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Crossed products of UHF algebras by some
amenable groups

Nathanial P. BROWN 1

(Received March 26, 1999)

Abstract. Let A be a UHF C^{*} -algebra. It is shown that for every homo morphism
\alpha : \mathbb{Z}^{n}arrow Aut(A) there exists an AF embedding \rho : A\aleph_{\alpha}\mathbb{Z}^{n}\sim>B such that \rho_{*} :
K_{0} (A x_{\alpha}\mathbb{Z}^{n} ) arrow K_{0}(B) is also injective.

Using Green’s imprimitivity theorem it will follow that if A is UHF and \alpha : Garrow

Aut(A) is a homomorphism then A n_{\alpha}G is always quasidiagonal for a large class of
amenable groups including all extensions of discrete abelian groups by compact (not
necessarily discrete or abelian) groups.
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1. Introduction

Quasidiagonal C^{*} -algebras are those which enjoy a certain local finite
dimensional approximation property (cf. [V02]). In light of some remarkable
recent results (cf. [DE], [Li]), it appears that quasidiagonality will play
an increasingly important role in Elliott’s classification program. A C^{*}-

algebra is called AF embeddable if it is isomorphic to a subalgebra of an AF
algebra. Blackadar and Kirchberg asked if the notions of quasidiagonality
and AF embeddability agree for nuclear C^{*}-algebras and there is reason
to believe that they do (cf. [BK]). Unfortunately, neither of these notions
behave well under taking crossed products (unless the group is compact).
Indeed, Voiculescu has asked when C(X)x_{\varphi}\mathbb{Z}^{2} is AF embeddable ([V03])
which illustrates how much we have yet to learn in this direction. (Recall
that Pimsner characterized the AF embeddability (and quasidiagonality) of
C(X)\lambda_{\varphi}\mathbb{Z} more than 15 years ago in [Pi].)

In this note we study the AF embeddability and quasidiagonality of
crossed products of UHF algebras by certain amenable groups. Our main
result is the following.

Theorem 1 If A is a UHF algebra and \alpha : \mathbb{Z}^{n}arrow Aut(A) is a homomor-
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phism then there always exists a* -monomorphism \rho : A x_{\alpha}\mathbb{Z}^{n}arrow B where
B is AF and \rho_{*} : K_{0} (A x_{\alpha}\mathbb{Z}^{n} ) arrow K_{0}(B) is injective.

Understanding crossed products by \mathbb{Z}^{n} is enough to gain valuable infor-
mation about crossed products by much more general groups. Let \Gamma (resp.
\Gamma_{fg}) denote the smallest class of separable locally compact groups such
that every countable (resp. finitely generated) discrete abelian group is in
\Gamma (resp. \Gamma_{fg} ) and such that \Gamma (resp. \Gamma_{fg} ) is closed under taking extensions
by separable compact groups. (See also Definition 3.4.) As a consequence
of Theorem 1 and an imprimitivity theorem of P. Green we will show:

Theorem 2 If A is a UHF algebra, G\in\Gamma (resp. G\in\Gamma_{fg} ) and \alpha : Garrow

Aut(A) is a homomorphism then A \lambda_{\alpha}G is always quasidiagonal (resp. AF
embeddable).

As in [Br], the main tools will be K-theory and the Rohlin property (cf.
[Ki1,2,3]) for automorphisms. Our results depend in an essential way on
the recent work [Ki2] of A. Kishimoto, which builds on the previous work
[Ki3] and [KK1,2] (see also [Ki4]).

In Section 2 we will collect all of the facts that we need and derive some
AF embedding results which illustrate the techniques to be used in proving
Theorem 1. In Section 3 we will prove the theorems stated above.

2. Preliminaries

Let A_{1} , A_{2} be unital C^{*} algebra, \alpha_{i}\in Aut(A_{i}) be automorphisms and
\rho : (A_{1}, \alpha_{1})arrow(A_{2}, \alpha_{2}) be a covariant embedding; i.e. \rho : A_{1}arrow A_{2} is a
unital*-monomorphism such that

A_{1} arrow\rho A_{2}

\alpha_{1}\downarrow \downarrow\alpha_{2}

A_{1} arrow\rho A_{2}

is a commutative diagram. In this case, there always exists an induced
*-monomorphism \tilde{\rho} : A_{1}x_{\alpha_{1}}\mathbb{Z}arrow A_{2}x_{\alpha_{2}}\mathbb{Z} .

