimes[c, d])=\{a, b\}\{a’, b’\}\otimes[c, d] . \square

Remark 1. In (4), (5) the property \partial(\{a, b\})=[a, b] and \partial(n)n’=nn’n^{-1}

were used.

When a crossed modules Narrow G is a q-central extension of G and
equipped with a braiding \{ , \} , one can use Proposition 2 to define a
canonical braiding \underline{\{,\}}^{q} on N\otimes^{q}Garrow G\otimes^{q}G .

Before checking the braiding conditions, we prove the next lemma.

Lemma 1 In N\otimes^{q}G , the next identities hold:
(a) a^{b}a^{-1}\otimes^{q}h^{q}=(a\otimes^{q}b)(^{h^{q}}a\otimes^{qh^{q}}b)^{-1} ,
(b) \{n\}^{q}\otimes^{q}[a, b]=\{n\}\{^{[a,b]}n\}^{-1} ,
(c) n^{q}\otimes^{q}h^{q}=\{n\}\{^{h^{q}}n\}^{-1} .

Proof. Recall that for two crossed modules (M, G, \partial) and (N, G, \partial’) ,
Doncel-Ju\’arez and Grandje\’an L.-Valc\’arcel constructed the following crossed
module \rho : M\otimes^{q}Narrow G\otimes^{q}G :

\rho(m\otimes n)=\partial(m)\otimes\partial’(n) , \rho(\{k\})=\{\partial(\pi_{1}(k))\}
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(a\otimes b)(m\otimes n)=[a,b]m\otimes[a,b](a\otimes b)n,(\{k\})= \{ [a,b]k\} ,
\{h\}(m\otimes n)=h_{m}^{q}\otimes h^{q}\{h\}n,(\{k\})=\{^{h^{q}}k\} ,

( [a, b]=aba^{-1}b^{-1} , a , b , h\in G , m\in M , n\in N , k\in M\cross cN , \pi_{1} : M\cross c

Narrow M) , and proved that N\otimes^{q}Garrow G\otimes^{q}G becomes the universal
central extension of a crossed module Narrow G .

To prove the identities (a)\sim(c) , we use the universality of N\otimes^{q}G , and
show that, for any q central extension (X_{1}, X_{2}, \partial’) of (N, G, \partial) , the unique
map \varphi_{1} : N\otimes^{q}Garrow X_{1} defined by \varphi_{1}(n\otimes^{q}g)=s_{1}(n)^{s_{2}(g)}s_{1}(n)^{-1} , \varphi_{1}(\{h\})=

s_{1}(h)^{q} , where s_{1} and s_{2} are sections of \psi_{1} : X_{1} – N and \psi_{2} : X_{2} – G

respectively, preserves the relations.
We first check the identity (a). By the definition, we have

\varphi_{1}(a^{b}a^{-1}\otimes^{q}h^{q})=s_{1}(a^{b}a^{-1})^{s_{2}(h^{q})}s_{1}(a^{b}a^{-1})^{-1}

But because s_{1}(a^{b}a^{-1})^{s_{2}(h^{q})}s_{1}(a^{b}a^{-1})^{-1} has a form x^{y}x^{-1} in X_{1} , we can
change s_{1}(a^{b}a^{-1}) to s_{1}(a)^{s_{2}(b)}s_{1}(a)^{-1} . Then we have

s_{1}(a^{b}a^{-1})^{s_{2}(h^{q})}s_{1}(a^{b}a^{-1})^{-1}

=(s_{1}(a)^{s_{2}(b)}s_{1}(a)^{-1})^{s_{2}(h^{q})}(s_{1}(a)^{s_{2}(b)}s_{1}(a)^{-1})^{-1} .

On the other hand, we have

\varphi_{1}((a\otimes b)(^{h^{q}}a\otimes^{qh^{q}}b)^{-1})

=(s_{1}(a)^{s_{2}(b)}s_{1}(a)^{-1})\varphi_{1}(^{h^{q}}a\otimes^{qh^{q}}b)^{-1})

=(s_{1}(a)^{s_{2}(b)}s_{1}(a)^{-1})(s_{1}(^{h^{q}}a)^{s_{2}(^{h^{q}}b)}s_{1}(^{h^{q}}a)^{-1})^{-1}

Hence we should prove the formula:

s_{2}(h^{q})(s_{1}(a)^{s_{2}(b)}s_{1}(a)^{-1})^{-1}=(s_{1}(^{h^{q}}a)^{s_{2}(^{h^{q}}b)}s_{1}(^{h^{q}}a)^{-1})^{-1} .

but notice that the latter has the form (x^{y}x^{-1})^{-1} . Thus we can replace
s_{1}(^{h^{q}}a) by s_{2}(h^{q})s_{1}(a) and s_{2}(^{h^{q}}b) by s_{2}(h^{q})s_{2}(b)s_{2}(h^{q})^{-1} .

