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Oscillations of delay difference equations

X.H. TANG and J.S. YU
(Received April 16, 1999)

Abstract. We obtain some new sufficient conditions for oscillations of all solutions of
the delay difference equation

y_{n+1}-y_{n}+p_{n}y_{n-k}=0 , n=0,1,2 , \ldots

where \{p_{n}\} is a sequence of nonnegative numbers and k is a positive integer. Our theorems
improve several previous well-known results. Some examples are given to demonstrate
the advantage of our results.
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1. Introduction

In the recent papers [1-12], the oscillation of all solutions of the delay
difference equation

y_{n+1}-y_{n}+VnVn-k=0 , n=0,1,2 , \ldots (1)

has been investigated, where \{p_{n}\} is a sequence of nonnegative numbers
and k is a positive integer.

A solution \{y_{n}\} of Eq.(l) is said to be oscillatory if the terms y_{n} of the
sequence are not eventually positive or eventually negative. Otherwise, the
solution is called nonoscillatory.

In [1], Erbe and Zhang first proved that all solutions of (1) oscillate if

\lim_{narrow}\inf_{\infty}p_{n}>\frac{k^{k}}{(k+1)^{k+1}} , (2)

or

\Lambda=\lim\sup_{i}\sum_{=n-k}^{n}p_{i}narrow\infty>1 . (3)
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(7)

Later, condition (2) was improved, by Ladas, Philos, Sficas [2], to

\alpha=\lim_{narrow}\inf_{\infty}\sum_{i=n-k}^{n-1}p_{i}>(\frac{k}{k+1})^{k+1} (4)

We remark that conditions (3) and (4) are two well-known oscillation
criterion for (1) which have been extensively employed in the study of os-
cillation of various delay differences. For example, see the monographs
[3, 4, 5]. However, there is an obvious gap between the conditions (3) and
(4). It would be interesting to fill the gap, i.e. to obtain sufficient conditions
for the oscillation of (1) when \alpha\leq k^{k+1}/(k+1)^{k+1} and \Lambda\leq 1 .

Recently, there are many papers which devoted oneself to filling the
gap between conditions (3) and (4). For instance, Tang [6] proved that all
solutions of (1) oscillate if

\sum_{i=n-k}^{n-1}p_{i}\geq(\frac{k}{k+1})^{k+1} for large n (5)

and

\sum_{n=k}^{\infty}p_{n}[\sum_{i=n-k}^{n-1}p_{i}-(\frac{k}{k+1})^{k+1}]=\infty . (6)

Clearly, conditions (5) and (6) improve (4). Afterwards, Tang and Yu [7]
further improved the above conditions, proved that

1

\sum_{n=0}^{\infty}p_{n}[(k+1)(\sum_{i=n+1}^{n+k}pi)\overline{k+1}-k]=\infty

also implies that all solutions of (1) oscillate.
In a different direction, Yu, Zhang and Qian [8] proved that all solutions

of (1) oscillate if

\alpha\leq(\frac{k}{k+1})^{k+1} and \Lambda>1-\frac{\alpha^{2}}{4} , (8)

or

\alpha\leq(\frac{k}{k+1})^{k+1} and \Lambda>\frac{2}{\sqrt{f(\alpha)}} , (9)
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where f(\alpha)\in[1, k/(k+1)\alpha] satisfies the following equation

f( \alpha)[1-\frac{\alpha}{k}f(\alpha)]^{k}=1 . (10)

In [9], Chen and Yu proved that (8) can be replaced by the weaker
condition

\alpha\leq(\frac{k}{k+1})^{k+1} and \Lambda>1-\frac{1-\alpha-\sqrt{1-2\alpha-\alpha^{2}}}{2} . (11)

Conditions (8), (9) and (11) all improve (3), but (8) and (11) are indepen-
dent of (9).

The aim in this note is to further improve conditions (9) and (11). As
a consequent of our main results, we prove that

\alpha\leq(\frac{k}{k+1})^{k+1} and \Lambda>\frac{1+\ln f(\alpha)}{f(\alpha)}-\frac{1-\alpha-\sqrt{1-2\alpha-\alpha^{2}}}{2}

(12)

guarantee that all solutions of (1) oscillate, where f(\alpha) is the value deter-
mined by \alpha from (10). It is not difficult to verify that (12) improves (9)
and (11).

