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A note on the Poincar\’e polynomial
of an arrangement

Stephen SZYDLIK
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Abstract. Let $V=\mathbb{K}^{\ell}$ be a vector space, where $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$ . A hyperplane in $V$ is an
affine subspace of dimension $\ell-1$ . An arrangement $\mathcal{A}$ is a finite set of hyperplanes in
$V$ . Let $L=L(\mathcal{A})$ be the set of intersections of the hyperplanes of $\mathcal{A}$ , partially ordered
by reverse inclusion. Let $\mu$ be the M\"obius function on $L$ , and define a rank function on
$L$ by $r(X)=\ell-$ $dim$ $X$ . The Poincar\’e polynomial on $\mathcal{A}$ is given by

$\pi(\mathcal{A},t)=\sum_{X\in L}\mu(X)(-t)^{r(X)}$
.

For $X\in L$ , define the combinatorial sum

$p(X)=(-1)^{r(X)} \sum_{X\leq Z}\mu(Z)r(Z)$
.

Both the Poincar\’e polynomial and the quantity $p(X)$ have physical interpretations in
certain cases (see the work of Zaslavsky and Varchenko, respectively).

In this paper, we prove an identity involving the Poincar\’e polynomial and $p(X)$ and
show two applications which have connections to the work of Varchenko. The first is a
chamber-counting result with an interpretation when $\mathbb{K}=\mathbb{R}$ , the second a result related
to the Euler beta function, defined by Varchenko when $\mathbb{K}=\mathbb{C}$ .
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1. Introduction

Let $\mathbb{K}$ be a field, and let $V$ be a vector space over $\mathbb{K}$ of dimension $\ell$ . A
hyperplane $H$ in $V$ is an affine subspace of dimension $(\ell-1)$ . An arrange-
ment $\mathcal{A}$ is a finite set of hyperplanes in $V$ When we wish to emphasize the
dimension of $V$ , we call $\mathcal{A}$ an $\ell$-arrangement. When we wish to emphasize
the vector space itself, we write $(\mathcal{A}, V)$ to denote the arrangement.

We refer to [3] for terminology and basic results. Let $L=L(\mathcal{A})$ be
the set of intersections of the hyperplanes of $\mathcal{A}$ , partially ordered by reverse
inclusion. We may define a rank function on the elements (edges) of $L$

by $r(X)=$ $codim$ $X=\ell$ $-dim$ $X$ . We may also define a meet and a
join operation on $L(\mathcal{A})$ which give it the properties of a geometric poset.
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Let $X\wedge Y=\cap\{Z\in L|X\cup Y\subseteq Z\}$ be the join of $X$ and $Y$ , and let
$X\vee Y=X\cap Y$ be their meet. $V$ is the unique minimal element of the
poset. If the intersection of all of the elements of $\mathcal{A}$ is nonempty, then we
say that $\mathcal{A}$ is central. In this case, $L(\mathcal{A})$ is a geometric lattice with a unique
maximal element $T=T(\mathcal{A})$ given by the intersection of the hyperplanes
of $\mathcal{A}$ . Whether the arrangement is central or not, the maximal elements of
$L(\mathcal{A})$ have the same rank, and we may define the rank of the arrangement
$r(\mathcal{A})$ as the rank of a maximal element of $L(\mathcal{A})$ .

Let $\mu$ be the M\"obius function of $L$ . That is, define $\mu$ : $L\cross Larrow \mathbb{Z}$ by

$\mu(X, X)=1$ if $X\in L$ ,

$\sum_{X\leq Z\leq Y}$
$\mu(X, Z)=0$ if $X,$ $Y,$ $Z\in L$ and $X<Y$,

$\mu(X, Y)=0$ otherwise.

Note that for fixed $X$ , the values of $\mu(X, Y)$ may be computed recursively.
For $X\in L$ , define $\mu(X)=\mu(V, X)$ .

Define the Poincar\’e polynomial of $\mathcal{A}$ by

$\pi(\mathcal{A}, t)=\sum_{X\in L}\mu(X)(-t)^{r(X)}$ .

The Poincar\’e polynomial is a degree $r(\mathcal{A})$ polynomial in $t$ with nonnegative
coefficients.

In this paper, we prove an identity involving the Poincar\’e polynomial
which has useful applications, particularly in the work of Varchenko. In
the next section, we define some terminology necessary for the statement
of the main theorem. In Section 3, we discuss some of the applications
to Varchenko’s work. In Section 4, we give a proof of the main theorem,
which is lattice-theoretic in nature. An example of the theorem and its
applications is given in Section 5.

2. Necessary constructions and statement of the main theorem

The Poincar\’e polynomial is one of the most important combinatorial
invariants of an arrangement, and its properties have been extensively stud-
ied. Zaslavsky, in [7], showed that the Poincar\’e polynomial can be used as
a counting function in the case when the underlying field $\mathbb{K}$ is the real
numbers (i.e. $\mathcal{A}$ is a real arrangement). In this case, the hyperplanes of $\mathcal{A}$

separate $V$ into open disjoint convex chambers. That is, the complement of
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the union of the hyperplanes is a union of open, disjoint subsets of $V$ . Let
$\mathcal{C}(\mathcal{A})$ and $\mathcal{B}(\mathcal{A})$ be the collections of chambers and bounded chambers of $\mathcal{A}$ ,
respectively. Zaslavsky gives us a means of counting these chambers:

Theorem 2.1 Let $\mathcal{A}$ be a real arrangement. Then
(i) $|\mathcal{C}(\mathcal{A})|=\pi(\mathcal{A}, 1)$ .
(ii) If the maximal elements of the intersection poset are points (i.e. $\mathcal{A}$ is

essential), then $|\mathcal{B}(\mathcal{A})|=(-1)^{r(A)}\pi(\mathcal{A}, -1)$ .

