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Extension of submanifolds of \mathbb{C}^{n} preserving the number
of negative Levi eigenvalues
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(Received February 13, 1996; Revised September 16, 1997)

Abstract. Given a totally real C^{2} submanifold S of a complex manifold X , it is obvious

that there exists a hypersurface M , in a neighborhood of any point of S , which contains

S and which is the boundary of a strictly pseudoconvex domain. We prove here that if

S is genenc, then there exists a hypersurface M through S which has the same number

of negative (or positive) Levi eigenvalues as S at a prescribed conormal. (Resp. at all

common conormals when we assume in addition that the rank of the Levi-form Ls is

constant.) As an application we show how to lift complex submanifolds from S to \dot{T}_{S}^{*}X ,

the conormal bundle to S in X , when Ls is semidefinite of constant rank (cf. Bedford-
Fornaess [1] for the case of codim S=1). We point out that our method is not adequate

to describe the behavior of the Levi form of M on points outside S . In particular it is still

an open problem whether any submanifold S whose Levi form is positive semi-definite,

is contained in a pseudoconvex hypersurface M .
Some of the results discussed here are also exposed in [9].

Key words: CR manifolds- real/complex symplectic structures.

1. Statement and Proof of the Main Result

Let X be a complex manifold of dimension n , S a real C^{2} submanifold
of X with co\dim_{X}S=l , \pi : T^{*}Xarrow X the cotangent bundle to X , \pi :
T_{S}^{*}X – S the conormal bundle to S in X\tau For a point p=(z, \zeta)\in\dot{T}_{S}^{*}X

(=T_{S}^{*}X\backslash \{0\}) , choose a real C^{2} -function r with r|s\equiv 0 and \partial r(z)=p , and
define the Levi form of S at p by

L_{S}(p)=\partial\overline{\partial}r(z)|_{T_{z}^{\mathbb{C}}S} , (1)

where T^{\mathbb{C}}S=TS\cap\sqrt{-1}TS . Denote by s_{S}^{+,-,0}(p) the numbers of respectively
positive, negative, and null eigenvalues of L_{S}(p) .

Assume that S is generic in the sense that

(T_{S}^{*}X)_{z}\cap\sqrt{-1}(T_{S}^{*}X)_{z}=\{0\} . (2)

Fix p_{0}\in\dot{T}_{S}^{*}X .
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Theorem 1 We may find a hypersurface M (in an open neighborhood of
z_{o}=\pi(p_{0}))def. such that

\{

M\supset S

p_{0}\in\dot{T}_{M}^{*}X

s_{M}^{-}(p_{0})=s_{S}(p_{0}) .
(3)

(Similarly there exists M which satisfies (3) with s^{-} replaced by s^{+} .)

Proof We take complex coordinates z in a neighborhood B of z_{o} in X , and
identify in these coordinates X\simeq T_{z}X\forall z\in B . We take the canonically
associated complex symplectic coordinates (z, \zeta) in T^{*}X . The action of
the canonical 1-form \omega=\omega^{\mathbb{R}}+\sqrt{-1}\omega^{I} is then defined by means of the
Hermitian product of X and that of \omega^{\mathbb{R}} through the Euclidean product
of X^{\mathbb{R}} the real underlying manifold to X . This provides an identification
of T_{S}^{*}X to TS^{\perp} . the Euclidean orthogonal to TS . We shall also denote
by \sigma=\sigma^{\mathbb{R}}+\sqrt{-1}\sigma^{I}(=d\omega) the canonical 2-form on T^{*}X . We define the
complex modulus ||(||=( \sum_{i=1}^{n}\zeta_{i}^{2})^{\frac{1}{2}} where we choose the determination of
the square root which is positive for real \zeta . In particular ||\zeta|| makes sense
when \sum_{i}(_{i}^{2}\not\in \mathbb{R}^{-} This is the case of any ( \in(T_{S}^{*}X)_{z} , when z is close to
z_{o} . (In fact, by (2) the coordinates can be chosen so that any \zeta\in(T_{S}^{*}X)_{z_{o}}

is real.) We write any \tau\in(X\backslash S)\cap B as:

\tau=z-|\zeta|\frac{\zeta}{||(||} (4)

for an unique ( z;()\in\dot{T}_{S}^{*}X with z\in B’ and |\zeta| small. In fact it is easy
to check that the normals issued from different points of a C^{2} manifold S
cannot have non-trivial intersection in a neighborhood of S . And this is still
true if we replace normal directions \frac{\zeta}{|\zeta|} by \frac{\zeta}{||\zeta||} . By (4), X\backslash S and \dot{T}_{S}^{*}X are
thus identified in neighborhoods of z_{o} and (z_{o};0) respectively. This provides
an orthogonal projection h and a distance function \delta , defined locally by:

h : X\backslash Sarrow S , h(\tau)=z , \delta : X\backslash Sarrow\dot{\mathbb{R}}^{+} , \delta(\tau)=||\tau-z||(=|(|) .

We have also to notice that X\backslash S is foliated by the hypersurfaces of fixed
distance to S :

\tilde{S}_{t}=\{\tau\in B;\delta(\tau)=t\}
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= \{\tau=z-t\frac{\zeta}{||\zeta||};(z, ()\in\dot{T}_{S}^{*}X\cap\pi^{-1}(B’)\} ,

with B and B’ neighborhoods of \tau_{o} and z_{o} in X and S respectively.
We fix t and write also \tilde{S} instead of \tilde{S}_{t} . We introduce a complex sym-

plectic diffeomorphism \chi=\chi_{t} of \dot{T}^{*}X defined, for \sum\zeta_{i}^{2}\not\in \mathbb{R}^{-} . by:

\chi : (z; \zeta)\mapsto(z-t\frac{\zeta}{||\zeta||};\zeta)

We remark that \pi\chi_{t}(T_{S}^{*}X)=\tilde{S} and that \chi(T_{S}^{*}X) has to be \mathbb{R}-Lagrangian
(i.e. Lagrangian for \sigma^{\mathbb{R}} ) because \chi preserves Lagrangianity. It follows:

\chi_{t}(T_{S}^{*}X)=T_{\tilde{S}}^{*}X . (5)

This implies in particular that

T_{h(\tau)}S\subset T_{\tau}\tilde{S} , \forall\tau\in\tilde{S} , (6)

under the identification, in coordinates, X\simeq T_{\tau}X\simeq T_{h(\tau)}X
\tilde{S} being a

hypersurface, we identify the conormals q \in T\frac{*}{S}X in a neighborhood of q_{0}

to the base-points \tau=\pi(q)\in\tilde{S} . \square

To carry on our proof we need to state now some Lemmas.

Lemma 2 There exists R=R_{t}\subset\tilde{S} with dim R=\dim S and such that

(i) T_{\tau_{o}}^{\mathbb{C}}R\supset KerL-(\tau_{o})

(ii) T_{\tau_{o}}R=\Phi_{t}(T_{z_{o}}S) ,

where \Phi_{t} is a linear transformation of \mathbb{C}^{n} with \Phi_{t}-Id=O(t) .

Proof. We denote by (r_{1}=0, \ldots, r_{l}=0)(l=co\dim S) a system of
independent equations for S . We set p_{0}=(z_{o};\zeta_{0}) , observe that we can
assume \zeta_{0}\in \mathbb{R}^{n} , |\zeta_{0}|=1 due to (2), and choose an equation r=0 for S

which satisfies \partial r(z_{o})=\zeta_{0} . We write \lambda_{S}(p_{0}) : def= .
T_{p_{0}}T_{S}^{*}X , and observe that

we have the parametric description:

\lambda_{S}(p_{0})=\{(u,
\sum_{j}t_{j}\partial r_{j}(z_{o})+\partial\partial r(z_{o})u+\partial\overline{\partial}r(z_{o})\overline{u});u\in T_{z_{o}}^{\mathbb{C}}S

, (t_{j})\in \mathbb{R}^{l}\} .
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It follows