We first recall the naturality of the PV-sequence for the K-theory of
crossed products by \mathbb{Z} . The following theorem is well known and follows
easily, for example, from the original proof of the PV-sequence ([PV]). This
fundamental result will be used repeatedly in what is to follow.
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Theorem 2.1 If \rho : (A_{1}, \alpha_{1})arrow(A_{2}, \alpha_{2}) is a covariant embedding then
the following diagram is commutative with exact rows (i\in \mathbb{Z}_{2}) :

. . K_{i}(A_{1})
arrow id-\alpha_{1*}

K_{i}(A_{1})
arrow\iota_{*}

K_{i}(A_{1}x_{\alpha_{1}}\mathbb{Z})
arrow\delta

K_{i+1}(A_{1})

\rho_{*}\downarrow \rho_{*}\downarrow \tilde{\rho}_{*}\downarrow
\rho_{*}\downarrow

. . K_{i}(A_{2})
arrow id-\alpha_{2*}

K_{i}(A_{2})
arrow\iota_{*}

K_{i}(A_{2}\rangle\triangleleft_{\alpha_{2}}\mathbb{Z})
arrow\delta

K_{i+1}(A_{2}) .

where \delta is an index map and \iota : Aarrow A>\triangleleft_{\alpha}\mathbb{Z} will always denote the natural
inclusion.

Note that if \alpha , \beta\in Aut(A) and \alpha\circ\beta=\beta 0\alpha then (the embedding)
\beta : Aarrow A defines a covariant embedding \beta : (A, \alpha)arrow(A, \alpha) . In this case,
the induced map \tilde{\beta} : A n_{\alpha}\mathbb{Z}arrow Ax_{\alpha}\mathbb{Z} is just the natural automorphism of
A\cross_{\alpha}\mathbb{Z} induced by \beta .

The following observation will prove quite useful.

Proposition 2.2 Let (A_{1}, \alpha_{1}) , (A_{2}, \alpha_{2}) be C^{*} -dynamical systems (where
\alpha_{i}\in Aut(A_{i})) and \rho : (A_{1}, \alpha_{1})arrow(A_{2}, \alpha_{2}) be a covariant embedding. As-
some that \rho_{*} : K_{*}(A_{1})arrow K_{*}(A_{2}) is injective and that \alpha_{2*}=id:K_{*}(A_{2})arrow

K_{*}(A_{2}) . then \alpha_{1*}=id : K_{*}(A_{1}) - K_{*}(A_{1}) and \tilde{\rho}_{*} : K_{*}(A_{1}x_{\alpha_{1}}\mathbb{Z})arrow

K_{*}(A_{2}x_{\alpha_{2}}\mathbb{Z}) is injective.

Proof. Our hypotheses easily imply the triviality of \alpha_{1*} on K-theory.
By Theorem 2.1, the following diagram is commutative with exact rows
(i\in \mathbb{Z}_{2}) .

0
arrow K_{i}(A_{1})\rho_{*}\downarrow arrow\iota_{*}K_{i}(A_{1}x_{\alpha_{1}}\mathbb{Z})\rho_{*}\downarrow arrow\delta K_{i+1}(A_{1})\rho_{*}\downarrow

arrow 0

0 arrow K_{i}(A_{2}) arrow\iota_{*}K_{i}(A_{2}\lambda_{\alpha_{2}}\mathbb{Z}) arrow\delta K_{i+1}(A_{2}) arrow 0 .

But we have assumed the vertical arrows on the left and right to be
injective which easily implies injectivity in the middle. \square

The following well known facts will be used repeatedly without refer-
ence. (See [LOP] for a vast generalization of the first, while the second
can be deduced from the first using the universal property of (full) crossed
products.) In the facts below, A is a unital C^{*} -algebra, G is a discrete
amenable group (hence the full and reduced crossed products agree) and
\alpha : G -arrow Aut(A) is a homomorphism.
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Fact: If K\subset G is a subgroup then there is a natural inclusion A\aleph_{\alpha|_{K}}Karrow

A x_{\alpha}G .