In order to state the basic result, we need several additional construc-
tions involving arrangements. Except where noted, we again refer to [3] for
the definitions.

Let $(\mathcal{A}, V)$ be an arrangement. If $\mathcal{B}$ $\subseteq \mathcal{A}$ is a subset, then $\mathcal{B}$ is called a
subarrangement. For $X\in L(\mathcal{A})$ define a subarrangement $\mathcal{A}_{X}$ of $\mathcal{A}$ by

$\mathcal{A}_{X}=\{H\in \mathcal{A}|X\subseteq H\}$ .

Note that $\mathcal{A}_{V}$ is an empty arrangement. If $X\neq V$ , $\mathcal{A}_{X}$ is a central arrange-
ment, and $X$ is the intersection of all the planes in $\mathcal{A}_{X}$ . $\mathcal{A}_{X}$ is sometimes
called the localization of $\mathcal{A}$ to $X$ .

We may also define an arrangement $(\mathcal{A}^{X}, X)$ in $X$ by

$\mathcal{A}^{X}=\{$ $X\cap H|H\in \mathcal{A}\backslash \mathcal{A}_{X}$ $and$ $X\cap H\neq\emptyset\}$ .

We call $\mathcal{A}^{X}$ the restriction of $\mathcal{A}$ to $X$ .
Two other constructions which will prove useful are the inverse opera-

tions of coning and deconing. In order to describe these operations, we first
give coordinates to vector space $V$

Let $V^{*}$ be the dual space of V. the space of linear forms on $V$ . Let
$S=S(V^{*})$ be the symmetric algebra of $V^{*}$ . Choose a basis $\{e_{1},\ldots, e_{\ell}\}$ in
$V$ , and let $\{x_{1}, \ldots, x_{\ell}\}$ be the dual basis in $V^{*}$ so that $x_{i}(e_{j})=\delta_{i,j}$ . $S(V^{*})$

can be identified with the polynomial algebra $S=\mathbb{K}[x_{1},\ldots, x_{\ell}]$ . Each
hyperplane $H\in \mathcal{A}$ is the kernel of a polynomial $\alpha_{H}$ of degree 1 defined up to
a constant. The product $Q( \mathcal{A})=\prod_{H\in A}\alpha_{H}$ is called a defining polynomial
of $\mathcal{A}$ .

An affine $\ell$-arrangement $\mathcal{A}$ defined by $Q(\mathcal{A})\in S$ gives rise to a central
$(\ell+1)$-arrangement $c\mathcal{A}$ called the cone over $\mathcal{A}$ . Let $\hat{Q}\in \mathbb{K}[x_{0}, x_{1}, \ldots, x_{\ell}]$

be the polynomial $Q(\mathcal{A})$ homogenized, and let $c\mathcal{A}$ be given by the defining
polynomial $Q(c\mathcal{A})=x_{0}\hat{Q}$ . Note that $|c\mathcal{A}|=|\mathcal{A}|+1$ . We call $H_{0}=ker(x_{0})$

the additional hyperplane. If $H\in \mathcal{A}$ is defined by the linear form $\alpha_{H}$ ,
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then $cH$ is the hyperplane in $c\mathcal{A}$ defined by the homogenization of $\alpha_{H}$ .
Moreover, if $X$ is any element of $L(\mathcal{A})$ , we write $X=H_{1}\cap$\cdots$\cap H_{p}$ , where
$H_{i}\in \mathcal{A}$ . Define $cX=cH_{i_{1}}\cap\cdots\cap cH_{i_{p}}\in L(c\mathcal{A})$ . $cX$ is independent of the
representation of $X$ as an intersection of hyperplanes. In this way, the poset
$L(\mathcal{A})$ naturally embeds in $L(c\mathcal{A})$ .

There is an inverse operation to the coning construction. A nonempty
central $(\ell+1)$ -arrangement $\mathcal{A}$ gives rise to an $\ell$-arrangement dA, which
is in general not central, by the deconing construction. Choose a distin-
guished hyperplane $H_{0}\in \mathcal{A}$ . Choose coordinates so that $H_{0}=ker(x_{0})$ .
Let $Q(\mathcal{A})\in \mathbb{K}[x_{0}, x_{1}, \ldots, x_{\ell}]$ be a defining polynomial for $\mathcal{A}$ . The defining
polynomial $Q(d\mathcal{A})$ is obtained by substituting 1 for $x_{0}$ in $Q(\mathcal{A})$ . It should
be pointed out that the arrangement dA depends on the choice of the dis-
tinguished hyperplane $H_{0}$ . Deconing with respect to different hyperplanes
gives different arrangements with (possibly) different intersection posets.

The following proposition relates the Poincar\’e polynomials of an ar-
rangement and its cone:

Proposition 2.2 [3] Let $\mathcal{A}$ be an affine arrangement with cone $c\mathcal{A}$ . Then

$\pi(c\mathcal{A}, t)=(1+t)\pi(\mathcal{A}, t)$ .

Equivalently, Proposition 2.2 states that for any central arrangement
$\mathcal{A}$ and $H_{0}\in \mathcal{A}$ , $\pi(d\mathcal{A}, t)=\frac{\pi(A,t)}{1+t}$ . In particular, the Poincar\’e polynomial of
the deconed arrangement does not depend on the distinguished hyperplane.