2. Preliminaries

For 0<\alpha\leq k^{k+1}/(k+1)^{k+1} , since the function x(1-\alpha x/k)^{k} is strictly
increasing in [1, k/(k+1)\alpha] from (1 -\alpha/k)^{k} to (1/\alpha)k^{k+1}/(k+1)^{k+1} , it
follows there exists a unique function f(\alpha)\in[1, k/(k+1)\alpha] such that (10)
holds. It is easy to see that f(0)=1 , f(k^{k+1}/(k+1)^{k+1})=(k+1)^{k}/k^{k} ,
and 1<f(\alpha)<k/(k+1)\alpha for 0<\alpha<k^{k+1}/(k+1)^{k+1} . From this and
(10) we obtain

[1- \frac{k+1}{k}\alpha f(\alpha)]f’(\alpha)=f^{2}(\alpha) ,

which leads to that f’(\alpha)>0 for 0<\alpha<k^{k+1}/(k+1)^{k+1} . This shows that
function f(\alpha) is strictly increasing in [0, k^{k+1}/(k+1)^{k+1}] .

Lemma 1 [9] Assume that 0\leq\alpha\leq k^{k+1}/(k+1)^{k+1} , and let \{y_{n}\} be an
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eventually positive solution of (1). Then

lim \inf^{\underline{y_{n}+1}}\geq A(\alpha) : \frac{1-\alpha-\sqrt{1-2\alpha-\alpha^{2}}}{2} . (13)
narrow\infty yn-k

Lemma 2 [8] Assume that 0\leq\alpha\leq k^{k+1}/(k+1)^{k+1} , and let \{y_{n}\} be an
eventually positive solution of (1). Then

lim \inf^{\underline{yn-k}}\geq f(\alpha) . (14)
narrow\infty y_{n}

Lemma 3 Assume that 0\leq\alpha\leq k^{k+1}/(k+1)^{k+1} , and let \{y_{n}\} be an
eventually positive solution of (1). Then

\lim_{narrow}\sup_{\infty}p_{n}\leq\frac{1}{f(\alpha)}-A(\alpha) . (15)

Proof. From (1), we have eventually

p_{n}= \frac{y_{n}}{yn-k}-\frac{y_{n+1}}{yn-k} . (16)

By Lemmas 1 and 2, it follows from (16) that

\lim_{narrow}\sup_{\infty}p_{n}\leq 1/\lim_{narrow}\inf_{\infty}\frac{yn-k}{y_{n}}-\lim_{narrow}\inf_{\infty}\frac{y_{n+1}}{yn-k}\leq\frac{1}{f(\alpha)}-A(\alpha) .

The proof is complete. \square

Lemma 4 Assume that 0\leq\alpha\leq k^{k+1}/(k+1)^{k+1} , and let \{y_{n}\} be an
eventually positive solution of (1). Then

\lim_{narrow}\inf_{\infty}[\frac{yn-k}{y_{n}}\prod_{i=n-k}^{n-1}(1-p_{i}f(\alpha))]\geq 1 . (17)

Proof. Let n_{0}>0 be an integer such that y_{n}>0 and y_{n+1}-y_{n}\leq 0 for
n\geq n_{0}-2k . From (1), we have

\frac{yn-k}{y_{n}}=\prod_{i=n-k}^{n-1}(1-p_{i}\frac{yi-k}{y_{i}})^{-1} n\geq n_{0} . (18)
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If \alpha=0 , then f(\alpha)=1 . It follows from (18) that

\frac{yn-k}{y_{n}}\geq\prod_{i=n-k}^{n-1}(1-p_{i})^{-1} , n\geq n_{0} ,

or

\frac{yn-k}{y_{n}}\prod_{i=n-k}^{n-1}(1-p_{i})\geq 1 , n\geq n_{0}

which implies that (17) holds for the case \alpha=0 . If 0<\alpha\leq k^{k+1}/(k+1)^{k+1} ,
then f(\alpha)>1 and A(\alpha)>0 . By Lemma 3, there exists an integer n_{1}>

n_{0}+k such that

p_{n} \leq\frac{1}{f(\alpha)}-\frac{1}{2}A(\alpha) for n\geq n_{1} . (18)

Set \omega_{n}= min \{yn-k/y_{n}, f(\alpha)\} for n\geq n_{0} . Then by Lemma 2,
lim \inf_{narrow\infty}\omega_{n}=f(\alpha) . Hence, from (18), we obtain

\frac{yn-k}{y_{n}}\geq\prod_{i=n-k}^{n-1}(1-p_{i}\omega_{i})^{-1} , n\geq n_{1} .