Fact: If G=K>\triangleleft H is a semidirect product then there is a natural de-
composition A x_{\alpha}G\cong(Ax_{\alpha|_{K}}K)xH .

Finally, we recall the results from [Ki2] that we need. (See also [Ki4]
for some very recent generalizations.) The following theorems build upon
the previous work [Ki3] and [KK1,2] . For convenience, we let C denote the
class of unital simple A\mathbb{T} algebras with real rank zero and unique tracial
state. We also let \overline{Inn(A)} and Hlnn(A) denote the groups of approximately
inner automorphisms and automorphisms which are homotopic to inner
automorphisms, respectively.

Theorem 2.3 (Cor. 2.3, [Ki2]) If A\in C and K_{1}(A)\neq \mathbb{Z} then the qu0-

then group \overline{Inn(A)}/HInn(A) is isomorphic to

Ext (K_{1}(A), K_{0}(A))\oplus Ext(K_{0}(A), K_{1}(A)) .

Theorem 2.4 (Cor. 6.7, [Ki2]) If A\in C , \alpha\in HInn(A) , \alpha has the Rohlin
property and B is a UHF algebra then (A>\triangleleft_{\alpha}\mathbb{Z})\otimes B\in C .

Our results can actually be derived from Theorem 2.4 above, but the
following corollary will make the proofs a little easier. Throughout this
paper, we will let \mathcal{U} denote the Universal UHF algebra (\mathcal{U}=\otimes_{n\geq 1}M_{n}(\mathbb{C})) .

Corollary 2.5 If A\in C and \alpha\in\overline{Inn(A)} is an approximately inner
automorphism with the Rohlin property then (A \lambda_{\alpha}\mathbb{Z} ) \otimes \mathcal{U}\in C .

Proof. First note that (A x_{\alpha}\mathbb{Z} ) \otimes \mathcal{U}\cong A\otimes \mathcal{U}x_{\alpha\otimes id}\mathbb{Z} . Note also that
K_{i}(A\otimes \mathcal{U})=K_{i}(A)\otimes \mathbb{Q} . In particular, both K-groups are divisible and hence
Ext(K_{i}(A\otimes \mathcal{U}), K_{i+1}(A\otimes \mathcal{U}))=0 for i\in \mathbb{Z}_{2} . Thus from Theorem 2.3 we
have that \alpha\otimes id is homotopic to an inner automorphism of A\otimes \mathcal{U} . Hence
from Theorem 2.4 we see that

(A\otimes \mathcal{U}\aleph_{\alpha\otimes id}\mathbb{Z})\otimes \mathcal{U}\cong(Ax_{\alpha}\mathbb{Z})\otimes \mathcal{U}\otimes \mathcal{U}\cong\square

(A \lambda_{\alpha}\mathbb{Z} ) \otimes \mathcal{U} is again in C .

Corollary 2.6 If A\in C and \alpha\in Aut(A) is an automorphism such that
\alpha_{*}=id : K_{i}(A)arrow K_{i}(A)(i=0,1) then there exisls a* -monomorphism
\rho : A x_{\alpha}\mathbb{Z}arrow B where B is AF and \rho_{*} : K_{0} (A \lambda_{\alpha}\mathbb{Z} ) – K_{0}(B) is injective.

Proof. Let \mathcal{U} be the Universal UHF algebra and \sigma\in Aut(\mathcal{U}) have the
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Rohlin property (see Example 2.2 in [Br] for an explicit construction). Then
we have an obvious covariant embedding (A, \alpha)arrow(A\otimes \mathcal{U}, \alpha\otimes\sigma) . Since
(\alpha\otimes\sigma)_{*} is trivial on K-theory (recall that all automorphisms of UHF alge-
bras are approximately inner [Da] ) Proposition 2.2 implies that the induced
embedding A x_{\alpha}\mathbb{Z}arrow A\otimes \mathcal{U}x_{\alpha\otimes\sigma}\mathbb{Z} yields an injective map on K-theory
and hence it suffices to prove the corollary for A\otimes \mathcal{U}x_{\alpha\otimes\sigma}\mathbb{Z} .

