Extension of submanifolds of \mathbb{C}^{n} preserving the number of negative Levi eigenvalues

Giuseppe ZamPIERI

(Received February 13, 1996; Revised September 16, 1997)

Abstract

Given a totally real C^{2}-submanifold S of a complex manifold X, it is obvious that there exists a hypersurface M, in a neighborhood of any point of S, which contains S and which is the boundary of a strictly pseudoconvex domain. We prove here that if S is generic, then there exists a hypersurface M through S which has the same number of negative (or positive) Levi eigenvalues as S at a prescribed conormal. (Resp. at all common conormals when we assume in addition that the rank of the Levi-form L_{S} is constant.) As an application we show how to lift complex submanifolds from S to $\dot{T}_{S}^{*} X$, the conormal bundle to S in X, when L_{S} is semidefinite of constant rank (cf. BedfordFornaess [1] for the case of $\operatorname{codim} S=1$). We point out that our method is not adequate to describe the behavior of the Levi form of M on points outside S. In particular it is still an open problem whether any submanifold S whose Levi form is positive semi-definite, is contained in a pseudoconvex hypersurface M.

Some of the results discussed here are also exposed in [9].

Key words: CR manifolds - real/complex symplectic structures.

1. Statement and Proof of the Main Result

Let X be a complex manifold of dimension n, S a real C^{2}-submanifold of X with $\operatorname{codim}_{X} S=l, \pi: T^{*} X \rightarrow X$ the cotangent bundle to X, π : $T_{S}^{*} X \rightarrow S$ the conormal bundle to S in X. For a point $p=(z, \zeta) \in \dot{T}_{S}^{*} X$ ($=T_{S}^{*} X \backslash\{0\}$), choose a real C^{2}-function r with $\left.r\right|_{S} \equiv 0$ and $\partial r(z)=p$, and define the Levi form of S at p by

$$
\begin{equation*}
L_{S}(p)=\left.\partial \bar{\partial} r(z)\right|_{T_{z}^{\mathbb{C}} S}, \tag{1}
\end{equation*}
$$

where $T^{\mathbb{C}} S=T S \cap \sqrt{-1} T S$. Denote by $s_{S}^{+,-, 0}(p)$ the numbers of respectively positive, negative, and null eigenvalues of $L_{S}(p)$.

Assume that S is generic in the sense that

$$
\begin{equation*}
\left(T_{S}^{*} X\right)_{z} \cap \sqrt{-1}\left(T_{S}^{*} X\right)_{z}=\{0\} . \tag{2}
\end{equation*}
$$

Fix $p_{o} \in \dot{T}_{S}^{*} X$.

Theorem 1 We may find a hypersurface M (in an open neighborhood of $\left.z_{o} \stackrel{\text { def. }}{=} \pi\left(p_{o}\right)\right)$ such that

$$
\left\{\begin{array}{l}
M \supset S \tag{3}\\
p_{o} \in \dot{T}_{M}^{*} X \\
s_{M}^{-}\left(p_{o}\right)=s_{S}^{-}\left(p_{o}\right)
\end{array}\right.
$$

(Similarly there exists M which satisfies (3) with s^{-}replaced by s^{+}.)
Proof. We take complex coordinates z in a neighborhood B of z_{o} in X, and identify in these coordinates $X \simeq T_{z} X \forall z \in B$. We take the canonically associated complex symplectic coordinates (z, ζ) in $T^{*} X$. The action of the canonical 1-form $\omega=\omega^{\mathbb{R}}+\sqrt{-1} \omega^{\mathbb{I}}$ is then defined by means of the Hermitian product of X and that of $\omega^{\mathbb{R}}$ through the Euclidean product of $X^{\mathbb{R}}$ the real underlying manifold to X. This provides an identification of $T_{S}^{*} X$ to $T S^{\perp}$, the Euclidean orthogonal to $T S$. We shall also denote by $\sigma=\sigma^{\mathbb{R}}+\sqrt{-1} \sigma^{\mathbb{I}}(=\mathrm{d} \omega)$ the canonical 2-form on $T^{*} X$. We define the complex modulus $\|\zeta\|=\left(\sum_{i=1}^{n} \zeta_{i}^{2}\right)^{\frac{1}{2}}$ where we choose the determination of the square root which is positive for real ζ. In particular $\|\zeta\|$ makes sense when $\sum_{i} \zeta_{i}^{2} \notin \mathbb{R}^{-}$. This is the case of any $\zeta \in\left(T_{S}^{*} X\right)_{z}$, when z is close to z_{o}. (In fact, by (2) the coordinates can be chosen so that any $\zeta \in\left(T_{S}^{*} X\right)_{z_{o}}$ is real.) We write any $\tau \in(X \backslash S) \cap B$ as:

$$
\begin{equation*}
\tau=z-|\zeta| \frac{\zeta}{\|\zeta\|} \tag{4}
\end{equation*}
$$

for an unique $(z ; \zeta) \in \dot{T}_{S}^{*} X$ with $z \in B^{\prime}$ and $|\zeta|$ small. In fact it is easy to check that the normals issued from different points of a C^{2}-manifold S cannot have non-trivial intersection in a neighborhood of S. And this is still true if we replace normal directions $\frac{\zeta}{|\zeta|}$ by $\frac{\zeta}{\|\zeta\|}$. By (4), $X \backslash S$ and $\dot{T}_{S}^{*} X$ are thus identified in neighborhoods of z_{o} and $\left(z_{o} ; 0\right)$ respectively. This provides an orthogonal projection h and a distance function δ, defined locally by:

$$
h: X \backslash S \rightarrow S, h(\tau)=z, \quad \delta: X \backslash S \rightarrow \dot{\mathbb{R}}^{+}, \delta(\tau)=\|\tau-z\|(=|\zeta|) .
$$