A fact that will prove useful for our purposes is that the operations of
coning and restricting commute.

Lemma 2.3 For any $X\in L(\mathcal{A})$ , the intersection posets $L((c\mathcal{A})^{X})$ and
$L(c(\mathcal{A}^{X}))$ are naturally isomorphic.

Proof. Let $H_{0}$ be the additional hyperplane in $c\mathcal{A}$ . Then $H_{0}\cap X$ serves
as the additional hyperplane in $c(\mathcal{A}^{X})$ . $\square$

Finally, let $\mathcal{A}$ be an arrangement. Define the combinatorial sum
$p$ : $L(\mathcal{A})arrow \mathbb{Z}$ by

$p(X)=(-1)^{r(X)} \sum_{Z\leq X}\mu(Z)r(Z)$ .

The sum is over all elements $Z\in L(\mathcal{A})$ which lie below $X$ in the poset.
$p(X)$ is also known as the beta invariant of the matroid $L(\mathcal{A}_{X})$ . Crapo
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first defined the beta invariant in [1], within the context of matroid theory
(See Theorem III of [1], for example). We use the notation $p(X)$ for the
beta invariant to agree with Varchenko in [5] and [6] and to avoid confusion
when we consider the Euler beta function in Section 3.

In [5], Varchenko gives an interpretation of $p(X)$ when $\mathcal{A}$ is a real ar-
rangement. Every element $X\in L(\mathcal{A})$ of codimension $r$ is associated to
an arrangement in $(r-1)$ dimensional projective space. Namely, let $N$ be
an $r$ dimensional normal to $X$ , and consider the arrangement obtained by
projecting the hyperplanes of $\mathcal{A}_{X}$ onto $N$ . This yields an arrangement $\tilde{\mathcal{A}}_{X}$ ,

which has the same intersection lattice as $\mathcal{A}_{X}$ but is essential, with all the
new hyperplanes passing through the point $v=X\cap N$ . Now consider the
usual antipodal map $s$ : $S^{r}arrow \mathbb{R}P^{r-1}$ . The planes of $\tilde{\mathcal{A}}_{X}$ intersect the
unit sphere $S^{r}$ transversally, and under $s,\tilde{\mathcal{A}}_{X}$ is mapped to a projective ar-
rangement $P\mathcal{A}_{X}$ in $\mathbb{R}P^{r-1}$ . $P\mathcal{A}_{X}$ is referred to as the projective localization

of $\mathcal{A}$ at $X$ .
A chamber in the complement of an arrangement is said to be bounded

away from (or bounded relative to) a given hyperplane if the closure of the
chamber does not intersect the hyperplane.

Proposition 2.4
(i) For any arrangement $\mathcal{B}$ in a real projective space, the number of the

chambers which are bounded away from a given hyperplane $H_{0}\in \mathcal{B}$

does not depend on $H_{0}$ . In particular,
(ii) If $\mathcal{A}$ is an arrangement in real affine space with $X\in L(\mathcal{A})$ , then in

the projective localization $P\mathcal{A}_{X}$ , the number of chambers which are
bounded away from a given hyperplane is $p(X)$ .

Varchenko gives a proof of Proposition 2.4 in [5]. We give a slightly
different proof here. Any arrangement in real projective $(r-1)$ dimensional
space gives rise to an affine arrangement in $\mathbb{R}^{r-1}$ by deleting the hyperplane
at infinity. Then the number of chambers bounded away from a given
hyperplane in the projective arrangement can be determined by counting
the number of bounded chambers in the associated real affine arrangement:
the bounded chambers in the real arrangement are those chambers which
are bounded away from the hyperplane at infinity.

In the case of the projective localization $P\mathcal{A}_{X}$ , the number of chambers
bounded away from a given hyperplane is exactly $p(X)$ . Recalling our defi-
nition of the deconing construction given earlier, choose $H_{0}\in \mathcal{A}_{X}$ . Then the
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operation of deconing with respect to $H_{0}$ may be viewed as first projectiviz-
ing $\mathcal{A}_{X}$ , making the image of $H_{0}$ the hyperplane at infinity, then removing
this hyperplane at infinity. Then the number of chambers bounded away
from a given hyperplane in $P\mathcal{A}_{X}$ is equivalent to the number of bounded
chambers in $d\mathcal{A}_{X}$ . From Zaslavsky’s work, this number is

$(-1)^{r(X)-1}\pi(d\mathcal{A}_{X}, -1)$

$=(-1)^{r(X)-1} \lim_{tarrow-1}\frac{\pi(\mathcal{A}_{X},t)}{1+t}$ (2.5)

$=(-1)^{r(X)-1} \frac{d}{dt}\pi(\mathcal{A}_{X}, t)|_{t=-1}$ (2.6)

$=(-1)^{r(X)-1} \frac{d}{dt}(\sum_{Z\leq X}\mu(Z)(-t)^{r(Z)})|_{t=-1}$ (2.7)

$=(-1)^{r(X)} \sum_{Z\leq X}\mu(Z)r(Z)=p(X)$ . (2.8)

Since $\pi(d\mathcal{A}_{X}, -1)$ does not depend upon the distinguished hyperplane, the
quantities in 2.5 through 2.8 are independent of $H_{0}$ .

In the proof of Proposition 2.4, The equalities of 2.5-2.8 give us two
more facts about $p(X)$ .

Corollary 2.9 For any $X\in L(\mathcal{A})$ , $p(X)$ is a nonnegative integer.