Since (\alpha\otimes\sigma)_{*} is trivial on K-theory we have that \alpha\otimes\sigma is an approx-
imately inner automorphism of A\otimes \mathcal{U} ([Ell]). Also, it follows easily from
the definition that \alpha\otimes\sigma has the Rohlin property. Thus by Corollary 2.5 we
see that (A\otimes \mathcal{U}\lambda_{\alpha\otimes\sigma}\mathbb{Z})\otimes \mathcal{U}\in C . Hence (since C consists of A\mathbb{T} algebras
of real rank zero) there exists a *-homomorphism (injective by simplicity)
\rho : (A\otimes \mathcal{U}\lambda_{\alpha\otimes\sigma}\mathbb{Z})\otimes \mathcal{U}arrow B where B is AF and \beta*is an isomorphism on
K_{0} (cf. [Ell]). \square

Corollary 2.7 If A\in C is AF and \alpha : \mathbb{Z}^{2}arrow\overline{Inn(A)} is a homomorphism
then A x_{\alpha}\mathbb{Z}^{2} is AF embeddable wilh an injective map on K_{0} (A x_{\alpha}\mathbb{Z}^{2} ).

Proof. Let e_{1} , e_{2} denote the canonical generators of \mathbb{Z}^{2} and \overline{\alpha(e_{2}}) denote
the induced automorphism of A n_{\alpha(e_{1})}\mathbb{Z} . Theorem 2.1 implies commuta-
tivity of the diagram

0 arrow K_{i}(A) arrow\iota_{*}K_{i} (A x_{\alpha(e_{1})}\mathbb{Z} ) arrow\delta K_{i+1}(A) — 0
\alpha(e_{2})_{*}\downarrow \overline{\alpha(e_{2}})_{*}\downarrow \alpha(e_{2})_{*}\downarrow

0 – K_{i}(A) arrow\iota_{*}K_{i} (A x_{\alpha(e_{1})}\mathbb{Z} ) arrow\delta K_{i+1}(A) arrow 0 .

Since K_{1}(A)=0 and the rows above are exact, we see that \overline{\alpha(e_{2}})_{*} is trivial
on both K groups of A x_{\alpha(e_{1})}\mathbb{Z} .

As in the proof of the previous corollary, the obvious embedding A>\triangleleft_{\alpha(e_{1})}

\mathbb{Z}arrow A\otimes \mathcal{U}x_{\alpha(e_{1})\otimes\sigma}\mathbb{Z} is injective at the level of K-theory. Note that \alpha(e_{2})\otimes

id commutes with \alpha(e_{1})\otimes\sigma and hence there is an induced automorphism
\alpha(e_{2})\otimes id\in Aut(A\otimes \mathcal{U}\nu_{\alpha(e_{1})\otimes\sigma}\mathbb{Z}) . Note also that \alpha(e_{2})\otimes id is trivial
on K-theory by the first paragraph of this proof. It is easy to see the
commutativity of the diagram

A\aleph_{\alpha(e_{1})}\mathbb{Z} arrow A\otimes \mathcal{U}x_{\alpha(e_{1})\otimes\sigma}\mathbb{Z}

\overline{\alpha(e_{2}})\downarrow \downarrow\alpha\overline{(e_{2})\otimes}id

A x_{\alpha(e_{1})}\mathbb{Z} arrow A\otimes \mathcal{U}\lambda_{\alpha(e_{1})\otimes\sigma}\mathbb{Z} .
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Thus by Proposition 2.2, the induced embedding A \lambda_{\alpha}\mathbb{Z}^{2}\cong(A\aleph_{\alpha(e_{1})}\mathbb{Z})

x\mathbb{Z}\overline{\alpha(e_{2}})arrow(A\otimes \mathcal{U}x_{\alpha(e_{1})\otimes\sigma}\mathbb{Z})x\mathbb{Z}\alpha\overline{(e_{2})\otimes}id is injective on K-theory. Finally,

it is known that A\otimes \mathcal{U}x_{\alpha(e_{1})\otimes\sigma}\mathbb{Z}\in C (cf. Thm. 6.4 in [Ki2]) and hence we
are done by the previous corollary. \square