We have also to notice that $X \backslash S$ is foliated by the hypersurfaces of fixed distance to S :

$$
\tilde{S}_{t}=\{\tau \in B ; \delta(\tau)=t\}
$$

$$
=\left\{\tau=z-t \frac{\zeta}{\|\zeta\|} ;(z, \zeta) \in \dot{T}_{S}^{*} X \cap \pi^{-1}\left(B^{\prime}\right)\right\},
$$

with B and B^{\prime} neighborhoods of τ_{o} and z_{o} in X and S respectively.
We fix t and write also \tilde{S} instead of \tilde{S}_{t}. We introduce a complex symplectic diffeomorphism $\chi=\chi_{t}$ of $\dot{T}^{*} X$ defined, for $\sum \zeta_{i}^{2} \notin \mathbb{R}^{-}$, by:

$$
\chi:(z ; \zeta) \mapsto\left(z-t \frac{\zeta}{\|\zeta\|} ; \zeta\right) .
$$

We remark that $\pi \chi_{t}\left(T_{S}^{*} X\right)=\tilde{S}$ and that $\chi\left(T_{S}^{*} X\right)$ has to be \mathbb{R}-Lagrangian (i.e. Lagrangian for $\sigma^{\mathbb{R}}$) because χ preserves Lagrangianity. It follows:

$$
\begin{equation*}
\chi_{t}\left(T_{S}^{*} X\right)=T_{S}^{*} X \tag{5}
\end{equation*}
$$

This implies in particular that

$$
\begin{equation*}
T_{h(\tau)} S \subset T_{\tau} \tilde{S}, \quad \forall \tau \in \tilde{S} \tag{6}
\end{equation*}
$$

under the identification, in coordinates, $X \simeq T_{\tau} X \simeq T_{h(\tau)} X$. \tilde{S} being a hypersurface, we identify the conormals $q \in T_{\tilde{S}}^{*} X$ in a neighborhood of q_{o} to the base-points $\tau=\pi(q) \in \tilde{S}$.

To carry on our proof we need to state now some Lemmas.
Lemma 2 There exists $R=R_{t} \subset \tilde{S}$ with $\operatorname{dim} R=\operatorname{dim} S$ and such that
(i) $T_{\tau_{o}}^{\mathbb{C}} R \supset \operatorname{Ker} L_{\tilde{S}}\left(\tau_{o}\right)$
(ii) $T_{\tau_{o}} R=\Phi_{t}\left(T_{z_{o}} S\right)$,
where Φ_{t} is a linear transformation of \mathbb{C}^{n} with $\Phi_{t}-\mathrm{Id}=O(t)$.
Proof. We denote by $\left(r_{1}=0, \ldots, r_{l}=0\right)(l=\operatorname{codim} S)$ a system of independent equations for S. We set $p_{o}=\left(z_{o} ; \zeta_{o}\right)$, observe that we can assume $\zeta_{o} \in \mathbb{R}^{n},\left|\zeta_{o}\right|=1$ due to (2), and choose an equation $r=0$ for S which satisfies $\partial r\left(z_{o}\right)=\zeta_{o}$. We write $\lambda_{S}\left(p_{o}\right): \stackrel{\text { def. }}{=} T_{p_{o}} T_{S}^{*} X$, and observe that we have the parametric description:

$$
\lambda_{S}\left(p_{o}\right)=\left\{\left(u, \sum_{j} t_{j} \partial r_{j}\left(z_{o}\right)+\partial \partial r\left(z_{o}\right) u+\partial \bar{\partial} r\left(z_{o}\right) \bar{u}\right) ; u \in T_{z_{o}}^{\mathbb{C}} S,\left(t_{j}\right) \in \mathbb{R}^{l}\right\} .
$$

It follows

$$
\begin{aligned}
\lambda_{S}\left(p_{o}\right) \cap \sqrt{-1} \lambda_{S}\left(p_{o}\right)=\{ & \left(u, \sum_{j} t_{j} \partial r_{j}\left(z_{o}\right)+\partial \partial r\left(z_{o}\right) u+\partial \bar{\partial} r\left(z_{o}\right) \bar{u}\right) \\
= & \left(\sqrt{-1} w, \sqrt{-1} \sum_{j} s_{j} \partial r_{j}\left(z_{o}\right)\right. \\
& \left.+\partial \partial r\left(z_{o}\right) \sqrt{-1} w-\partial \bar{\partial} r\left(z_{o}\right) \overline{\sqrt{-1} w}\right) \\
& \text { for } \left.u, w \in T_{z_{o}}^{\mathbb{C}} S,\left(t_{j}\right),\left(s_{j}\right) \in \mathbb{R}^{l}\right\}
\end{aligned}
$$