It follows that for n\geq n_{1}+k

\frac{yn-k}{y_{n}}\prod_{i=n-k}^{n-1}(1-p_{i}f(\alpha))\geq\prod_{i=n-k}^{n-1}\frac{1-p_{i}f(\alpha)}{1-p_{i}\omega_{i}}

\geq\prod_{i=n-k}^{n-1}\frac{1-[\frac{1}{f(\alpha)}-\frac{1}{2}A(\alpha)]f(\alpha)}{1-[\frac{1}{f(\alpha)}-\frac{1}{2}A(\alpha)]\omega_{i}}

= \prod_{i=n-k}^{n-1}\frac{\frac{1}{2}A(\alpha)f(\alpha)}{1-[\frac{1}{f(\alpha)}-\frac{1}{2}A(\alpha)]\omega_{i}} ,

and so

\lim_{narrow}\inf_{\infty}[\frac{y_{n-k}}{y_{n}}\prod_{i=n-k}^{n-1}(1-p_{i}f(\alpha))]\geq[\frac{\frac{1}{2}A(\alpha)f(\alpha)}{1-[\frac{1}{f(\alpha)}-\frac{1}{2}A(\alpha)]\lim\inf_{narrow\infty}\omega_{n}}]k

=1 .

The proof is complete. \square
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3. Main Results

The first Theorem is a direct corollary of Lemma 3.

Theorem 1 Assume that 0\leq\alpha\leq k^{k+1}/(k+1)^{k+1} . If

\lim_{narrow}\sup_{\infty}p_{n}>\frac{1}{f(\alpha)}-A(\alpha) , (20)

then all solutions of (1) oscillate.

Next we are going to deal with the case when the inequality in condition
(20) is reversed. Without loss of generality, we assume that

p_{n} \leq\frac{1}{f(\alpha)}-\frac{1}{2}A(\alpha) for n=0,1,2 ,

Theorem 2 Assume that 0\leq\alpha\leq k^{k+1}/(k+1)^{k+1} . If

\lim\sup_{i}\sum_{=n-k}^{n}p_{i}\prod_{j=i-k}^{n-k-1}(1-p_{j}f(\alpha))^{-1}narrow\infty>1-\frac{1-\alpha-\sqrt{1-2\alpha-\alpha^{2}}}{2} ,

(21)

then all solutions of (1) oscillate.

Proof. Suppose the contrary,and let \{y_{n}\} be an eventually positive solu-
tion of (1). Then there exists an integer n_{0}>k such that

y_{n}>0 and y_{n+1}-y_{n}\leq 0 , n\geq n_{0}-k .

For the case \alpha=0 , since f(\alpha)=1 , (21) reduces to

\lim\sup_{i}\sum_{=n-k}^{n}p_{i}\prod_{j=i-k}^{n-k-1}(1narrow\infty-p_{j})^{-1}>1 . (22)

From (1), we have

\frac{y_{n+1}}{y_{n}}=1-p_{n}\frac{yn-k}{y_{n}} , n\geq n_{0} .

It follows that for n-k\leq i\leq n and n\geq n_{0}+k

\frac{yi-k}{y_{n-k}}=\prod_{j=i-k}^{n-k-1}(1-p_{j}\frac{y_{j-k}}{y_{j}})^{-1} (20)
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Note that y_{n-k}/y_{n}\geq 1 for n\geq n_{0} , from (23) we get

\frac{y_{i-k}}{y_{n-k}}\geq n-k-1\prod(1-p_{j})^{-1} , n\geq n_{0}+k and n-k\leq i\leq n .
j=i-k

Summing (1) from n-k to n and using the above inequalities, we obtain

y_{n-k}-y_{n+1}= \sum_{i=n-k}^{n}p_{i}y_{i-k}

\geq y_{n-k}\sum_{i=n-k}^{n}p_{i}\prod_{j=i-k}^{n-k-1}(1-p_{j})^{-1} , n\geq n_{0}+k ,

or

1- \frac{y_{n+1}}{y_{n-k}}\geq\sum_{i=n-k}^{n}p_{i}\prod_{j=i-k}^{n-k-1}(1-p_{j})^{-1} , n\geq n_{0}+k .