We next check the identity (b). By the definition, we have

\varphi_{1}(\{n\}^{q}\otimes^{q}[a, b])=s_{1}(n^{q})^{s_{2}([a,b])}s_{1}(n^{q})^{-1}

=(s_{1}(n)^{q})^{s_{2}([a,b])}(s_{1}(n)^{q})^{-1} .

On the other hand, we have

\varphi_{1}(\{n\}\{^{[a,b]}n\}^{-1})=s_{1}(n)^{q}(s_{1}(^{[a,b]}n)^{q})^{-1} .
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But because s_{2}([a,b])s_{1}(n) and s_{1}(^{[a,b]}n) have the same image by \psi_{1} : X_{1}arrow

N, one can see that, by the property of q-central extensions of a crossed
module, s_{2}([a,b])(s_{1}(n)^{q})^{-1} coincides with (s_{1}(^{[a,b]}n)^{q})^{-1} .

Finally, we check the identity (c). By the definition, we have

\varphi_{1}(n^{q}\otimes^{q}h^{q})=s_{1}(n^{q})^{s_{2}(h^{q})}s_{1}(n^{q})^{-1}=s_{1}(n)^{q}(^{s_{2}(h^{q})}s_{1}(n))^{-q} .

On the other hand, we have

\varphi_{1}(\{n\}\{^{h^{q}}n\}^{-1})=s_{1}(n)^{q}s_{1}(^{h^{q}}n)^{-q} .

But one can easily see that s_{2}(h^{q})s_{1}(n) and s_{1}(^{h^{q}}n) have the same image by
\psi_{1} . Thus the result follows. \square

Proposition 4 \underline{\{,\}}^{q} becomes a braiding on N\otimes^{q}Garrow G\otimes^{q}G .

Proof. By the end of this proof, we denote \{ , \}^{q} by \{ , \} . When the
elements \{k\} do not appear in the relations, they are derived from the results
for \underline{\{,}}. So we consider the case where the elements \{k\} are appearing in
the relations.

We first consider the relation (1). If we take a=\{k\} and b=c\otimes^{q}d , we
have \rho\underline{\{\{k\},c\otimes^{q}d\}}=\rho(s(k)^{q}\otimes^{q}\{c, d\}’)=k^{q}\otimes^{q}[c, d] . On the other hand,
we have \{k\}(c\otimes^{q}d)\{k\}^{-1}(c\otimes^{q}d)^{-1}=(^{k^{q}}c\otimes^{qk^{q}}d)(c\otimes^{q}d)^{-1} . Hence we need
the identity:

k^{q}\otimes^{q}[c, d]=(^{k^{q}}c\otimes^{qk^{q}}d)(c\otimes^{q}d)^{-1} ,

but this is the formula (c) applid to mod-q tensor product with a=k^{q} ,
b=c, c=d.

We next consider the relation (2). If we take n=a\otimes^{q}b and b=\{h\} ,
then by the definition we have \{\partial(a)\otimes^{q}b, \{h\}\}=\{\partial(a), b\}\otimes^{q}h^{q}=a^{b}a^{-1}\otimes^{q}

h^{q} . On the other hand, we hav\overline{e(a\otimes^{q}b)^{\{h\}}(a\otimes^{q}}b)^{-1}=(a\otimes^{q}b)(^{h^{q}}a\otimes^{qh^{q}}b)^{-1} .
Thus by Lemma 1 (a), they coincide. If we take n=\{n\} and b=a\otimes^{q}b ,
then we have \{\rho\{n\}, a\otimes^{q}b\}=n^{q}\otimes^{q}[a, b] . On the other hand, we have
\{n\}^{a\otimes^{q}b}\{n\}^{-1}\overline{=\{n\}\{^{[a,b]}n\}^{-1}} . Thus by Lemma 1 (b), they coincide. If we
take n=\{n\} and b=\{h\} , we have \underline{\{\rho\{n\},\{h\}\}}=n^{q}\otimes^{q}h^{q} . On the other
hand, we have \{n\}^{\{h\}}\{n\}^{-1}=\{n\}\{^{h^{q}}n\}^{-1} . Thus by Lemma 1 (c), they
coincide.

The relation (3) follows by the same computations.
We next consider the relation (4). If we take a=\{k\} and bc=
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(a\otimes^{q}b)(c\otimes^{q}d) , we have \{\{k\}, (a\otimes^{q}b)(c\otimes^{q}d)\}=s(k)^{q}\otimes^{q}[a, b][c, d] . On
the other hand, we have \underline{\{}\overline{\{k\},a\otimes^{q}b\}^{(a\otimes^{q}b)}\{\{k\}}, c\otimes^{q}d} =(s(k)^{q}\otimes^{q}[a, b])