\lambda_{S}(p_{0})\cap\sqrt{-1}\lambda_{S}(p_{0})=\{(u,
\sum_{j}t_{j}\partial r_{j}(z_{o})+\partial\partial r(z_{o})u+\partial\overline{\partial}r(z_{o})\overline{u})

=(\sqrt{-1}w,
\sqrt{-1}\sum_{j}s_{j}\partial r_{j}(z_{o})

+\partial\partial r(z_{o})\sqrt{-1}w-\partial\overline{\partial}r(z_{o})\overline{\sqrt{-1}w})

for u , w\in T_{z_{o}}^{\mathbb{C}}S , (t_{j}) , (s_{j})\in \mathbb{R}^{l}\} .

This implies u=\sqrt{-1}w and moreover

\partial\overline{\partial}r(z_{o})\overline{u}=-\frac{1}{2}(\sum_{j}(t_{j}-\sqrt{-1}s_{j})\partial r_{j}(z_{o})) (i.e. u\in KerL_{S}(p_{0})) .

In particular \sum_{j}t_{j}\partial r_{j}(z_{o})=-2\Re e\partial\overline{\partial}r(z_{o})\overline{u} . Also notice that

-2\Re e\partial\overline{\partial}r(z_{o})\overline{u}+\partial\overline{\partial}r(z_{o})\overline{u}=-\overline{\partial\overline{\partial}r(z_{o})\overline{u}}=-\overline{\partial}\partial r(z_{o})u .

It follows

\lambda_{S}(p_{0})\cap\sqrt{-1}\lambda_{S}(p_{0})

=\{(u, v);u\in KerL_{S}(p_{0}) , v=-2\Re e\partial\overline{\partial}r(z_{o})\overline{u}

+\partial\partial r(z_{o})u+\partial\overline{\partial}r(z_{o})\overline{u})\}

=\{(u, v);u\in KerL_{S}(p_{0}), v=\partial\partial r(z_{o})u-\overline{\partial}\partial r(z_{o})u\} . (7)

In particular

\lambda_{S}(p_{0})\cap\sqrt{-1}\lambda_{S}(p_{0})\pi\sim, Ker L_{S}(p_{0}) ,

is one-t0-0ne. Clearly similar injectivity for \pi’ and similar parametric de-
scription as (7) also holds for \lambda_{\tilde{S}}(q_{0})\cap\sqrt{-1}\lambda-(q_{0})(q_{0}=\chi(p_{0})) .

Let us define now a linear transformation on \mathbb{C}^{n} by \Phi_{t} : u\mapsto u+t(v(u)-

\zeta_{0}\langle\zeta_{0}, v(u)\rangle) where v(u)=\partial\partial r(z_{o})u-\overline{\partial}\partial r(z_{o})u . Note that we have:

\pi’\chi_{t}’(p_{0}) : (u, v)\mapsto ut[mathring]_{[mathring]_{[mathring]_{\frac{v(\sum_{i}\zeta_{i}^{2})-\zeta\langle\zeta,v\rangle}{(\sum_{i}\zeta_{oi}^{2})^{\frac{3}{2}}}}}}

=ut(v-\zeta_{0}\langle\zeta_{0}, v\rangle) .

(Note here that \sum_{i}\zeta_{oi}^{2}=1. )
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Thus with the notation q_{0}=\chi(p_{0}) , the diagram

\chi’

\lambda_{S}(p_{0})\cap\sqrt{-1}\lambda_{S}(p_{0})
arrow\sim

\lambda_{\tilde{S}}(q_{0})\cap\sqrt{-1}\lambda_{\tilde{S}}(q_{0})

\pi’\downarrow \downarrow\pi’ (8)

Ker L_{S}(p_{0}) arrow Ker L_{\tilde{S}}(q_{0}) ,
\Phi_{t}

is commutative. We write \tau_{o}=\pi(q_{0}) , denote by g the projection g : T_{\tau_{o}}Xarrow

\tilde{S} along the normal at \tau_{o} , and put R=g(\Phi_{t}(T_{z_{o}}S)) . R satisfies all require-
ments of Lemma 2. \square