Hence

\lim\sup_{i}\sum_{=n-k}^{n}p_{i}\prod_{j=i-k}^{n-k-1}(1-p_{j})^{-1}narrow\infty\leq 1

which contradicts with (22).
For the other case 0<\alpha\leq k^{k+1}/(k+1)^{k+1} , we have f(\alpha)>1 and

A(\alpha)>0 . Rewrite (21) as

\lim\sup_{i}\sum_{=n-k}^{n}p_{i}\prod_{j=i-k}^{n-k-1}(1-p_{j}f(\alpha))^{-1}+A(\alpha)narrow\infty>1 . (24)

This implies that there exists \eta\in(1/f(\alpha), 1) such that

\lim_{narrow}\sup_{\infty}\lambda^{k}\sum_{i=n-k}^{n}p_{i}\prod_{j=i-k}^{n-k-1}(1-p_{j}f(\alpha))^{-1}+\eta A(\alpha)>1 . (25)

where

\lambda=\frac{f(\alpha)A(\alpha)}{2(1-\eta)+\eta f(\alpha)A(\alpha)} . (23)
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By Lemmas 1 and 2, there exists an integer n_{1}>n_{0} such that

\frac{yn-k}{y_{n}}\geq\eta f(\alpha) and \frac{y_{n+1}}{yn-k}\geq\eta A(\alpha) , n\geq n_{1} . (27)

From (25), we may choose an integer N>n_{1}+2k so large that

\lambda^{k}\sum_{i=N-k}^{N}p_{i}\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1}+\eta A(\alpha)>1 . (28)

On the other hand, from (23), (26) and (27), we have for N-k\leq i\leq N

\frac{yi-k}{yN-k}=\prod_{j=i-k}^{N-k-1}(1-p_{j}\frac{y_{j-k}}{y_{j}})^{-1}\geq\prod_{j=i-k}^{N-k-1}(1-p_{j}\eta f(\alpha))^{-1}

= \prod_{j=i-k}^{N-k-1}\frac{\lambda}{\lambda-1+p_{j}f(\alpha)(1-\lambda\eta)+1-p_{j}f(\alpha)}

\geq\prod_{j=i-k}^{N-k-1}\frac{\lambda}{\lambda-1+[1-f(\alpha)A(\alpha)/2](1-\lambda\eta)+1-p_{j}f(\alpha)}

= \prod_{j=i-k}^{N-k-1}\lambda(1-p_{j}f(\alpha))^{-1}\geq\lambda^{k}\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1}-

Summing (1) from N-k to N and using the above inequalities, we obtain

y_{N-k}-y_{N+1}= \sum_{i=N-k}^{N}p_{i}y_{i-k}

\geq\lambda^{k}y_{N-k}\sum_{i=N-k}^{N}p_{i}\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1}

or

1- \frac{y_{N+1}}{yN-k}\geq\lambda^{k}\sum_{i=N-k}^{N}p_{i}\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1} . (29)

Substituting y_{N+1}/yN-k\geq\eta A(\alpha) into (29), we have

1 \geq\eta A(\alpha)+\lambda^{k}\sum_{i=N-k}^{N}p_{i}\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1}
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which contradicts with (28), and so the proof is complete. \square

Theorem 3 Assume that 0\leq\alpha\leq k^{k+1}/(k+1)^{k+1} . If

\lim\sup_{i}\sum_{=n-k}^{n}p_{i}narrow\infty[\min\{\prod_{j=i-k}^{n-k-1}(1-p_{j}f(\alpha))^{-1}, \frac{1}{f(\alpha)}\prod_{j=i-k}^{i-1}(1-p_{j}f(\alpha))^{-1}\}]

> \frac{1+1nf(\alpha)}{f(\alpha)}-\frac{1-\alpha-\sqrt{1-2\alpha-\alpha^{2}}}{2} , (30)

then all solutions of (1) oscillate.