(^{(a\otimes b)}(s(k)^{q}\otimes^{q}[c, d])) = (s(k)^{q}\otimes^{q}[a\overline{b])(^{[a,b]}s(k)^{q}},\otimes^{q}[a,b][c, d]) =

s(k)^{q}\otimes^{q}[a, b][c, d] . If we take a=\{k\} and bc=\{h\}(c\otimes^{q}d) , we have
\underline{\{\{k\},\{h\}(c\otimes^{q}d)\}}=s(k)^{q}\otimes^{q}s(h)^{q}[c, d] . On the other hand, we have
(\underline{\{\{k\},\{h\}\}})(^{\{h\}}\underline{\{\{k\},c\otimes^{q}d\}}) = (s(k)^{q}\otimes^{q}s(h)^{q})(^{\{h\}}(s(k)^{q}\otimes^{q}[c, d]) =

(s(k)^{q}\otimes^{q}s(h)^{q})(^{h^{q}}s(k)^{q}\otimes^{qh^{q}}[c, d])=s(k)^{q}\otimes^{q}s(h)^{q}[c, d] . If we take a=\{k\}

and bc=(c\otimes^{q}d)\{h\} , we have \{\{k\}, (c\otimes d)\{h\}\}=s(k)^{q}\otimes^{q}[c, d]s(h)^{q} .

On the other hand, we have \overline{\underline{\{\{k\},c\otimes^{q}d\}}^{(c\otimes^{q}d)}\{}\{k\} , \{h\}\}=(s(k)^{q}\otimes^{q}

[c, d])^{c\otimes d}(s(k)^{q}\otimes^{q}s(h)^{q})=(s(k)^{q}\otimes^{q}[c, d])(^{[c,d]}s(k)^{q}\overline{\otimes^{q[c,d]}s(h})^{q})=s(k)^{q}\otimes^{q}

[c, d]s(h)^{q} .
(5) Omitted. \square

We have so far been concerned with constructing canonical braidings
on the crossed modules N\otimes Garrow G\otimes G and N\otimes^{q}Garrow G\otimes^{q}G . Since it
is known that N\otimes Garrow G\otimes G(N\otimes^{q}Garrow G\otimes^{q}G) are the universal (q-
universal) central extensions of perfect (q-perfect) crossed modules Narrow

G , it is quite natural to consider their braided version.
The next proposition shows that the canonical braidings \underline{\{,\}} on the

crossed modules N\otimes Garrow G\otimes G are compatible with \{ , \} .

Proposition 5 The next diagram becomes commutative.

(G\otimes G)\otimes(G\otimes G)-N\otimes G

\xi x\xi\downarrow \downarrow\lambda

G\otimes G N

Proof. It is enough to show that the next diagrams commute:

(1)

The diagram (1) becomes commutative because of the braiding con-
dition (1). The triangle (2) also becomes commutative by the braiding
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condition (2) for \{ , \} . \square

Thus we know that the braided crossed module (N\otimes Garrow G\otimes G, \underline{\{,}\})

is an extension of (Narrow G, \{ \}) . Furthermore, this braiding has a
universal property.

Theorem 1 If (Narrow G, \{. \}) is a perfect braided crossed module, and
(X_{1}arrow\Omega X_{2}, \{ , \}’) is a central extension of it with a compatible braiding,
then the next diagram becomes commutative.

\underline{\{,\}}

(G\otimes G)x(G\otimes G) -N\otimes G

X_{2}\cross X_{2}\downarrow

\{ , \}’

\downarrow

X_{1}

Proof. Define
r:G\otimes Garrow X_{1} to be r= \{ , \}’ \circ s_{2} (by choosing a section
s_{2} : Garrow X_{2} and extending it on G\otimes G),
t : G\otimes Garrow X_{2} , a\otimes b\mapsto[s_{2}(a), s_{2}(b)] , by the same s_{2} ,
p=r\cross t , q=\Omega\cross id .

Let us consider the next diagram and show that each triangle commutes.

By the definitions, the diagram (1) becomes naturally commutative
because the diagram (*) is commutative.
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(1) \{, \}’

(*)X_{2}\otimes X_{2-}X_{1}

\downarrow

\{ . \}

\downarrow

(G\otimes G) G\otimes G – N

The next diagram (2) also becomes commutative because the diagram
(**) is commutative by the braiding condition (2) and the choice of r .

(2)
(G\otimes G) \cross X_{2}

(**)G\otimes Garrow X_{1}

\downarrow\nearrow

X_{2} X_{2}

Finally let us see the next diagram commutes.

X_{2}\cross X_{2}

It follows again by the braiding condition (2) and the constructions. \square

Corollary 1 If (Narrow G, \{, \}) is a q -perfect braided crossed module
with N being a q -central extension of G , then (N\otimes^{q}Garrow G\otimes^{q}G, \underline{\{,\}}^{q})

becomes the universal q -central extension of it.

It follows because we can construct the similar maps by r(\{k\})=(s_{1}\circ

s(k))^{q} and t(\{k\})=(\omega\circ s_{1}\circ s(k))^{q} .
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