Corollary 2.9 was proven by Crapo in Theorem II of [1].
The equalities of 2.5-2.8 can also be found in the proof of [4, Propo-

sition 4]. In that proposition, Schectman, Terao, and Varchenko show the
following:

Proposition 2.10 Let $\mathcal{A}$ be an arrangement in complex projective space.
Then, up to sign, $p(X)$ is the Euler characteristic of the complement of $\mathcal{A}_{X}$

in $\mathbb{C}P^{\ell}$ .

Proof. The Euler characteristic of the complement of $\mathcal{A}_{X}$ is
$| \frac{d}{dt}\pi(\mathcal{A}_{X}, t)|_{t=-1}$ up to a sign. $\square$

Schechtman, Varchenko, and Terao, in [4] discuss the beta invariant
$p(X)$ in the context of decomposible arrangements and dense edges of an
arrangement. They also give necessary and sufficient conditions for deter-
mining when $p(X)$ is identically zero.
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With all our definitions, we can now state our main result:

Theorem 2.11 Let $\mathcal{A}$ be a central arrangement. Then for any $H_{0}\in \mathcal{A}$ ,

$\sum_{H_{0}\leq X}t^{r(X)-1}\pi(\mathcal{A}^{X}, t)p(X)=\pi(d\mathcal{A}, t)$
. (2.12)

3. Applications

3.1. Varchenko’s bilinear form
In [6], Varchenko establishes a determinant formula for a bilinear form

defined on real arrangements. As part of his proof, he establishes the fol-
lowing counting formula:

Proposition 3.1 Let $\mathcal{A}$ be a central real arrangement, and let $H_{0}\in \mathcal{A}$ .
For $X\in A$ , let $n(X)=|C(\mathcal{A}^{X})|$ denote the number of chambers in the
complement of $\mathcal{A}^{X}$

‘ Then

2
$\sum_{H_{0}\leq X}n(X)p(X)=n$

,

where $n$ is the number of chambers in the complement of $\mathcal{A}$ .

Varchenko uses a counting argument to prove this proposition. How-
ever, one can see that the proposition is also a direct result of Theorem
2.11 in the specific case when $t$ $=1$ . In particular, note that the quantities
$n(X)$ , $p(X)$ and $n$ in the lemma may be obtained combinatorially from the
intersection poset. Although the result has a pleasant physical interpreta-
tion in the case of real arrangements, the identity is nevertheless true for
all central arrangements.

One might be tempted to consider in a similar way, the specific case
when $t=-1$ . However, when $\mathcal{A}$ is a central arrangement, then for any
$X\in L(\mathcal{A})$ , $\mathcal{A}^{X}$ is also central. As a result, when $X\neq T(\mathcal{A})$ , $\mathcal{A}^{X}$ has no
bounded chambers in its complement, and hence $\pi(\mathcal{A}^{X}, -1)=0$ . On the
other hand, $\pi(\mathcal{A}^{T}, -1)=1$ , and Equation 2.12 reduces to a restatement of
the definition of $p(T)$ :

$p(T)=(-1)^{r(T)-1}\pi(d\mathcal{A}, -1)$ .

In the next section, we look at an application of Theorem 2.11 in the
case when $t$ $=-1$ , after rearranging terms slightly.



124 S. Szydlik

3.2. The Euler beta function
In [5], Varchenko defines a function related to his work on hypergeo-

metric functions. Let $\mathcal{A}=\{H_{1}, \ldots, H_{n}\}$ be an affine arrangement in $\mathbb{C}^{\ell}$ .
Choose a system of weights $\lambda=$ $(\lambda_{1}, . , \lambda_{n})\in \mathbb{C}^{n}$ for $\mathcal{A}$ so that each $\lambda_{i}$

is the weight for the corresponding $H_{i}$ . Define a new arrangement $\mathcal{A}_{\infty}$ in
$\mathbb{C}P^{\ell}$ obtained by adjoining the hyperplane at infinity to $\mathcal{A}$ . That is, let
$\mathcal{A}_{\infty}=\{\overline{H_{1}}, \ldots, \overline{H_{n}}, H_{\infty}\}$ , where $\overline{H_{i}}$ is the image of $H_{i}$ in $\mathbb{C}P^{\ell}$ under the
natural inclusion. In this paper, we will not distinguish between a plane $H_{i}$

and its image $\overline{H_{i}}$ in $\mathcal{A}_{\infty}$ . Give hyperplane $H_{\infty}$ the weight $\lambda_{\infty}=-\sum_{i=1}^{n}\lambda_{i}$ .
Let $L=L(\mathcal{A})$ and $L_{\infty}=L(\mathcal{A}_{\infty})$ . Note that $L$ embeds naturally in $L_{\infty}$ , and
that $L_{\infty}$ is the lattice obtained by removing the top element $T(c\mathcal{A})$ from
the lattice $L(c\mathcal{A})$ .

Extend our weight system $\lambda$ to a function $\lambda$ : $L_{\infty}arrow \mathbb{C}$ by

$\lambda(X)=$

$\sum_{H_{i}\leq X,i\in\{1,\ldots,n,\infty\}}$

$\lambda_{i}$ .

For $X\in L$ , define $\delta(X)=|\pi(\mathcal{A}^{X}, -1)\frac{d}{dt}\pi(\mathcal{A}_{X}, t)|_{t=-1}$ . $\delta$ is a map from
$L$ to the nonnegative integers. The definition of $\delta(X)$ can be extended to
$L_{\infty}$ , by extending the definition of $\pi(\mathcal{A}^{X}, t)$ . For $X\in L_{\infty}\backslash L$ , there exists
some $i$ , $1\leq i\leq n$ such that $H_{i}\not\leq X$ . Decone $c\mathcal{A}$ with respect to hyperplane
$H_{i}$ . We agree to let $\pi(\mathcal{A}^{X}, t)=\pi((d(c\mathcal{A}))^{X}, t)$ . Note that for $X\in L_{\infty}\backslash L$ ,
$\pi(\mathcal{A}^{X}, t)$ is independent of the chosen $H_{i}\not\leq X$ , and so it is well defined.
Since $p(X)$ depends on $\mathcal{A}_{X}$ , it is clearly defined on $L_{\infty}$ . Thus $\delta$ can be
viewed as a map on $L_{\infty}$ .