When dealing with a hypersurface \tilde{S} (and for a choice of an orientation
\pm q_{0}) , we write L_{\tilde{S}}(\tau_{o}) , \tau_{o}=\pi(q_{0}) instead of L-(q_{0}) . We point out that (8)
shows that

rank L_{\tilde{S}}(\tau_{o})=rankL_{S}(p_{0})+(l-1) . (9)

We also point out that (i) and (ii) imply, for small t :

L_{\overline{S}}(\tau_{o})|_{T_{\tau_{O}}^{\mathbb{C}}R}\sim L_{S}(p_{0}) , (10)

where ”\sim ” means equivalence in signature and rank. Let us identify [mathring]_{\frac{(T_{S}^{*}X)_{z}}{(T_{\tilde{S}}^{*}X)_{\tau_{O}}}}

to a totally real plane N orthogonal to T_{\tau_{O}}R in T_{\tau_{o}}\tilde{S} by the aid of the
Euclidean structure of X^{\mathbb{R}}=T_{\tau_{o}}X^{\mathbb{R}}=T_{z_{o}}X^{\mathbb{R}} , and define \tilde{N}=N\oplus\sqrt{-1}N .

Thus \tilde{N} is the orthogonal complement of T_{\tau_{o}}^{\mathbb{C}}R in T_{\tau_{o}}^{\mathbb{C}}\tilde{S} . We note that
\{t\frac{\zeta}{||\zeta||};\zeta\in \mathbb{R}^{l}\simeq(T_{S}^{*}X)_{z_{o}}\} is the spherical surface in \mathbb{R}^{l} of radius t (small),

and N is (identified to) its tangent plane at ( -1,\ldots , 0 ) . It follows that the
real Hessian Hess_{\tilde{S}} verifies

Hess_{\overline{S}}(\tau_{o})(v, v)=-2t^{-1}|v|^{2} \forall v\in N .

Note also that Hess_{\tilde{S}}(\tau_{o})(\sqrt{-1}v, \sqrt{-1}v)\leq c|v|^{2} \forall v\in N . This implies

L_{\tilde{S}}( \tau_{o})(\overline{v}, v)=\frac{1}{4}[Hess_{\tilde{S}}(\tau_{o})(v, v)+Hess_{\overline{S}}(\tau_{o})(\sqrt{-1}v, \sqrt{-1}v)]

\leq(-\frac{t^{-1}}{2}+c)|v|^{2}\leq-\frac{t^{-1}}{3}|v|^{2} \forall v\in N . (11)

We recall that Ker L-(\tau_{o})arrow T_{\tau_{o}}^{\mathbb{C}}R . Thus we may find \tilde{N}’\subset T_{\tau_{o}}^{\mathbb{C}}\tilde{S} transversal
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to T_{\tau_{o}}^{\mathbb{C}}R and such that:

L_{\tilde{S}}(\tau_{o})(\overline{u}, v)=0 \forall u\in T_{\tau_{o}}^{\mathbb{C}}R , v\in\tilde{N}’ (12)

By choosing t small enough, we may suppose that (11) still holds with the
new \tilde{N}’ . It follows that

s_{\overline{S}}(\tau_{o})=s_{S}(p_{0})+(l-1) (and s_{\tilde{S}}^{+}(\tau_{o})=s_{S}^{+}(p_{0}) ).

We take now a hypersurface \tilde{M} which intersect \tilde{S} along R with order of
contact 2 and with \tilde{M}^{+}\subset\tilde{S}^{+} (where \tilde{M}^{+},\tilde{S}^{+} are the closed half-spaces
with boundary \tilde{M},\tilde{S} and inward conormal q). We note that this implies

\chi^{-1}(T_{\overline{M}}^{*}X)=T_{M}^{*}X for a hypersurface M\supset S ,

due to the assumption on the order of contact of \tilde{M} with \tilde{S} . We have clearly

L_{\tilde{M}}(\tau_{o})|_{T_{\tau_{O}}^{\mathbb{C}}R}=L_{\tilde{S}}(\tau_{o})|_{T_{\tau_{O}}^{\mathbb{C}}R} ( \sim L_{S}(p_{0}) for t small). (13)