This implies $u=\sqrt{-1} w$ and moreover

$$
\left.\partial \bar{\partial} r\left(z_{o}\right) \bar{u}=-\frac{1}{2}\left(\sum_{j}\left(t_{j}-\sqrt{-1} s_{j}\right) \partial r_{j}\left(z_{o}\right)\right) \quad \text { i.e. } u \in \operatorname{Ker} L_{S}\left(p_{o}\right)\right)
$$

In particular $\sum_{j} t_{j} \partial r_{j}\left(z_{o}\right)=-2 \Re \mathrm{e} \partial \bar{\partial} r\left(z_{o}\right) \bar{u}$. Also notice that

$$
-2 \Re \mathrm{e} \partial \bar{\partial} r\left(z_{o}\right) \bar{u}+\partial \bar{\partial} r\left(z_{o}\right) \bar{u}=-\overline{\partial \bar{\partial} r\left(z_{o}\right) \bar{u}}=-\bar{\partial} \partial r\left(z_{o}\right) u
$$

It follows

$$
\begin{align*}
& \lambda_{S}\left(p_{o}\right) \cap \sqrt{-1} \lambda_{S}\left(p_{o}\right) \\
&=\left\{(u, v) ; u \in \operatorname{Ker} L_{S}\left(p_{o}\right), v=\right. \\
&-2 \Re \mathrm{e} \partial \bar{\partial} r\left(z_{o}\right) \bar{u} \\
&\left.\left.+\partial \partial r\left(z_{o}\right) u+\partial \bar{\partial} r\left(z_{o}\right) \bar{u}\right)\right\} \tag{7}\\
&=\left\{(u, v) ; u \in \operatorname{Ker} L_{S}\left(p_{o}\right), v=\right. \\
&\left.\partial \partial r\left(z_{o}\right) u-\bar{\partial} \partial r\left(z_{o}\right) u\right\}
\end{align*}
$$

In particular

$$
\lambda_{S}\left(p_{o}\right) \cap \sqrt{-1} \lambda_{S}\left(p_{o}\right) \underset{\pi^{\prime}}{\sim} \operatorname{Ker} L_{S}\left(p_{o}\right)
$$

is one-to-one. Clearly similar injectivity for π^{\prime} and similar parametric description as (7) also holds for $\lambda_{\tilde{S}}\left(q_{o}\right) \cap \sqrt{-1} \lambda_{\tilde{S}}\left(q_{o}\right)\left(q_{o}=\chi\left(p_{o}\right)\right)$.

Let us define now a linear transformation on \mathbb{C}^{n} by $\Phi_{t}: u \mapsto u+t(v(u)-$ $\left.\zeta_{o}\left\langle\zeta_{o}, v(u)\right\rangle\right)$ where $v(u)=\partial \partial r\left(z_{o}\right) u-\bar{\partial} \partial r\left(z_{o}\right) u$. Note that we have:

$$
\begin{aligned}
& \pi^{\prime} \chi_{t}^{\prime}\left(p_{o}\right):(u, v) \mapsto u t \frac{v\left(\sum_{i} \zeta_{o i}^{2}\right)-\zeta_{o}\left\langle\zeta_{o}, v\right\rangle}{\left(\sum_{i} \zeta_{o i}^{2}\right)^{\frac{3}{2}}} \\
& \quad=u t\left(v-\zeta_{o}\left\langle\zeta_{o}, v\right\rangle\right)
\end{aligned}
$$

(Note here that $\sum_{i} \zeta_{o i}^{2}=1$.)

Thus with the notation $q_{o}=\chi\left(p_{o}\right)$, the diagram

$$
\begin{array}{ccc}
\lambda_{S}\left(p_{o}\right) \cap \sqrt{-1} \lambda_{S}\left(p_{o}\right) & \stackrel{\chi^{\prime}}{\sim} & \lambda_{\tilde{S}}\left(q_{o}\right) \cap \sqrt{-1} \lambda_{\tilde{S}}\left(q_{o}\right) \\
\pi^{\prime} \downarrow & \downarrow \pi^{\prime} \tag{8}\\
\operatorname{Ker} L_{S}\left(p_{o}\right) & \xrightarrow[\Phi_{t}]{\sim} & \operatorname{Ker} L_{\tilde{S}}\left(q_{o}\right),
\end{array}
$$

is commutative. We write $\tau_{o}=\pi\left(q_{o}\right)$, denote by g the projection $g: T_{\tau_{o}} X \rightarrow$ \tilde{S} along the normal at τ_{o}, and put $R=g\left(\Phi_{t}\left(T_{z_{o}} S\right)\right)$. R satisfies all requirements of Lemma 2.