The Euler beta function is then given as

$\beta(\mathcal{A}, \lambda)=\prod_{X\in L}\Gamma(\lambda(X)+1)^{\delta(X)}\prod_{X\in L_{\infty}\backslash L}\Gamma(-\lambda(X)+1)^{-\delta(X)}$
(3.2)

It has been observed that for each $i$ , $\beta(\mathcal{A}, \lambda)$ contains the same number of
$\lambda_{i}$ ’s in the numerator and denominator. More precisely, for each $H_{i}\leq X$ , $\lambda_{i}$

will appear in the numerator of $\beta(\mathcal{A}, \lambda)$ with multiplicity $\delta(X)$ . Similarly,
for every $H_{i}\not\leq X$ , with $X\in L_{\infty}\backslash L$ , $\lambda_{i}$ will appear in the denominator
with multiplicity $\delta(X)$ . Our observation asserts that for each $i$ , the total
multiplicity of $\lambda_{i}$ in the numerator is the same as in the denominator.
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Proposition 3.3 Let $\mathcal{A}$ , $\mathcal{A}_{\infty}$ , $\delta$ , $\lambda$ be as above. Then for each $i$ , $1\leq i\leq n$ ,

$\sum_{H_{i}\leq XX\in L}\delta(X)=\sum_{H_{i}\not\leq X,X\in L_{\infty}\backslash L}\delta(X)$

.

In [2], Loeser gives a case-by-case proof of this proposition. Theorem
2.11 provides us with an alternate, case-free proof.

It can first be seen that Proposition 3.3 is equivalent to the statement
that the quantity

$\sum_{X\in L_{\infty,}H\leq X}$

$\delta(X)$ (3.4)

is independent of $H\in \mathcal{A}_{\infty}$ .
If we know that (3.4) is true, then we have that for any $H_{i}\in \mathcal{A}$ ,

$\sum_{X\in L_{\infty,}H_{i}\leq X}$ $\delta(X)=\sum_{X\in L_{\infty,}H_{\infty}\leq X}$

$\delta(X)$

Notice that $H_{\infty}\leq X$ if and only if $X\in L_{\infty}\backslash L$ . Thus we have

$\sum_{X\in L_{\infty,}H_{i}\leq X}\delta(X)=\sum_{X\in L_{\infty\backslash L}}\delta(X)$

(3.5)

If we now subtract the quantity

$\sum_{X\in L_{\infty}\backslash LH_{i}\leq X}\delta(X)$

,

from both sides of Equation 3.5 we will have proven Proposition 3.3. It
remains to prove (3.4). We shall prove a somewhat stronger proposition.
Define a polynomial $\delta_{t}(X)$ on $L_{\infty}$ by

$\delta_{t}(X)=t^{r(X)-1}\pi(\mathcal{A}^{X}, t)p(X)$ .

Then notice that the $\delta(X)$ of Proposition 3.3 is $\delta_{-1}(X)$ . We shall prove the
following proposition, of which Proposition 3.3 is an immediate consequence.

Proposition 3.6 Let $\mathcal{A}$ , $\mathcal{A}_{\infty}$ , $\delta$ , and $\lambda$ be as above. Then

$\sum_{H\leq X,X\in L_{\infty}}$

$\delta_{t}(X)$
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is independent of $H\in A_{\infty}$ .

Proof. Let $H=H_{i}$ , where $i\in\{1, \ldots, n, \infty\}$ . Although $A$ is an affine
arrangement, $cA$ is central, and we may apply Theorem 2.11 to obtain

$\sum_{H\leq X,X\in L(cA)}$

$t^{r(X)-1}\pi((cA)^{X}, t)p(X)=\pi(A, t)$ (3.7)

On the left hand side of Equation 3.7, the term which occurs when
$X=T=T(cA)$ is $t^{r(T)-1}p(T)$ . We subtract this term from both sides to
obtain

$\sum_{H\leq X,X\in L(cA),X\neq T}$

$t^{r(X)-1}\pi((cA)^{X}, t)p(X)=\pi(A, t)-t^{r(T)-1}p(T)$ . (3.8)

Now, using Proposition 2.2 and Lemma 2.3, we find that for $X\neq T$ ,
$\pi((cA)^{X}, t)=(1+t)\pi(A^{X}, t)$ . Dividing both sides of Equation 3.8 by $1+t$

gives

$\sum_{H\leq X,X\in L(cA),X\neq T}$

$t^{r(X)-1} \pi(A^{X}, t)p(X)=\frac{\pi(A,t)-t^{r(T)-1}p(T)}{1+t}$ .

$L_{\infty}$ is naturally isomorphic to $L(cA)$ with the top element $T$ removed.
Thus,

$\sum_{H\leq X,X\in L_{\infty,}}$

$t^{r(X)-1} \pi(A^{X}, t)p(X)=\frac{\pi(A,t)-t^{r(T)-1}p(T)}{1+t}$ . (3.9)

Note that the left hand side of Equation 3.9 is

$\sum_{H\leq X,X\in L_{\infty}}$

$\delta_{t}(X)$ .