Lemma 3 We have

L_{\tilde{M}}(\tau_{o})(\overline{u}, v)=0 \forall u\in T_{\tau_{o}}^{\mathbb{C}}R , v\in\tilde{N}’ (14)

Proof. We choose complex coordinates z=(z_{1}, z’, z’) such that \tau_{o}=

0 , q=dy_{1} , T_{\tau_{o}}X=\mathbb{C}_{z_{1}}\cross T_{\tau_{o}}^{\mathbb{C}}\tilde{S}=\mathbb{C}_{z_{1}}\cross T_{\tau_{o}}^{\mathbb{C}}R\cross\tilde{N}=\mathbb{C}_{z_{1}}\cross \mathbb{C}_{z}^{n-l},\cross \mathbb{C}_{z’}^{l-1} .
We take equations y_{1}=h_{1} and y_{1}=h_{2} for \tilde{M} and \tilde{S} respectively, and set
h=h_{1}-h_{2} . We have

h|_{R}\equiv 0 , \partial h|_{R}\equiv 0 . (15)

It follows

\sum_{j}\overline{a}_{j}\overline{\partial}_{z_{j}}\partial h|_{R}\equiv 0
if

\Re e(\sum_{j}a_{j}\partial_{z_{j}})\in T_{\tau_{o}}^{\mathbb{C}}R .

In particular, since T_{\tau_{o}}^{\mathbb{C}}R=\Re e(Span_{\mathbb{C}}(\partial_{z’})) , then \overline{\partial}_{z’}\partial h(\tau_{o})=0 . Thus
L_{h}(\overline{u}, v)=0\forall u\in T_{\tau_{o}}^{\mathbb{C}}R ; in particular the property “

L_{h_{i}}(\overline{u}, v)=0\forall u\in

T_{\tau_{o}}^{\mathbb{C}}R , v\in\tilde{N}’ ” holds for i=1 iff it holds for i=2 . Thus (12) and (14) are
equivalent. \square

End of proof of Theorem 1
It is also clear that we can take \tilde{M} such that (11) holds for L - and for
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\tilde{N}’ (with a new c). Recalling also (13), we have for small t :

s_{\tilde{M}}^{-}(\tau_{o})=s_{S}^{-}(p_{0})+(l-1) (and s_{\tilde{M}}^{+}(\tau_{o})=s_{S}^{+}(p_{0}) ).

We note now that, from \lambda_{\overline{M}}(\tau)\cap\sqrt{-1}\lambda_{\overline{M}}(\tau)\chi^{-1}’\sim\lambda_{M}(p)\cap\sqrt{-1}\lambda_{M}(p) , (\tau=

\pi\chi(p)) , we get, similarly to (9):

rank L_{M}(p)=rankL_{\tilde{M}}(\tau) . (16)

It follows:

s_{M}^{-}(p_{0})=s_{S}^{-}(p_{0}) and s_{M}^{+}(p_{0})=s_{S}^{+}(p_{0})+(l-1) . (17)

Thus M satisfies all requirements in the statement of Theorem 1. \square

Theorem 4 Let rank L_{S}(p)\equiv const\forall p in \dot{T}_{S}^{*}X close to p_{0} , and assume
that S is of class C^{3} . Then there exists a germ of a hypersurface M at z_{o}

such that

s_{M}^{-}(p)\equiv s_{S}(p_{0}) \forall p\in S\cross_{M}T_{M}^{*}X. (18)

Proof We transform T_{S}^{*}X\sim\vec{\chi}T_{\tilde{S}}^{*}X(\chi=\chi_{t},\tilde{S}=\tilde{S}_{t}) . Since

Ker L -
(\tau)arrow\pi\sim, \lambda_{\tilde{S}}(q)\cap\sqrt{-1}\lambda_{\tilde{S}}(q)arrow\chi\sim, \lambda_{S}(p)\cap\sqrt{-1}\lambda_{S}(p)

arrow Ker L_{S}(p) ,
\pi’

has constant rank, then it is integrable (= closed under Lie-brackets) ac-
cording to [4]. (see also [8]). For this the assumption of C^{3}-regularity for S

is required.
Thus each \tilde{S}=\tilde{S}_{t} is foliated by the (complex) integral leaves of Ker L -.