When dealing with a hypersurface \tilde{S} (and for a choice of an orientation $\left.\pm q_{o}\right)$, we write $L_{\tilde{S}}\left(\tau_{o}\right), \tau_{o}=\pi\left(q_{o}\right)$ instead of $L_{\tilde{S}}\left(q_{o}\right)$. We point out that (8) shows that

$$
\begin{equation*}
\operatorname{rank} L_{\tilde{S}}\left(\tau_{o}\right)=\operatorname{rank} L_{S}\left(p_{o}\right)+(l-1) \tag{9}
\end{equation*}
$$

We also point out that (i) and (ii) imply, for small t :

$$
\begin{equation*}
\left.L_{\tilde{S}}\left(\tau_{o}\right)\right|_{T_{\tau_{o}} \mathbb{C} R} \sim L_{S}\left(p_{o}\right) \tag{10}
\end{equation*}
$$

where " \sim " means equivalence in signature and rank. Let us identify $\frac{\left(T_{S}^{*} X\right)_{z_{o}}}{\left(T_{\tilde{S}} X\right)_{\tau_{o}}}$ to a totally real plane N orthogonal to $T_{\tau_{o}} R$ in $T_{\tau_{o}} \tilde{S}$ by the aid of the Euclidean structure of $X^{\mathbb{R}}=T_{\tau_{o}} X^{\mathbb{R}}=T_{z_{o}} X^{\mathbb{R}}$, and define $\tilde{N}=N \oplus \sqrt{-1} N$. Thus \tilde{N} is the orthogonal complement of $T_{\tau_{o}}^{\mathbb{C}} R$ in $T_{\tau_{o}}^{\mathbb{C}} \tilde{S}$. We note that $\left\{t \frac{\zeta}{\|\zeta\|} ; \zeta \in \mathbb{R}^{l} \simeq\left(T_{S}^{*} X\right)_{z_{o}}\right\}$ is the spherical surface in \mathbb{R}^{l} of radius t (small), and N is (identified to) its tangent plane at $(-1, \ldots, 0)$. It follows that the real Hessian Hess $\tilde{S}^{\text {verifies }}$

$$
\operatorname{Hess}_{\tilde{S}}\left(\tau_{o}\right)(v, v)=-2 t^{-1}|v|^{2} \quad \forall v \in N
$$

Note also that $\operatorname{Hess}_{\tilde{S}}\left(\tau_{o}\right)(\sqrt{-1} v, \sqrt{-1} v) \leq c|v|^{2} \quad \forall v \in N$. This implies

$$
\begin{align*}
L_{\tilde{S}}\left(\tau_{o}\right)(\bar{v}, v) & =\frac{1}{4}\left[\operatorname{Hess}_{\tilde{S}}\left(\tau_{o}\right)(v, v)+\operatorname{Hess}_{\tilde{S}}\left(\tau_{o}\right)(\sqrt{-1} v, \sqrt{-1} v)\right] \\
& \leq\left(-\frac{t^{-1}}{2}+c\right)|v|^{2} \leq-\frac{t^{-1}}{3}|v|^{2} \quad \forall v \in N \tag{11}
\end{align*}
$$

We recall that $\operatorname{Ker} L_{\tilde{S}}\left(\tau_{o}\right) \hookrightarrow T_{\tau_{o}}^{\mathbb{C}} R$. Thus we may find $\tilde{N}^{\prime} \subset T_{\tau_{o}}^{\mathbb{C}} \tilde{S}$ transversal
to $T_{\tau_{o}}^{\mathbb{C}} R$ and such that:

$$
\begin{equation*}
L_{\tilde{S}}\left(\tau_{o}\right)(\bar{u}, v)=0 \quad \forall u \in T_{\tau_{o}}^{\mathbb{C}} R, v \in \tilde{N}^{\prime} \tag{12}
\end{equation*}
$$

By choosing t small enough, we may suppose that (11) still holds with the new \tilde{N}^{\prime}. It follows that

$$
s_{\tilde{S}}^{\bar{S}}\left(\tau_{o}\right)=s_{S}^{-}\left(p_{o}\right)+(l-1) \quad\left(\text { and } \quad s_{\tilde{S}}^{+}\left(\tau_{o}\right)=s_{S}^{+}\left(p_{o}\right)\right)
$$

We take now a hypersurface \tilde{M} which intersect \tilde{S} along R with order of contact 2 and with $\tilde{M}^{+} \subset \tilde{S}^{+}$(where $\tilde{M}^{+}, \tilde{S}^{+}$are the closed half-spaces with boundary \tilde{M}, \tilde{S} and inward conormal q). We note that this implies

$$
\chi^{-1}\left(T_{\tilde{M}}^{*} X\right)=T_{M}^{*} X \quad \text { for a hypersurface } \quad M \supset S
$$

due to the assumption on the order of contact of \tilde{M} with \tilde{S}. We have clearly

$$
\begin{equation*}
\left.L_{\tilde{M}}\left(\tau_{o}\right)\right|_{T_{\tau_{o}}^{\mathbb{C}} R}=\left.L_{\tilde{S}}\left(\tau_{o}\right)\right|_{T_{\tau_{o}}^{\mathbb{C}} R}\left(\sim L_{S}\left(p_{o}\right) \text { for } t \text { small }\right) \tag{13}
\end{equation*}
$$

Lemma 3 We have

$$
\begin{equation*}
L_{\tilde{M}}\left(\tau_{o}\right)(\bar{u}, v)=0 \quad \forall u \in T_{\tau_{o}}^{\mathbb{C}} R, v \in \tilde{N}^{\prime} \tag{14}
\end{equation*}
$$