Moreover, the right hand side of the equation is independent of $H\in A$ , and
hence so is the left hand side. $\square$
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4. Proof of the Main Theorem

Let $H_{0}\in \mathcal{A}$ be our distinguished hyperplane. To prove Theorem 2.11,
we shall work on the left hand side (LHS) and right hand side (RHS) of
Equation 2.12 separately. Since both sides of the equation are polynomi-
als in variable $t$ , we shall simplify the left hand side, then show that the
coefficients of the corresponding powers of $t$ are the same on both sides.

Using our definitions of $\pi(\mathcal{A}^{X}, t)$ and $p(X)$ , we have that the left hand
side is

LHS
$=H \sum_{0\leq X}t^{r(X)-1}\pi(\mathcal{A}^{X}, t)p(X)$

$= \sum_{H_{0}\leq X}t^{r(X)-1}(\sum_{Y\geq X}\mu(X, Y)(-t)^{r(Y)-r(X))}((-1)^{r(X)}\theta_{X})$

$( where\theta_{X}=\sum_{Z\leq X}\mu(Z)r(Z))$

$=- \sum_{H_{0}\leq X}\sum_{Y\geq X}(-t)^{r(X)-1}\mu(X, Y)(-t)^{r(Y)-r(X)}\theta_{X}$

$=- \sum_{H_{0}\leq X}\sum_{Y\geq X}(-t)^{r(Y)-1}\mu(X, Y)\theta_{X}$
.

Interchanging the order of summation, we get

$LHS=-$
$\sum_{H_{0}\leq Y}\sum_{H_{0}\leq X\leq Y}(-t)^{r(Y)-1}\mu(X, Y)\theta_{X}$

$=- \sum_{H_{0}\leq Y}\sum_{H_{0}\leq X\leq Y}(-t)^{r(Y)-1}\mu(X, Y)\sum_{Z\leq X}\mu(Z)r(Z)$

$=- \sum_{H_{0}\leq Y}(-t)^{r(Y)-1}\sum_{H_{0}\leq X\leq Y}\sum_{Z\leq X}\mu(X, Y)\mu(Z)r(Z)$

Interchanging the order of the last two sums yields

$LHS=-$
$\sum_{H_{0}\leq Y}(-t)^{r(Y)-1}\sum_{Z\leq Y} \sum_{Z\leq X\leq Y,H_{0}\leq X}$

$\mu(X, Y)\mu(Z)r(Z)$

$=- \sum_{H_{0}\leq Y}(-t)^{r(Y)-1}\sum_{Z\leq Y}\mu(Z)r(Z)\sum_{Z\vee H_{0}\leq X\leq Y}\mu(X, Y)$
.
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From [3, Lemma 2.38], we know that the last sum,

$\sum_{Z\vee H_{0}\leq X\leq Y}\mu(X, Y)=\{0$

if $Z\Lambda H_{0}\neq Y$

$1$ if $Z\wedge H_{0}=Y$
.

The only occurence of a nonzero value in that final sum is when the
variable $Y$ in the second sum is $Z\vee H_{0}$ . In that case the value of the sum
is 1. Thus, we have that

LHS
$=- \sum_{H_{0}\leq Y}(-t)^{r(Y)-1}\sum_{Z\vee H_{0}=Y}\mu(Z)r(Z)$

$=- \sum_{H_{0}\leq Y}\sum_{Z\vee H_{0}=Y}(-t)^{r(Y)-1}\mu(Z)r(Z)$

Interchanging the order of summation one more time, we have

LHS $=-$
$\sum_{Z\in L(\mathcal{A})}\sum_{Y=Z\vee H_{0}}(-t)^{r(Y)-1}\mu(Z)r(Z)$

$=- \sum_{Z\in L(\mathcal{A})}(-t)^{r(Z\wedge H_{0})-1}\mu(Z)r(Z)$

Now, notice that

$Z\vee H_{0}=Z\cap H_{0}$

$=\{Z$
if $Z\subseteq H_{0}$ (i.e. $H_{0}\leq Z$ )

a rank $r(Z)+1$ element if $Z\not\subseteq H_{0}$ (i.e. $H_{0}\not\leq Z$ )

So the rank of $Z\vee H_{0}$ can be given by

$r(Z\vee H_{0})=\{r(Z)$
if $H_{0}\leq Z$

$r(Z)+1$ if $H_{0}\not\leq Z$

.

As a result, we have that

LHS $=$ $-( \sum_{H_{0}\leq Z}(-t)^{r(Z)-1}\mu(Z)r(Z)+\sum_{H_{0}\not\leq Z}(-t)^{r(Z)}\mu(Z)r(Z))$

As we stated at the start of the section, both the left hand side of our
equation (computed above) and the right hand side are polynomials in the
indeterminate $t$ . We shall show that these polynomials are the same by
showing that the corresponding coefficients of the $t^{i}$ terms are equal.
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On the left hand side, we have that the coefficient of $t^{i}$ is

$-( \sum_{H_{0}\leq Z,r(Z)-1=i}(-1)^{r(Z)-1}\mu(Z)r(Z)+\sum_{H_{0}\not\leq Z,r(Z)=i}$ $(-1)^{r(Z)}\mu(Z)r(Z))$

$=-( \sum_{H_{0}\leq Z,r(Z)=i+1}(-1)^{i}\mu(Z)(i+1)+\sum_{H_{0}\not\leq Z,r(Z)=i}$ $(-1)^{i}\mu(Z)i)$

$=(-1)^{i+1}((i+1) \sum_{H_{0}\leq Z,r(Z)=i+1}\mu(Z)+i\sum_{H_{0}\not\leq Z,r(Z)=i}$ $\mu(Z))$ (4.1)

Let $\mathcal{B}$ $=(\{0\}, \mathbb{K})$ be the nonempty central $1$ -arrangement. Consider the
product arrangement $(d\mathcal{A})$

$\cross \mathcal{B}$ in $\mathbb{K}^{\ell-1}\oplus \mathbb{K}=\mathbb{K}^{\ell}$ given by

$(d\mathcal{A})$
$\cross \mathcal{B}$ $=\{H\oplus \mathbb{K}|H\in d\mathcal{A}\}\cup\{\mathbb{K}^{\ell-1}\oplus\{0\}\}$ .