Remark 2.8 The reason that we can deduce this corollary from Corol-
lary 2.5 (via Corollary 2.6) is that \alpha(e_{2})_{*} is trivial on the K-theory of
A x_{\alpha(e_{1})}\mathbb{Z} (since A is AF). Which leads to a natural question. If A\in C

and \alpha , \beta\in\overline{Inn(A)} are commuting automorphisms then is \tilde{\beta}_{*} always trivial
on K_{*}(A x_{\alpha}\mathbb{Z}) ? While we were unable to construct a specific example, A.
Kishimoto has shown us a result (unpublished) which leads one to believe
that \tilde{\beta}_{*} need not always be trivial.

3. Main Results

Recall that C^{*}(\mathbb{Z}^{n})=C(\mathbb{T}^{n}) , where \mathbb{T}^{n} is the n-torus, and whenever A
is unital there is a natural inclusion \eta : C(\mathbb{T}^{n})arrow A>\triangleleft_{\alpha}\mathbb{Z}^{n} . If \alpha : \mathbb{Z}^{n}

–

Aut(A) is given, we will let \alpha_{j} : \mathbb{Z}^{j}arrow Aut(A) (1 \leq j\leq n) denote the
restriction of \alpha to the first j coordinates of \mathbb{Z}^{n} . We will also let \{e_{i}\}_{1\leq i\leq n}

be the canonical generators of \mathbb{Z}^{n} and \alpha(e_{j}) denote the automorphism of
A x_{\alpha_{j-1}}\mathbb{Z}^{j-1} induced by \alpha(e_{j})(1\leq j\leq n) .

Proposition 3.1 Let \mathcal{U} be the Universal UHF algebra (\mathcal{U}=\otimes_{n\geq 1}M_{n}(\mathbb{C}))

and \alpha : \mathbb{Z}^{n}arrow Aut(\mathcal{U}) be a homomorphism. Then the following assertions
hold.–

1. \alpha(e_{n})_{*}=id : K_{i}(\mathcal{U}\lambda_{\alpha_{n-1}}\mathbb{Z}^{n-1}) – K_{i}(\mathcal{U}x_{\alpha_{n-1}}\mathbb{Z}^{n-1}) for i=0,1 .

2. K_{i}(\mathcal{U}>\triangleleft_{\alpha}\mathbb{Z}^{n})=\mathbb{Q}^{2^{n-1}} for i=0,1 .
3. \eta_{*} : K_{i}(C(\mathbb{T}^{n})) – K_{i}(\mathcal{U}x_{\alpha}\mathbb{Z}^{n}) is injective for i=0,1 .

Proof The PV sequence implies that the proposition holds when n=
1 and hence proceeding by induction we may assume the proposition to
hold for n=1 , . . ’ k . Assume now that we have a homomorphism \alpha :
\mathbb{Z}^{k+1}

- Aut(14). By the induction hypotheses we have that the inclusion \eta :
C(\mathbb{T}^{k})arrow Ax_{\alpha_{k}}\mathbb{Z}^{k} gives an injective map on K-theory a\underline{ndK_{i}}(\mathcal{U}x_{\alpha_{k}}\mathbb{Z}^{k})=

\mathbb{Q}^{2^{k-1}} for i=0,1 . However, the induced automorphism \alpha(e_{k+1}) of \mathcal{U}\lambda_{\alpha_{k}}\mathbb{Z}^{k}

restrictstotheidentityon\eta(C(\mathbb{T}^{k}))andhenceinduces theidentitymap\mathbb{Z}^{2^{k-1}}=K_{i}(C(\mathbb{T}^{k}))=\underline{\eta_{*}(K}_{i}(C(\mathbb{T}^{k})))ButsinceK_{i}(\mathcal{U}x_{\alpha_{k}}\mathbb{Z}^{k})=\mathbb{Q}^{2^{k-}} foron

i=0,1 we see that \alpha(e_{k+1})_{*}=id : K_{i}(\mathcal{U}x_{\alpha_{k}}\mathbb{Z}^{k}) -arrow K_{i}(\mathcal{U}x_{\alpha_{k}}\mathbb{Z}^{k}) .
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By Theorem 2.1, the following diagram is commutative with exact rows.