Proof. We choose complex coordinates $z=\left(z_{1}, z^{\prime}, z^{\prime \prime}\right)$ such that $\tau_{o}=$ $0, q=\mathrm{d} y_{1}, T_{\tau_{o}} X=\mathbb{C}_{z_{1}} \times T_{\tau_{o}}^{\mathbb{C}} \tilde{S}=\mathbb{C}_{z_{1}} \times T_{\tau_{o}}^{\mathbb{C}} R \times \tilde{N}=\mathbb{C}_{z_{1}} \times \mathbb{C}_{z^{\prime}}^{n-l} \times \mathbb{C}_{z^{\prime \prime}}^{l-1}$. We take equations $y_{1}=h_{1}$ and $y_{1}=h_{2}$ for \tilde{M} and \tilde{S} respectively, and set $h=h_{1}-h_{2}$. We have

$$
\begin{equation*}
\left.h\right|_{R} \equiv 0,\left.\quad \partial h\right|_{R} \equiv 0 \tag{15}
\end{equation*}
$$

It follows

$$
\left.\sum_{j} \bar{a}_{j} \bar{\partial}_{z_{j}} \partial h\right|_{R} \equiv 0 \text { if } \Re \mathrm{e}\left(\sum_{j} a_{j} \partial_{z_{j}}\right) \in T_{\tau_{o}}^{\mathbb{C}} R
$$

In particular, since $T_{\tau_{o}}^{\mathbb{C}} R=\Re \mathrm{e}\left(\operatorname{Span}_{\mathbb{C}}\left(\partial_{z^{\prime}}\right)\right)$, then $\bar{\partial}_{z^{\prime}} \partial h\left(\tau_{o}\right)=0$. Thus $L_{h}(\bar{u}, v)=0 \forall u \in T_{\tau_{o}}^{\mathbb{C}} R$; in particular the property " $L_{h_{i}}(\bar{u}, v)=0 \forall u \in$ $T_{\tau_{o}}^{\mathbb{C}} R, v \in \tilde{N}^{\prime \prime}$ holds for $i=1$ iff it holds for $i=2$. Thus (12) and (14) are equivalent.

End of proof of Theorem 1

It is also clear that we can take \tilde{M} such that (11) holds for $L_{\tilde{M}}$ and for
\tilde{N}^{\prime} (with a new c). Recalling also (13), we have for small t :

$$
s_{\tilde{M}}^{-}\left(\tau_{o}\right)=s_{S}^{-}\left(p_{o}\right)+(l-1) \quad\left(\text { and } \quad s_{\tilde{M}}^{+}\left(\tau_{o}\right)=s_{S}^{+}\left(p_{o}\right)\right)
$$

We note now that, from $\lambda_{\tilde{M}}(\tau) \cap \sqrt{-1} \lambda_{\tilde{M}}(\tau) \underset{\chi^{\prime-1}}{\sim} \lambda_{M}(p) \cap \sqrt{-1} \lambda_{M}(p),(\tau=$ $\pi \chi(p))$, we get, similarly to (9):

$$
\begin{equation*}
\operatorname{rank} L_{M}(p)=\operatorname{rank} L_{\tilde{M}}(\tau) \tag{16}
\end{equation*}
$$

It follows:

$$
\begin{equation*}
s_{M}^{-}\left(p_{o}\right)=s_{S}^{-}\left(p_{o}\right) \quad \text { and } \quad s_{M}^{+}\left(p_{o}\right)=s_{S}^{+}\left(p_{o}\right)+(l-1) \tag{17}
\end{equation*}
$$

Thus M satisfies all requirements in the statement of Theorem 1.
Theorem 4 Let $\operatorname{rank} L_{S}(p) \equiv$ const $\forall p$ in $\dot{T}_{S}^{*} X$ close to p_{o}, and assume that S is of class C^{3}. Then there exists a germ of a hypersurface M at z_{o} such that

$$
\begin{equation*}
s_{M}^{-}(p) \equiv s_{S}^{-}\left(p_{o}\right) \quad \forall p \in S \times_{M} T_{M}^{*} X \tag{18}
\end{equation*}
$$

Proof. We transform $T_{S}^{*} X \underset{\chi}{\sim} T_{\tilde{S}}^{*} X\left(\chi=\chi_{t}, \tilde{S}=\tilde{S}_{t}\right)$. Since

$$
\begin{aligned}
& \operatorname{Ker} L_{\tilde{S}}(\tau) \underset{\pi^{\prime}}{\underset{\sim}{\sim}} \lambda_{\tilde{S}}(q) \cap \sqrt{-1} \lambda_{\tilde{S}}(q) \underset{\chi^{\prime}}{\stackrel{\sim}{\sim}} \lambda_{S}(p) \cap \sqrt{-1} \lambda_{S}(p) \\
& \stackrel{\sim}{\pi^{\prime}} \operatorname{Ker} L_{S}(p)
\end{aligned}
$$

has constant rank, then it is integrable (= closed under Lie-brackets) according to [4]. (see also [8]). For this the assumption of C^{3}-regularity for S is required.