The posets $L((d\mathcal{A})\cross \mathcal{B})$ and $L(d\mathcal{A})\cross L(\mathcal{B})$ are naturally isomorphic (see [3,
Proposition 2.14]) and thus the partial orders on $L(d\mathcal{A})$ and $L(\mathcal{B})$ induce
a natural partial order on $L((d\mathcal{A})\cross \mathcal{B})$ . Let $\hat{\mu}$ be the M\"obius function on
$L((d\mathcal{A})\cross \mathcal{B})$ .

Now, if $Z\in L(\mathcal{A})$ with $Z\geq H_{0}$ , then Proposition 2.43 of [3] (applied
to the arrangement $d\mathcal{A}$) tells us that

$\mu(Z)=$ $\sum$ $\hat{\mu}(X\oplus\{0\})$ .
$X\in L(dA)cX\cap H_{0}=Z$

On the other hand, if $Z\in L(\mathcal{A})$ with $Z\not\geq H_{0}$ , then Proposition 2.43 of [3]
tells us that $\mu(Z)=\hat{\mu}(X\oplus \mathbb{K})$ , where $X\in L(d\mathcal{A})$ and $Z=cX$ .

Thus, from Equation 4.1, the coefficient of $t^{i}$ on the left hand side is

LHS= (4.2)

$(-1)^{i+1}((i+1) \sum_{Z\in L(A),H_{0}\leq Z,r(Z)=i+1}\sum_{X\in L(dA),cX\cap H_{0}=Z}\hat{\mu}(X\oplus\{0\})+i\sum_{X\in L(dA),r(X)=i}$

$\mu(X\oplus \mathbb{K}))$ .
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Note that $\hat{\mu}(X\oplus\{0\})=-\mu_{d}(X)$ and $\hat{\mu}(X\oplus K)=\mu_{d}(X)$ , where $\mu_{d}$ is the
M\"obius function on $L(dA)$ .

Then, Equation 4.2 gives us

LHS= $(-1)^{i+1}(-(i+1) \sum_{H_{0}\leq Z}r(Z)=i+’ 1Z\in L(A),cX\cap H_{0}=Z\sum_{X\in L(dA)},$ $\mu_{d}(X)+i\sum_{r(X)=i}\mu_{d}(X))X\in L(dA)$

,

One can check that

$\cup$ { $X\in L$ (dA) $|cX\cap H_{0}=Z$ } $=$ { $X\in L$ (dA) $|r(X)=i$ }.
$Z\in L(A)$ ,

$H_{0}\leq Z$ ,
$r(Z)=i+1$

Thus, we have

LHS= $(-1)^{i+1}(-(i+1) \sum_{r(X)=i}\mu_{d}(X)X\in L(dA),+i\sum_{r(X)=i}\mu_{d}(X))X\in L(dA)$

,

$=(-1)^{i}$ $\sum$ $\mu_{d}(X)$ .
$X\in L(dA)$ ,
$r(X)=i$

This final quantity is the coefficient of $t^{i}$ in

$\pi(dA, t)=\sum_{X\in L(dA)}\mu_{d}(X)(-t)^{r(X)}$
.

The proof is complete.

5. Example

Consider the arrangement $A$ in $V=K^{2}$ given by

$Q(A)=(x_{2}-1)$ $(x_{2}+1)(x_{1}+1)(x_{1}-1)$ $(x_{1}+x_{2})(x_{1}-x_{2})$ .

In the case when $K=\mathbb{R}$ , $A$ can be viewed as six lines intersecting in the
plane.
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Fig. 5.1. Arrangement $A$ when $K=\mathbb{R}$ .

Fig. 5.2. The Hasse diagram for $L(cA)$ .
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$A$ is not a central arrangement, but we shall use it in this example
to illustrate the applications of Theorem 2.11. We shall use the central
arrangement $cA$ to demonstrate the main theorem directly, in the context
of Equation 3.7. $cA$ is the arrangement in $K^{4}$ given by

$Q(cA)=(x_{2}-x_{0})(x_{2}+x_{0})(x_{1}+x_{0})(x_{1}-x_{0})(x_{1}+x_{2})(x_{1}-x_{2})x_{0}$ .