00arrowarrow K_{i}(c_{I}(\mathbb{T}^{k}))\mathbb{Q}^{2^{k-1}}arrow K_{i}(\mathcal{U}x_{\alpha}\mathbb{Z}^{k+1})\downarrowarrow

\mathbb{Q}^{2^{k-1}}\downarrow

arrow 0 .

arrow K_{i}(C(\mathbb{T}^{k+1})) arrow K_{i+1}(C(\mathbb{T}^{k}))arrow 0

However, this diagram implies the remaining two assertions. \square

Proof of Theorem 1. Let A be a UHF algebra and \alpha : \mathbb{Z}^{n}arrow Aut(A)
be a homomorphism. We first observe that any covariant embedding \rho :
(A, \mathbb{Z}^{n}, \alpha)arrow(\mathcal{U}, \mathbb{Z}^{n}, \beta) (i.e. a unital*-homomorphism \rho : Aarrow \mathcal{U} such that
\beta(g)0\rho=\rho 0\alpha(g) for all g\in \mathbb{Z}^{n} ) induces an embedding \tilde{\rho} : A x_{\alpha}\mathbb{Z}^{n}arrow

\mathcal{U}\lambda_{\beta}\mathbb{Z}^{n} which is injective on K-theory.
If n=1 this follows from Proposition 2.2 (it is well known that any

embedding A c_{-*}\mathcal{U} is injective on K-theory), so we assume it to be true
for 1, . , n-1 . Any covariant embedding \rho : (A, \mathbb{Z}^{n}, \alpha)c_{-f}(\mathcal{U}, \mathbb{Z}^{n}, \beta) re-

which induces an embedding \tilde{\rho}_{n-1} : A \lambda_{\alpha_{n-1}}

stricts to an covariant embedding \rho_{n-1} :
(A, \mathbb{Z}^{n-1}, \alpha_{n-1})(\mathcal{U},\mathbb{Z}^{n-1},\beta_{n-1})\mathbb{Z}^{n-1}arrow\vec{\mathcal{U}x}_{\beta_{n-1}}\mathbb{Z}^{n-1}with

(\tilde{\rho}_{n-1})_{*} injective on K-theory (by induction hypothesis). One easily checks
commutativity in the diagram

A\rangle\triangleleft_{\alpha_{n-1}}\mathbb{Z}^{n-1}\overline{\alpha(e_{n})}\downarrow

\tilde{\rho}_{n-1}

\mathcal{U}\lambda_{\beta_{n-1}}\mathbb{Z}^{n-1}\downarrow\overline{\beta(e_{n}})

A\rangle\triangleleft_{\alpha_{n-1}}\mathbb{Z}^{n-1}
arrow\tilde{\rho}_{n-1}

\mathcal{U}\lambda_{\beta_{n-1}}\mathbb{Z}^{n-1} .

where \overline{\alpha(e_{n})} and \overline{\beta(e_{n})} denote the induced automorphisms of A x_{\alpha_{n-1}}\mathbb{Z}^{n-1}

and \mathcal{U}>\triangleleft_{\beta_{n-1}}\mathbb{Z}^{n-1} , respectively. Thus from Propositions 3.1.1 and 2.2 we
see that the induced embedding \tilde{\rho} : A x_{\alpha}\mathbb{Z}^{n}arrow \mathcal{U}x_{\beta}\mathbb{Z}^{n} is also injective
at the level of K-theory. (Note that this also shows that \alpha(e_{n}) is trivial on
the K-theory of A x_{\alpha_{n-1}}\mathbb{Z}^{n-1} and hence K_{i} (A \lambda_{\alpha}\mathbb{Z}^{n} ) defines an element
of Ext(K_{i} (A x_{\alpha_{n-1}}\mathbb{Z}^{n-1}) , K_{i+1}(A>\triangleleft_{\alpha_{n-1}}\mathbb{Z}^{n-1}) for i\in \mathbb{Z}_{2}. )

Since A\otimes \mathcal{U}\cong \mathcal{U} one readily verifies that covariant embeddings \rho :
(A, \mathbb{Z}^{n}, \alpha)arrow(\mathcal{U}, \mathbb{Z}^{n}, \beta) always exist and hence it suffices to prove the the0-
rem for all the C^{*} -dynamical systems (\mathcal{U}, \mathbb{Z}^{n}, \beta) .