Thus each $\tilde{S}=\tilde{S}_{t}$ is foliated by the (complex) integral leaves of Ker $L_{\tilde{S}}$. Since the hypersurfaces \tilde{S}_{t} give in turn a t-parameter foliation of $X \backslash S$, then we get a foliation of $X \backslash S$ by complex leaves tangent to the bundle:

$$
\mathcal{W}(\tau): \stackrel{\text { def. }}{=} \operatorname{Ker} L_{S}\left(h(\tau) ; \zeta_{\tau}\right) \quad \text { with } \quad \frac{\left|\zeta_{\tau}\right| \zeta_{\tau}}{\left\|\zeta_{\tau}\right\|}=\tau-h(\tau)
$$

Take a decomposition $T S=L \oplus \operatorname{Ker} L_{S}$ such that L_{S} is diagonal (with unitary eigenvalues) in ($L \cap \sqrt{-1} L$). Define R to be the union of the in-
tegral leaves of \mathcal{W} issued from $g\left(\Phi_{\left|\zeta_{t}\right|} L\right)(g: T X \rightarrow \tilde{S}) . R$ is a germ of a submanifold of \tilde{S} at τ_{o} which satisfies:

$$
\begin{cases}T_{\tau}^{\mathbb{C}} R \supset \operatorname{Ker} L_{\tilde{S}}(\tau) & \forall \tau \in R, \tag{19}\\ T_{\tau} R=\Phi_{t}^{\tau}\left(T_{z_{o}} S\right) & \text { with }\left|\Phi_{t}^{\tau}-\mathrm{Id}\right|<\epsilon \text { for }|(\tau, t)|<\delta_{\epsilon}\end{cases}
$$

We still have

$$
\begin{equation*}
\left.L_{\tilde{S}}(\tau)\right|_{T_{\tau}^{\mathbb{C}} R} \sim L_{S}\left(p_{o}\right), \tag{20}
\end{equation*}
$$

and, for a decomposition $T_{\tau}^{\mathbb{C}} \tilde{S}=T_{\tau}^{\mathbb{C}} R \oplus \tilde{N}_{\tau}^{\prime}$:

$$
\begin{align*}
& L_{\tilde{S}}(\tau)(\bar{v}, v) \leq-c t^{-1}|v|^{2} \quad \forall v \in \tilde{N}_{\tau}^{\prime} \tag{21}\\
& L_{\tilde{S}}(\tau)(\bar{u}, v) \leq \epsilon|u||v| \quad \forall u \in T_{\tau}^{\mathbb{C}} R, \forall v \in \tilde{N}_{\tau}^{\prime} \tag{22}
\end{align*}
$$

From (20), (21), (22), and, essentially, by the first of (19), we get $s_{\tilde{\tilde{S}}}^{-}(q)=$ $s_{\bar{S}}^{-}\left(p_{o}\right)+(l-1), \forall p$. We take a hypersurface \tilde{M} which intersect \tilde{S} along R with order of contact 2 and with $\tilde{M}^{+} \subset \tilde{S}^{+}$. It is not restrictive to assume \tilde{M} invariant under the flow of \mathcal{W}. For otherwise, if f is a projection along the \mathcal{W}-integral leaves, one replaces \tilde{M} by $f^{-1} f \tilde{M}$. (Remark here that $R=f^{-1} f R$.) We have obviously:

$$
\left.L_{\tilde{M}}(\tau)\right|_{T_{\tau} \mathbb{C}_{R}}=\left.L_{\tilde{S}}(\tau)\right|_{T_{\tau}^{\mathbb{C}} R}\left(\sim L_{S}\left(p_{o}\right)\right) \quad t \text { small, } \tau \in R \text { close to } \tau_{o} .
$$

We also have

$$
\begin{aligned}
& L_{\tilde{M}}(\tau)(\bar{u}, v) \leq \epsilon|u||v| \quad \forall u \in T_{\tau}^{\mathbb{C}} R, \quad \forall v \in \tilde{N}_{\tau}^{\prime}, \\
& L_{\tilde{M}}(\tau)(\bar{v}, v) \leq-c t^{-1}|v|^{2} \quad \forall v \in \tilde{N}_{\tau}^{\prime} \\
& L_{\tilde{M}}(\tau)(\bar{u}, w)=0 \quad \forall u \in \operatorname{Ker} L_{\tilde{S}}(\tau)(=\mathcal{W}(\tau)), \quad \forall w \in T_{\tau}^{\mathbb{C}} \tilde{M}, \quad \forall \tau \in R,
\end{aligned}
$$

(because \tilde{M} is invariant under the flow of \mathcal{W}). It follows:

$$
\begin{equation*}
s_{\tilde{\tilde{M}}}^{\overline{(}}(q)=s_{\bar{S}}^{-}\left(p_{o}\right)+(l-1) \quad \forall q \in R \times_{\tilde{M}} T_{\tilde{M}}^{*} X . \tag{23}
\end{equation*}
$$

From (23) we get the conclusion as in Theorem -1.
Corollary 5 In the situation of Theorem 1 (resp. 4), we have
$\operatorname{Ker} L_{M}\left(p_{o}\right)=\operatorname{Ker} L_{S}\left(p_{o}\right)$
$\left(\right.$ resp. $\left.\operatorname{Ker} L_{M}(p)=\operatorname{Ker} L_{S}(p) \forall p \in S \times_{M} T_{M}^{*} X\right)$.

Proof. It is an immediate consequence of the isomorphisms:

$$
\operatorname{Ker} L_{S}(p) \underset{\Phi_{t}}{\sim} \operatorname{Ker} L_{\tilde{S}}(\tau)=\operatorname{Ker} L_{\tilde{M}}(\tau) \underset{\Phi_{t}^{-1}}{\sim} \operatorname{Ker} L_{M}(p) .
$$

2. An application to complex curves in pseudoconvex manifolds

Let X be a complex manifold of dimension n. In [1] it is proved that any complex curve γ in a pseudoconvex hypersurface $S \subset X$ can be lifted to a complex curve in $\dot{T}_{S}^{*} X$. We extend here the above result to the case of $\operatorname{codim} S>1$ or $\operatorname{dim} \gamma>1$.