We let $H_{\infty}=kerx_{0}$ denote the additional hyperplane.
We use a Hasse diagram to depict the intersection poset of the arrange-

ment. The vertices of the Hasse diagram are labeled by the elements of the
poset, arranged on levels according to rank. An edge is drawn between a
rank $r$ element $X$ and a rank $r+1$ element if and only if $X<Y$ (i.e. $Y\subset X$ ).
Figure 5.2 gives the Hasse diagram for $L(cA)$ . For ease in identifying ele-
ments of the poset, we let $H_{i_{1}\ldots i_{p}}=H_{i_{1}}\cap$ $\cap H_{i_{p}}$ . The Hasse diagram of
$L(A)$ appears as a sublattice of $L(cA)$ and is indicated by solid lines in the

${?} Xr(X)\mu(X)p(X)\pi(A^{X}, t)\delta_{t}(X)\delta(X)\pi((cA)^{X}, t)$

$V$ 0 1 0 $9t^{2}+6t+1$ 0 0 $9t^{3}+15t^{2}+7t+1$$V$ 0 1 0 $9t^{2}+6t+1$ 0 0 $9t^{3}+15t^{2}+7t+1$

$H_{1}$ 1 -1 1 $2t+1$ $2t+1$ 1 $2t^{2}+3t+1$

$H_{2}$ 1 -1 1 $2t+1$ $2t+1$ 1 $2t^{2}+3t+1$

$H_{3}$ 1 -1 1 $2t+1$ $2t+1$ 1 $2t^{2}+3t+1$

$H_{4}$ 1 -1 1 $2t+1$ $2t+1$ 1 $2t^{2}+3t+1$

$H_{5}$ 1 -1 1 $3t+1$ $3t+1$ 2 $3t^{2}+4t+1$

$H_{6}$ 1 -1 1 $3t+1$ $3t+1$ 2 $3t^{2}+4t+1$

$H_{\infty}$ 1 -1 1 $3t+1$ $3t+1$ 2 $3t^{2}+4t+1$

$H_{135}$ 2 2 1 1 $t$ 1 $t+1$

$H_{146}$ 2 2 1 1 $t$ 1 $t+1$

$H_{245}$ 2 2 1 1 $t$ 1 $t+1$

$H_{236}$ 2 2 1 1 $t$ 1 $t+1$

$H_{56}$ 2 1 0 1 0 0 $t+1$

$H_{12\infty}$ 2 2 1 1 $t$ 1 $t+1$

$H_{34\infty}$ 2 2 1 1 $t$ 1 $t+1$

$H_{5\infty}$ 2 1 0 1 0 0 $t+1$

$H_{6\infty}$ 2 1 0 1 0 0 $t+1$

$T(cA)$ 3 -9 4 – – – 1

Table 5.3. Values of $\mu(X)$ , $p(X)$ , $\pi(A^{X}, t)$ , $\delta_{t}(X)$ , $\delta(X)$ , and
$\pi((cA)^{X}, t)$ for $X\in L(cA)$ .
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diagram. Edges appearing in the Hasse diagram of $L(cA)$ but not $L(A)$ are
marked by dotted lines. Recall that $L_{\infty}=L(A_{\infty})$ is isomorphic to $L(cA)$

with the top element $T(cA)$ removed.
Table 5.3 gives the values of $\mu(X)$ , $p(X)$ , $\pi((A^{X}, t),$ $\delta_{t}(X)$ , $\delta(X)$ , and

$\pi(cA)^{X}$ , $t)$ for $X\in L(cA)$ . Theorem 2.11 applied to $cA$ tells us that for any
$H\in cA$ , the left hand side of Equation 3.7 will be $\pi(A, t)=9t^{2}+6t+1$ . Note
that in our index notation, $H_{i_{1}\ldots i_{p}}\leq H_{j_{1}\ldots j_{p}}$ precisely when $\{i_{1}, . , i_{p}\}\subseteq$

$\{j_{1}, \ldots, j_{p}\}$ . For example, if $H=H_{1}$ , there are six terms in the sum on the
left hand side of Equation 3.7, corresponding to $H_{1}$ , $H_{135}$ , $H_{146}$ , $H_{12\infty}$ , and
$H_{123456\infty}$ . The left hand side is thus

$\sum_{H\leq X}$

,

$t^{r(X)-1}\pi((cA)^{X}, t)p(X)$

$X\in L(cA)$

$=t^{0}(2t^{2}+3t+1)+3t^{1}(t+1)+4t^{2}$

$=9t^{2}+6t+1$ ,

as expected.
Now let $\lambda=$ $(\lambda_{1}, . . , \lambda_{6})\in \mathbb{C}^{6}$ be a weight system for $A$ . Also, for

notational purposes, let $\lambda_{i_{1}\ldots i_{p}}=\lambda_{i_{1}}+$ . $+\lambda_{i_{p}}$ . $A_{\infty}$ is the arrangement
obtained by adjoining hyperplane $H_{\infty}$ to the image of $A$ in $\mathbb{C}P^{2}$ . In this
case, then, Varchenko’s Beta function of Equation 3.2 is given by

$\beta(A, \lambda)=$

$( \prod_{i=1}^{4}\Gamma(\lambda_{i}+1))(\prod_{i=5}^{6}\Gamma(\lambda_{i}+1)^{2})\Gamma(\lambda_{135}+1)\Gamma(\lambda_{146}+1)\Gamma(\lambda_{245}+1)\Gamma(\lambda_{236}+1)$

$\Gamma(\lambda_{123456}+1)^{2}\Gamma(\lambda_{3456}+1)\Gamma(\lambda_{1256}+1)$

One can see that for each $i$ , $1\leq i\leq 6$ , the multiplicity of $\lambda_{i}$ is the same in
the numerator and the denominator. $\lambda_{1}$ and $\lambda_{5}$ , for example, appear with
multiplicity 3 and 4, respectively, in both the numerator and denominator.
Moreover, for each $H\in A_{\infty}$ ,

$X \in L_{\infty}\sum_{H\leq X}$

,

$\delta_{t}(X)=\frac{(9t^{2}+6t+1)-4t^{2}}{1+t}=5t+1$ ,

which is in agreement with Equation 3.9.
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