Proof. For the case \alpha=0 , since f(\alpha)=1 , it is easy to see that (30) is the
same to (21). By Theorem 2, the conclusion of Theorem 3 is true. In the
sequel, we only consider the other case 0<\alpha\leq k^{k+1}/(k+1)^{k+1} . Suppose
that the conclusion of the theorem is false, and that (1) has an eventually
positive solution \{y_{n}\} . Choose a positive integer n_{0}>k such that y_{n}>0

and y_{n+1}-y_{n}\leq 0 for n\geq n_{0}-k . Rewrite (30) as

\lim\sup_{i}\sum_{=n-k}^{n}p_{i}narrow\infty[\min\{\prod_{j=i-k}^{n-k-1}(1-p_{j}f(\alpha))^{-1}, \frac{1}{f(\alpha)}\prod_{j=i-k}^{i-1}(1-p_{j}f(\alpha))^{-1}\}]

+A( \alpha)-\frac{1+1nf(\alpha)}{f(\alpha)}>0 . (31)

Since f(\alpha)>1 and A(\alpha)>0 , (31) implies that there exists \eta\in(1/f(\alpha), 1)

such that

\lim_{narrow}\sup_{\infty}\lambda^{k}\sum_{i=n-k}^{n}p_{i}[\min\{\prod_{j=i-k}^{n-k-1}(1-p_{j}f(\alpha))^{-1}, \frac{1}{f(\alpha)}\prod_{j=i-k}^{i-1}(1-p_{j}f(\alpha))^{-1}\}]

+ \eta A(\alpha)-\frac{1+1n\eta f(\alpha)}{\eta f(\alpha)}>0 , (32)

where \lambda is defined by (26). For given \eta , by Lemmas 1, 2 and 4, there exists
an integer n_{1}>n_{0}+k such that for n\geq n_{1}

\frac{yn-k}{y_{n}}\geq\eta f(\alpha) and \frac{y_{n+1}}{yn-k}\geq\eta A(\alpha) , (33)



222 X.H. Tang and J. S. Yu

and

\frac{yn-k}{y_{n}}\prod_{j=n-k}^{n-1}(1-p_{j}f(\alpha))\geq\eta . (34)

It follows from (32) that there exists an integer N>n_{1}+2k such that

\lambda^{k}\sum_{i=N-k}^{N}p_{i}[\min\{\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1}, \frac{1}{f(\alpha)}\prod_{j=i-k}^{i-1}(1-p_{j}f(\alpha))^{-1}\}]

> \frac{1+1n\eta f(\alpha)}{\eta f(\alpha)}-\eta A(\alpha) . (35)

Since

yN-k/yN-k=1 and yN-k/y_{N}>\eta f(\alpha)>1 .

Then there exists an integer l with 0\leq l\leq k such that

y_{N-k}/yN-l\leq\eta f(\alpha) and yN-k/y_{N-l+1}>\eta f(\alpha) .

Let \xi\in[0,1) such that

yN-k/[y_{N-l}+\xi(y_{N-l+1}-y_{N-l})]=\eta f(\alpha) . (36)

From (1) and (34), we have for t\in[0,1] and n\geq n_{0}+k

- \frac{y_{n+1}-y_{n}}{y_{n}+t(y_{n+1}-y_{n})}=p_{n}\frac{yn-k}{y_{n}+t(y_{n+1}-y_{n})}\geq p_{n}\frac{yn-k}{y_{n}}

\geq\eta p_{n}\prod_{j=n-k}^{n-1}(1-p_{j}f(\alpha))^{-1} . (37)

For n\in {N-k,N-k+1 ,\ldots , N–l–l}, integrating (37) over [0, 1] , we
get

\ln\frac{y_{n}}{y_{n+1}}\geq\eta p_{n}\prod_{j=n-k}^{n-1}(1-p_{j}f(\alpha))^{-1} ,

n=N-k, N-k+1 , , N-l–l.

For n=N-l , integrating again (37) over [0, \xi] , we have

\ln\frac{yN-l}{y_{N-l}+\xi(y_{N-l+1}-y_{N-l})}\geq\xi\eta p_{N-l}\prod_{j=N-k-l}^{N-l-1}(1-p_{j}f(\alpha))^{-1}-
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Summing the above inequalities, we obtain

\ln\frac{y_{N-k}}{y_{N-l}+\xi(y_{N-l+1}-y_{N-l})}\geq\eta\sum_{i=N-k}^{N-l-1}p_{i}\prod_{j=i-k}^{i-1}(1-p_{j}f(\alpha))^{-1}