Theorem 6 Let S be a generic submanifold of X of codimension $l, p_{o} a$ point of $\dot{T}_{S}^{*} X, z_{o}=\pi\left(p_{o}\right)$, and suppose

$$
\begin{equation*}
s_{S}^{-}(p) \equiv 0 \quad \text { for any } p \in \dot{T}_{S}^{*} X \text { close to } p_{o} . \tag{24}
\end{equation*}
$$

We also suppose that there exists a hypersurface M with $M \supset S, T_{M}^{*} X \ni p_{o}$ and which satisfies:

$$
\begin{equation*}
\operatorname{Ker} L_{S}(p) \subset \operatorname{Ker} L_{M}(p) \quad \forall p \in S \times_{M} \dot{T}_{M}^{*} X, p \text { close to } p_{o} . \tag{25}
\end{equation*}
$$

Let γ be a complex submanifold of S. Then there exists γ^{*}, complex submanifold of $\dot{T}_{S}^{*} X$, which contains p_{o} and such that $\pi\left(\gamma^{*}\right)=\gamma$.

Proof. Take an equation $r=0$ for M with $\partial r\left(z_{o}\right)=p_{o}$. Then

$$
L_{r}(z)(w, \bar{w}) \geq 0 \quad \forall w \in T_{z}^{\mathbb{C}} M, \forall z \in S .
$$

Let $u \in \dot{T}_{z}^{\mathbb{C}} \gamma$; clearly $L_{r}(z)(u, \bar{u})=0$. Thus the above inequality implies:

$$
\begin{equation*}
L_{r}(z)(w, \bar{u})=0 \quad \forall z \in \gamma, \forall w \in T_{z}^{\mathbb{C}} M . \tag{26}
\end{equation*}
$$

Let $\chi=\chi_{-t}$ be the complex symplectic transformation $\chi:(z ; \zeta) \mapsto$ $\left(z+t \frac{\zeta}{\left(\sum_{i} \zeta_{i}^{2}\right)^{\frac{1}{2}}} ; \zeta\right)$. Thus for the hypersurface $\tilde{S}=\tilde{S}_{-t}$ (different from $\tilde{S}=$ \tilde{S}_{+t} of $\left.\S 1\right)$, we have $\chi\left(\dot{T}_{S}^{*} X\right)=\dot{T}_{\tilde{S}}^{*} X$. We remark that for $p \in \dot{T}_{S}^{*} X$ and with $q=\chi(p) \in \dot{T}_{\tilde{S}}^{*} X$, we have $\operatorname{rank} L_{\tilde{S}}(q)=\operatorname{rank} L_{S}(p)+(l-1)$. We also remark that, for t small: $s_{\tilde{S}}^{+}(q)=s_{S}^{+}(p)+(l-1)$. In particular we have:

$$
\begin{equation*}
s_{\tilde{S}}^{\bar{S}}(q) \equiv 0 \quad \forall q \in \dot{T}_{\tilde{S}}^{*} X . \tag{27}
\end{equation*}
$$

Let us define $\tilde{\gamma}=\left\{z+t \frac{\partial r(z)}{\left(\left(\sum_{i}\left(\partial_{z_{i}} r(z)\right)^{2}\right)^{\frac{1}{2}}\right)} ; z \in \gamma\right\}$. We claim that $\tilde{\gamma}$ is a complex manifold in \tilde{S}. In fact let us take coordinates $z=x+\sqrt{-1} y \in$ \mathbb{C}^{n} such that $\gamma=\{0\} \times \cdots \times\{0\} \times \mathbb{C}_{z^{\prime \prime}}^{d}$ where $d=\operatorname{dim}_{\mathbb{C}} \gamma$ and $z^{\prime \prime}=$ $\left(z_{n-d+1}, \ldots, z_{n}\right)$. What we need to prove is that:

$$
\begin{equation*}
\left.\partial_{\bar{z}_{h}}\left(\frac{\partial r(z)}{\left(\sum_{i}\left(\partial_{z_{i}} r(z)\right)^{2}\right)^{\frac{1}{2}}}\right)\right|_{\{0\} \times \cdots \times \mathbb{C}_{z^{\prime \prime}}^{d}}=0, \quad \forall h \geq n-d+1 \tag{28}
\end{equation*}
$$

or equivalently:

$$
\begin{gather*}
\partial_{\bar{z}_{h}} \partial_{z_{j}} r\left(\sum_{i}\left(\partial_{z_{i}} r\right)^{2}\right)-\partial_{z_{j}} r \sum_{i}\left(\partial_{\bar{z}_{h}} \partial_{z_{i}} r\right)\left(\partial_{z_{i}} r\right)=0 \\
\forall h \geq n-d+1, \forall j \tag{29}
\end{gather*}
$$