We now further reduce to the case that each \beta(e_{i}) has the Rohlin prop-
erty as an automorphism of \mathcal{U}x_{\beta_{i-1}}\mathbb{Z}^{i-1} . To arrange this we simply define
an embedding \rho : \mathcal{U} - \otimes_{1}^{n+1}\mathcal{U} by \rho(x)=x\otimes 1\otimes |\otimes 1 and an action \gamma
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of \mathbb{Z}^{n} on \otimes_{1}^{n+1}\mathcal{U}(\cong \mathcal{U}) by \gamma(e_{i})=\beta(e_{i})\otimes id\otimes \cdot . \otimes id\otimes\sigma\otimes id\otimes \otimes id

(where \sigma\in Aut(\mathcal{U}) has the Rohlin property\underline{and} appears in the i+1^{st} coor-
dinate above). It is easy to check that each \gamma(e_{i}) has the Rohlin property as
an automorphism of \mathcal{U}x_{\gamma i-1}\mathbb{Z}^{i-1} and hence we have reduced to this case.
(Note that the K-theory of \mathcal{U}x_{\beta}\mathbb{Z}^{n} sits injectively inside that of \mathcal{U}>\triangleleft_{\gamma}\mathbb{Z}^{n}

by the first part of the proof.)
But we are now done since an easy induction argument shows that

(\mathcal{U}>\triangleleft_{\gamma}\mathbb{Z}^{n})\otimes \mathcal{U}\in C . (Use Corollary 2.5 and the isomorphisms
(\mathcal{U}>\triangleleft_{\gamma}\mathbb{Z}^{n})\otimes \mathcal{U}\cong\square

(\mathcal{U}\lambda_{\gamma}\mathbb{Z}^{n})\otimes \mathcal{U}\otimes \mathcal{U}\cong((\mathcal{U}x_{\gamma_{n}-1}\mathbb{Z}^{n-1})\otimes \mathcal{U}\lambda \mathbb{Z})\otimes \mathcal{U}.)\overline{\gamma(e_{n}})\otimes id

Remark 3.2 T. Loring first discovered that there exist AF embeddings
\rho : C(\mathbb{T}^{2})arrow B such that \rho_{*} was injective on K_{0} ([Lo]). Theorem 1 together
with Proposition 3.1.3 also provides AF embeddings of C(\mathbb{T}^{n}) with injective
maps on K_{0} (see [DL], [EL] for more general results though).

We now recall an imprimitivity theorem which is due to P. Green. If G

is a separable locally compact group and H\subset G is a closed subgroup then
G/H (the space of left cosets) is a separable locally compact space. There
is a natural action \gamma of G on C_{0}(G/H) defined by \gamma_{g}(f)(xH)=g^{-1}xH for
all xH\in G/H and f\in C_{0}(G/H) . The crossed products below are the full
crossed products (as G is not required to be amenable).

Theorem 3.3 (Cor. 2.8, [Gr]) Let \alpha : Garrow Aut(A) be a homomorphism

from the separable locally compact group G. For each closed subgroup H\subset G

there is an isomorphism A\otimes C_{0}(G/H)\lambda_{\alpha\otimes\gamma}G\cong(Ax_{\alpha|_{H}}H)\otimes \mathcal{K} , where \mathcal{K}

denotes the compact operators on a separable (possibly finite dimensional)
Hilbert space.

Note that if G/H is compact and G is amenable then there is a natural
inclusion A \lambda_{\alpha}GLarrow A\otimes C(G/H)x_{\alpha\otimes\gamma}G (cf. 7.7.9 in [Pe]).