Since the hypersurfaces \tilde{S}_{t} give in turn a t-parameter foliation of X\backslash S , then

we get a foliation of X\backslash S by complex leaves tangent to the bundle:

\mathcal{W}(\tau):=def
. Ker L_{S}(h(\tau);\zeta_{\tau}) with \frac{|\zeta_{\tau}|\zeta_{\tau}}{||\zeta_{\tau}||}=\tau-h(\tau) .

Take a decomposition TS=L\oplus KerL_{S} such that L_{S} is diagonal (with

unitary eigenvalues) in (L\cap\sqrt{-1}L) . Define R to be the union of the in-
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tegral leaves of \mathcal{W} issued from g(\Phi_{|\zeta_{t}|}L)(g : TX --\tilde{S}) . R is a germ of a
submanifold of \tilde{S} at \tau_{o} which satisfies:

\{

T_{\tau}^{\mathbb{C}}R\supset KerL_{\tilde{S}}(\tau) \forall\tau\in R ,
(19)

T_{\tau}R=\Phi_{t}^{\tau}(T_{z_{o}}S) with |\Phi_{t}^{\tau}-Id|<\epsilon for |(\tau, t)|<\delta_{\epsilon} .
We still have

L_{\tilde{S}}(\tau)|_{T_{\tau}^{\mathbb{C}}R}\sim L_{S}(p_{0}) , (20)

and, for a decomposition T_{\tau}^{\mathbb{C}}\tilde{S}=T_{\tau}^{\mathbb{C}}R\oplus\tilde{N}_{\tau}’ :

L_{\overline{S}}(\tau)(\overline{v}, v)\leq-ct^{-1}|v|^{2} \forall v\in\tilde{N}_{\tau}’ , (21)

L_{\tilde{S}}(\tau)(\overline{u}, v)\leq\epsilon|u||v| \forall u\in T_{\tau}^{\mathbb{C}}R , \forall v\in\tilde{N}_{\tau}’ . (22)

From (20), (21), (22), and, essentially, by the first of (19), we get s_{\overline{S}}(q)=

s_{S}(p_{0})+(l-1) , \forall p . We take a hypersurface M\sim which intersect \tilde{S} along
R with order of contact 2 and with \tilde{M}^{+}\subset\tilde{S}^{+} It is not restrictive to
assume \tilde{M} invariant under the flow of \mathcal{W} . For otherwise, if f is a projection
along the \mathcal{W}-integral leaves, one replaces \tilde{M} by f^{-1}f\tilde{M} . (Remark here that
R=f^{-1}fR.) We have obviously:

L_{\tilde{M}}(\tau)|_{T_{\tau}^{\mathbb{C}}R}=L_{\tilde{S}}(\tau)|_{T_{\tau}^{\mathbb{C}}R}(\sim L_{S}(p_{0})) t small, \tau\in R close to \tau_{o} .

We also have

L_{\overline{M}}(\tau)(\overline{u}, v)\leq\epsilon|u||v| \forall u\in T_{\tau}^{\mathbb{C}}R , \forall v\in\tilde{N}_{\tau}’ ,

L_{\tilde{M}}(\tau)(\overline{v}, v)\leq-ct^{-1}|v|^{2}\forall v\in\tilde{N}_{\tau}’

L_{\tilde{M}}(\tau)(\overline{u}, w)=0 \forall u\in KerL_{\tilde{S}}(\tau)(=\mathcal{W}(\tau)) , \forall w\in T_{\tau}^{\mathbb{C}}\tilde{M} , \forall\tau\in R ,

(because \tilde{M} is invariant under the flow of \mathcal{W} ). It follows:

s_{\tilde{M}}^{-}(q)=s_{S}(p_{0})+(l-1) \forall q\in R\cross_{\tilde{M}}T_{\tilde{M}}^{*}X. (23)