+ \xi\eta p_{N-l}\prod_{j=N-k-l}^{N-l-1}(1-p_{j}f(\alpha))^{-1}

In view of (36),

\frac{\ln\eta f(\alpha)}{\eta f(\alpha)}\geq\frac{1}{f(\alpha)}[\sum_{i=N-k}^{N-l-1}p_{i}\prod_{j=i-k}^{i-1}(1-p_{j}f(\alpha))^{-1}

+ \xi p_{N-l}\prod_{j=N-k-l}^{N-l-1}(1-p_{j}f(\alpha))^{-1}] (38)

Similar to proof Theorem 2, from (1), (26) and (33) we may obtain

\frac{y_{i-k}}{y_{N-k}}=\prod_{j=i-k}^{N-k-1}(1-p_{j}\frac{y_{j-k}}{y_{j}})^{-1}

\geq\lambda^{k}\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1} . N-k\leq i\leq N .

Hence

y_{N-l}+\xi(y_{N-l+1}-y_{N-l})-y_{N+1}

=- \sum_{i=N-l}^{N}(y_{i+1}-y_{i})+\xi(y_{N-l+1}-y_{N-l})

= \sum_{i=N-l+1}^{N}p_{i}y_{i-k}+(1-\xi)p_{N-l}y_{N-l-k}

\geq\lambda^{k}y_{N-k}[\sum_{i=N-l+1}^{N}p_{i}\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1}

+(1- \xi)p_{N-l}\prod_{j=N-k-l}^{N-k-1}(1-p_{j}f(\alpha))^{-1}]
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It follows that

\frac{y_{N-l}+\xi(y_{N-l+1}-y_{N-l})}{yN-k}-\frac{y_{N+1}}{yN-k}

\geq\lambda^{k}[\sum_{i=N-l+1}^{N}p_{i}\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1}

+(1- \xi)p_{N-l}\prod_{j=N-k-l}^{N-k-1}(1-p_{j}f(\alpha))^{-1}]

Substituting (33) and (36) into this,

\frac{1}{\eta f(\alpha)}-\eta A(\alpha)

\geq\lambda^{k}[\sum_{i=N-l+1}^{N}p_{i}\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1}

+(1- \xi)p_{N-l}\prod_{j=N-k-l}^{N-k-1}(1-p_{j}f(\alpha))^{-1}] (39)

Adding (38) and (39) leads to

\frac{1+1n\eta f(\alpha)}{\eta f(\alpha)}-\eta A(\alpha)

\geq\lambda^{k}\sum_{i=N-k}^{N}p_{i}[\min\{\prod_{j=i-k}^{N-k-1}(1-p_{j}f(\alpha))^{-1}. \frac{1}{f(\alpha)}\prod_{j=i-k}^{i-1}(1-p_{j}f(\alpha))^{-1}\}]

which contradicts with (35), and so the proof is complete. \square

From Theorems 2 and 3, we have immediately

Corollary 1 Assume that 0\leq\alpha\leq k^{k+1}/(k+1)^{k+1} . If

\lim\sup_{i}\sum_{=n-k}^{n}p_{i}\prod_{j=i-k}^{n-k-1}(1-p_{j})^{-1}narrow\infty>1-\frac{1-\alpha-\sqrt{1-2\alpha-\alpha^{2}}}{2} ,

(40)

then all solutions of (1) oscillate.



Oscillations of delay difference equations 225

Corollary 2 Assume that 0\leq\alpha\leq k^{k+1}/(k+1)^{k+1} . If

\Lambda=\lim\sup_{i}\sum_{=n-k}^{n}p_{i}narrow\infty>\frac{1+1nf(\alpha)}{f(\alpha)}-\frac{1-\alpha-\sqrt{1-2\alpha-\alpha^{2}}}{2} , (41)

then all solutions of (1) oscillate.

Remark 1. Obviously, Condition (41) improves (9) and (11) when 0\leq

\alpha\leq k^{k+1}/(k+1)^{k+1} . However, as \alphaarrow 0 , (41), together with (8), (9) and
(11), reduces to (3). Nevertheless, the following Example 2 illustrate that
Corollary 1 still possible improve (3) for the case \alpha=0 .

4. Several Examples

In this section, we give some examples to show the effect of our results.