Let $\left(e_{i}\right)$ be an orthonormal system in \mathbb{C}^{n}, and let $w_{i}^{j}=\partial_{z_{i}} r e_{j}-\partial_{z_{j}} r e_{i}$. Thus for any fixed j, the set of vectors $w_{i}^{j}, i=1, \ldots, n, i \neq j$, is a basis for $T_{z}^{\mathbb{C}} M$. We may also assume that $u=e_{h}$. Then the term on the left side of (29) is equal to

$$
\begin{align*}
\sum_{i} & \left(\left(\partial_{\bar{z}_{h}} \partial_{z_{j}} r\right)\left(\partial_{z_{i}} r\right)^{2}-\left(\partial_{\bar{z}_{h}} \partial_{z_{i}} r\right)\left(\partial_{z_{j}} r\right)\left(\partial_{z_{i}} r\right)\right) \\
& =\sum_{i}\left(\left(\partial_{\bar{z}_{h}} \partial_{z_{j}} r\right)\left(\partial_{z_{i}} r\right)-\left(\partial_{\bar{z}_{h}} \partial_{z_{i}} r\right)\left(\partial_{z_{j}} r\right)\right)\left(\partial_{z_{i}} r\right) \\
& =\sum_{i}\left(\partial \bar{\partial} r\left(w_{i}^{j}, \bar{u}\right)\right)\left(\partial_{z_{i}} r\right)=0 \forall j \tag{30}
\end{align*}
$$

due to (26). It follows that $\tilde{\gamma}$ is a complex manifold in the pseudoconvex hypersurface \tilde{S}. Thus [1] applies (with suitable modifications because possibly $\operatorname{dim}_{\mathbb{C}} \gamma>1$), and entails the existence of a complex manifold $\tilde{\gamma}^{*} \subset \dot{T}_{\tilde{S}}^{*} X$, such that $\pi\left(\tilde{\gamma}^{*}\right)=\tilde{\gamma}$. Finally if we define $\gamma^{*}: \stackrel{\text { def. }}{=} \chi^{-1}\left(\tilde{\gamma}^{*}\right)$, then γ^{*} is a complex manifold in $\dot{T}_{S}^{*} X$ which verifies $\pi\left(\gamma^{*}\right)=\gamma$.
Remark 7 Let $s_{S}^{-}(p) \equiv 0 \forall p \in \dot{T}_{S}^{*} X$ at p_{o}. One should wonder whether there exists a pseudoconvex hypersurface M which contains S. But it is not clear if this is true. For this reason we apply [1] not directly to M but to \tilde{S} (with $\dot{T}_{\tilde{S}}^{*} X=\chi\left(\dot{T}_{S}^{*} X\right)$). In this respect the crucial point is that $\tilde{\gamma}$ is still a complex manifold in \tilde{S}.

Example 8 Let us consider in \mathbb{C}^{3} with coordinates $z=x+\sqrt{-1} y$:

$$
S=\left\{z ; x_{3}=0, x_{1}=0\right\}, \quad p=\mathrm{d} x_{1}, \quad \gamma=\{0\} \times \mathbb{C}_{z_{2}} \times\{0\}
$$

For $M=\left\{z ; x_{1}=0\right\}$, clearly γ can be lifted to a complex curve $\gamma^{*} \subset$ $S \times_{M} \dot{T}_{M}^{*} X$ in (trivial) accordance with Theorem 6. But not any M has this property. For instance if we take $M=\left\{z ; x_{1}=x_{2} x_{3}\right\}$, then L_{M} is nondegenerate and therefore $\dot{T}_{M}^{*} X$ contains no complex γ^{*} because otherwise $T \gamma^{*} \subset \dot{T}_{M}^{*} X \cap \sqrt{-1} \dot{T}_{M}^{*} X\left(\simeq \operatorname{Ker} L_{M}\right)=0$ which is a contradiction.

Acknowledgment I wish to thank Professor Alexander Tumanov for frequent discussions and helpful advices.

References

[1] Bedford E. and Fornaess J.E., Complex manifolds in pseudoconvex boundaries. Duke Math. J. 48 (1981), 279-287.
[2] D'Agnolo A. and Zampieri G., Microlocal direct images of simple sheaves with applications to systems with simple characteristics. Bull. Soc. Math. de France 23 (1995), 101-133.
[3] Kashiwara M. and Schapira P., Microlocal study of sheaves. Astérisque 128 (1985).
[4] Rea C., Levi flat submanifolds and holomorphic extension of foliations. Ann. SNS Pisa 26 (1972), 664-681.
[5] Trépreau J.-M., Sur la propagation des singularités dans les varietés CR. Bull. Soc. math. de France 118 (1990), 129-140.
[6] Tumanov A., Connections and propagation of analyticity for CR functions. Duke Math. Jour. 731 (1994), 1-24.
[7] Zampieri G., The Andreotti-Grauert vanishing theorem for dihedrons of \mathbb{C}^{n}. J. Math. Sci. Univ. Tokyo 2 (1995), 233-246.
[8] Zampieri G., Canonical symplectic form of a Levi-foliation. Complex Analysis and Geometry, Marcel-Dekker (1995), 541-554.
[9] Zampieri G., Hypersurfaces through higher-codimensional submanifolds of \mathbb{C}^{n} with preserved Levi-Kernel. Israel J. of Math., in press (1998).

Dip. Mat. Univ. Padova
v. Belzoni 735131 Padova
Italy
E-mail: zampieri@math.unipd.it