From (23) we get the conclusion as in Theorem 1. \square

Corollary 5 In the situation of Theorem 1 (resp. 4), we have

Ker L_{M}(p_{0})=KerL_{S}(p_{0})

(resp. Ker L_{M}(p)=KerL_{S}(p)\forall p\in S\cross_{M}T_{M}^{*}X ).
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Proof It is an immediate consequence of the isomorphisms:

Ker L_{S}(p)\vec{\Phi_{t}}\sim Ker L-(\mbox{\boldmath $\tau$})=Ker L_{\tilde{M}}(\tau)\vec{\Phi_{t}^{-1}}\sim Ker L_{M}(p) .

\square

2. An application to complex curves in pseudoconvex manifolds

Let X be a complex manifold of dimension n . In [1] it is proved that
any complex curve \gamma in a pseudoconvex hypersurface S\subset X can be lifted
to a complex curve in \dot{T}_{S}^{*}X . We extend here the above result to the case of
codim S>1 or dim \gamma>1 .

Theorem 6 Let S be a generic submanifold of X of codimension l , p_{0}a

point of \dot{T}_{S}^{*}X , z_{o}=\pi(p_{0}) , and suppose

s_{S}^{-}(p)\equiv 0 for any p\in\dot{T}_{S}^{*}X close to p_{0} . (24)

We also suppose that there exists a hypersurface M with M\supset S , T_{M}^{*}X\ni p_{0}

and which satisfies:
Ker L_{S}(p)\subset KerL_{M}(p) \forall p\in S\cross_{M}\dot{T}_{M}^{*}X , p close to p_{0} . (25)

Let \gamma be a complex submanifold of S. Then there exists \gamma^{*} , complex sub-

manifold of \dot{T}_{S}^{*}X , which contains p_{0} and such that \pi(\gamma^{*})=\gamma .

Proof Take an equation r=0 for M with \partial r(z_{o})=p_{0} . Then

L_{r}(z)(w,\overline{w})\geq 0 \forall w\in T_{z}^{\mathbb{C}}M , \forall z\in S .

Let u\in\dot{T}_{z}^{\mathbb{C}}\gamma ; clearly L_{r}(z)(u,\overline{u})=0 . Thus the above inequality implies:

L_{r}(z)(w,\overline{u})=0 \forall z\in\gamma , \forall w\in T_{z}^{\mathbb{C}}M . (26)

Let \chi=\chi_{-t} be the complex symplectic transformation \chi : (z;\zeta) -,

(z+t \frac{\zeta}{(\sum_{i}\zeta_{i}^{2})^{\frac{1}{2}}};\zeta) . Thus for the hypersurface \tilde{S}=\tilde{S}_{-t} (different from \tilde{S}=

\tilde{S}_{+t} of \S 1), we have \chi(\dot{T}_{S}^{*}X)=\dot{T}\frac{*}{s}X . We remark that for p\in\dot{T}_{S}^{*}X and

with q= \chi(p)\in\dot{T}\frac{*}{S}X , we have rank L_{\overline{S}}(q)=rankL_{S}(p)+(l-1) . We also
remark that, for t small: s_{S}\pm(q)=s_{S}^{+}(p)+(l-1) . In particular we have:

s_{\tilde{S}}(q)\equiv 0 \forall q\in\dot{T}_{\tilde{S}}^{*}X . (27)
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Let us define \tilde{\gamma}=\{z+t\frac{\partial r(z)}{((\sum_{i}(\partial_{z_{i}}r(z))^{2})^{\frac{1}{2}})};z\in\gamma\} . We claim that \tilde{\gamma} is a

complex manifold in \tilde{S} . In fact let us take coordinates z=x+\sqrt{-1}y\in
\mathbb{C}^{n} such that \gamma=\{0\}\cross \cross\{0\}\cross \mathbb{C}_{z}^{d}, , where d=\dim_{\mathbb{C}}\gamma and z’=
(z_{n-d+1}, , z_{n}) . What we need to prove is that:

\partial_{\overline{z}_{h}}(\frac{\partial r(z)}{(\sum_{i}(\partial_{z_{i}}r(z))^{2})^{\frac{1}{2}}})|_{\{0\}\cross\cdots\cross \mathbb{C}_{z’}^{d}}=0 , \forall h\geq n-d+1 , (28)

or equivalently:

\partial_{\overline{z}_{h}}\partial_{z_{j}}r(\sum_{i}(\partial_{z_{i}}r)^{2})-\partial_{z_{j}}r\sum_{i}(\partial_{\overline{z}_{h}}\partial_{z_{i}}r)(\partial_{z_{i}}r)=0

\forall h\geq n-d+1 , \forall j . (29)

Let (e_{i}) be an orthonormal system in \mathbb{C}^{n} , and let w_{i}^{j}=\partial_{z_{i}}re_{j}-\partial_{z_{j}}re_{i} . Thus
for any fixed j , the set of vectors w_{i}^{j} , i=1 , . . ’ n , i\neq j , is a basis for T_{z}^{\mathbb{C}}M .
We may also assume that u=e_{h} . Then the term on the left side of (29) is
equal to

\sum_{i}((\partial_{\overline{z}_{h}}\partial_{z_{j}}r)(\partial_{z_{i}}r)^{2}-(\partial_{\overline{z}_{h}}\partial_{z_{i}}r)(\partial_{z_{j}}r)(\partial_{z_{i}}r))

= \sum_{i}((\partial_{\overline{z}_{h}}\partial_{z_{j}}r)(\partial_{z_{i}}r)-(\partial_{\overline{z}_{h}}\partial_{z_{i}}r)(\partial_{z_{j}}r))(\partial_{z_{i}}r)

= \sum_{i}(\partial\overline{\partial}r(w_{i}^{j},\overline{u}))(\partial_{z_{i}}r)=0\forall j , (30)

due to (26). It follows that \tilde{\gamma} is a complex manifold in the pseudoconvex hy-
persurface \tilde{S} . Thus [1] applies (with suitable modifications because possibly
\dim_{\mathbb{C}}\gamma>1) , and entails the existence of a complex manifold \tilde{\gamma}^{*}\subset\dot{T}\frac{*}{S}X ,

such that \pi(\tilde{\gamma}^{*})=\tilde{\gamma} . Finally if we define \gamma^{*}:=def
.

\chi^{-1}(\tilde{\gamma}^{*}) , then \gamma^{*} is a
complex manifold in \dot{T}_{S}^{*}X which verifies \pi(\gamma^{*})=\gamma . \square

Remark 7 Let s_{S}(p)\equiv 0\forall p\in\dot{T}_{S}^{*}X at p_{0} . One should wonder whether
there exists a pseudoconvex hypersurface M which contains S . But it is not
clear if this is true. For this reason we apply [1] not directly to M but to \tilde{S}

(with \dot{T}_{\tilde{S}}^{*}X=\chi(\dot{T}_{S}^{*}X) ). In this respect the crucial point is that \tilde{\gamma} is still a
complex manifold in \tilde{S} .
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Example 8 Let us consider in \mathbb{C}^{3} with coordinates z=x+\sqrt{-1}y :

S=\{z;x_{3}=0, x_{1}=0\} , p=dx_{1} , \gamma=\{0\}\cross \mathbb{C}_{z_{2}}\cross\{0\} .

For M=\{z;x_{1}=0\} , clearly \gamma can be lifted to a complex curve \gamma^{*}\subset

S\cross_{M}\dot{T}_{M}^{*}X in (trivial) accordance with Theorem 6. But not any M has
this property. For instance if we take M=\{z;x_{1}=x_{2}x_{3}\} , then L_{M} is non-
degenerate and therefore \dot{T}_{M}^{*}X contains no complex \gamma^{*} because otherwise
T\gamma*\subset\dot{T}_{M}^{*}X\cap\sqrt{-1}\dot{T}_{M}^{*}X(\simeq KerL_{M})=0 which is a contradiction.

Acknowledgment I wish to thank Professor Alexander Tumanov for fre-
quent discussions and helpful advices.
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