Example 1. Consider the difference equation

y_{n+1}-y_{n}+p_{n}y_{n-2}=0 , n=1,2 , \ldots . (42)

where p_{10n}=p_{10n+1}= =p_{10n+8}=0.1 , p_{10n+9}=0.73 , n=0,1,2 , .. It
is easy to observe that

\alpha=\lim_{narrow}\inf_{\infty}\sum_{i=n-2}^{n-1}p_{i}=0.2<(\frac{2}{3})^{3} ,

\Lambda=\lim\sup_{i}\sum_{=n-2}^{n}p_{i}narrow\infty=0.93<1 .

In addition, we find

f(\alpha)=1.336 and A(\alpha)=(1-\alpha-\sqrt{1-2\alpha-\alpha^{2}})/2=0.026 .

By these, one can easy verify that

\Lambda<\frac{1+1nf(\alpha)}{f(\alpha)}-A(\alpha) .

These show conditions (3), (4), (8), (9), (11) and (12) are not satisfied. But

\lim_{narrow}\sup_{\infty}p_{n}=0.73>\frac{1}{f(\alpha)}-A(\alpha)=0.7225 .

Hence, the conditions of Theorem 1 are satisfied and therefore every solution
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of (42) is oscillatory.

Example 2. Consider the difference equation

y_{n+1}-y_{n}+p_{n}y_{n-3}=0 , n=0,1,2 , (43)

where k=3 and p_{15n}=p_{15n+1}=’ . =p_{15n+7}=0 , p_{15n+8}=p_{15n+9}=
=p_{15n+14}=0.2 , n=0,1,2 , \ldots . It is easy to observe that

\alpha=\lim_{narrow}\inf_{\infty}\sum_{i=n-3}^{n-1}p_{i}=0 ,

\Lambda=\lim\sup_{i}\sum_{=n-3}^{n}p_{i}narrow\infty=0.8<1 ,

which show that conditions (3), (4), (5), (9) and (11) are not satisfied. In
addition, it is easy to verify that (7) is not satisfied either. But we

\sum_{i=15n+11}^{15n+14}p_{i}\prod_{j=i-3}^{15n+10}(1-p_{j})^{-1}=\frac{369}{320} ,

and so

\lim\sup_{i}\sum_{=n-3}^{n}p_{i}\prod_{j=i-3}^{n-3-1}(1-p_{j})^{-1}narrow\infty>1 .

Hence, the conditions of Corollary 1 are satisfied and therefore all solution
of (43) oscillate.

Example 3. Consider the difference equation

y_{n+1}-y_{n}+p_{n}y_{n-3}=0 , n=1,2 , \ldots . (44)

where p_{15n}=p_{15n+1}= =p_{15n+7}=0.1 , p_{15n+8}=p_{15n+9}= =
p_{15n+14}=0.16 , n=0,1,2 , . .. It is easy to observe that

\alpha=\lim_{narrow}\inf_{\infty}\sum_{i=n-3}^{n-1}p_{i}=0.3<(\frac{3}{4})^{4}

\Lambda=\lim\sup_{i}\sum_{=n-3}^{n-1}p_{i}=0.64<narrow\infty 1 ,

f(\alpha)=f(0.3)=1.842 ,
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A(\alpha)=(1-\alpha-\sqrt{1-2\alpha-\alpha^{2}})/2=0.0716 .

Hence

\frac{1+1nf(\alpha)}{f(\alpha)}-A(\alpha)=0.802>\Lambda ,

which shows that condition (41) is not satisfied. But

\sum_{i=15n+11}^{15n+14}p_{i}[\min\{\prod_{j=i-3}^{15n+10}(1-p_{j}f(\alpha))^{-1}. \frac{1}{f(\alpha)}\prod_{j=i-3}^{i-1}(1-p_{j}f(\alpha))^{-1}\}]

=0.16 \sum_{i=15n+11}^{15n+14}[\min\{ (1-0.16\cross 1.842)^{-(15n+14-i)} ,

\frac{1}{1.842}(1-0.16\cross 1.842)^{-3}\}]

=0.16( \frac{1.418^{3}}{1.842}+\frac{1.418^{3}}{1.842}+1.418+1)=0.882

>0.802= \frac{1+1nf(\alpha)}{f(\alpha)}-A(\alpha) .

These show that the conditions of Theorem 3 are satisfied and therefore
every solution of (44) is oscillatory.

Remark 2. Example 3 shows that Theorem 3 can ameliorate Corollary 2
in general case.
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