We are now in a position to prove Theorem 2. However, we first give a
precise definition of the classes \Gamma and \Gamma_{fg} described in the introduction.

Definition 3.4 Let \Gamma (resp. \Gamma_{fg} ) denote the class of separable locally
compact groups G with the following property: There exist subgroups H_{1}\subset

H_{2}\subset \cdot . \subset H_{n}=G such that (1) H_{i} is a closed normal subgroup of H_{i+1}

for i=1 , . , n-1 , (2) H_{i+1}/H_{i} is compact for i=1 , \ldots , n-1 and (3) H_{1}

is discrete and abelian (resp. finitely generated discrete and abelian).

Note that since extensions of amenable groups are again amenable, the
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classes \Gamma and \Gamma_{fg} consist of amenable groups.

Proof of Theorem 2. First, let G\in\Gamma_{fg} and \alpha : Garrow Aut(A) be a hom0-
morphism. Let H_{1}\subset H_{2}\subset , . \subset H_{n}=G be subgroups satisfying the above
definition. Then for each 1\leq i\leq n-1 we appeal to Theorem 3.3 to get
embeddings

A x_{\alpha 1_{H_{i+1}}}H_{i+1}arrow(Ax_{\alpha 1_{H_{i}}}H_{i})\otimes \mathcal{K} .

Composing these embeddings we get

A x_{\alpha}Garrow(Ax_{\alpha|_{H_{1}}}H_{1})\otimes \mathcal{K} ,

where H_{1} is a finitely generated discrete abelian group. Thus H_{1}\cong \mathbb{Z}^{k}\oplus F

for some k\in \mathbb{Z} and finite group F , Applying Theorem 3.3 one more time
to the subgroup \mathbb{Z}^{k}\subset H_{1} we get an embedding

A \lambda_{\alpha 1_{H_{1}}}H_{1}arrow(Ax_{\alpha|_{Z^{k}}}\mathbb{Z}^{k})\otimes \mathcal{K} .

Thus from Theorem 1 we get an AF embedding of A \lambda_{\alpha}G . In particular,
we see that A x_{\alpha}H is quasidiagonal for all finitely generated discrete abelian
groups.

In the case that G\in\Gamma , the above argument still provides an embedding

A n_{\alpha}Garrow(Ax_{\alpha|_{H}}H)\otimes \mathcal{K} ,

for some discrete abelian group H . But then we simply write H= \bigcup_{\lambda\in\Lambda}H_{\lambda} ,
where each H_{\lambda} is finitely generated, and observe that \bigcup_{\lambda\in\Lambda} A x_{\alpha|_{H_{\lambda}}}H_{\lambda} is
dense in A x_{\alpha 1_{H}}H . But since locally quasidiagonal algebras are quasidiag-
onal, this proves the theorem. \square

Remark 3.5 Theorem 2 holds for more general groups than just the class
\Gamma defined above. Note that Theorem 3.3 does not require H to be a normal
subgroup of G . One may also drop the separability hypothesis on G if one
assumes the existence of a ’measurable cross section’ (see the introduction
of [Gr] for a precise definition). In particular, Theorem 2 holds for arbitrary
compact or discrete abelian groups.

Note also that since quotients of compact groups are again compact,
one readily verifies that \Gamma is closed under taking quotients. Hence if G is a
discrete group which is isomorphic to an inductive limit of discrete elements
of \Gamma then A \lambda_{\alpha}G is always quasidiagonal (when A is UHF).
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Remark 3.6 M. Izumi first showed us a proof that A x_{\alpha}\mathbb{R} is always
AF embeddable whenever A is an AF algebra. In fact, it was trying to
understand his proof that eventually led us to Green’s imprimitivity theorem
above. Indeed, what Theorem 3.3 above implies (which is also what Izumi
first proved) is that if A is a C^{*}-algebra with the property that for every
\alpha\in Aut(A) which is homotopic to the identity, the crossed product A x_{\alpha}\mathbb{Z}

is AF embeddable then it follows that every crossed product of A by \mathbb{R} is
also AF embeddable.

In particular, since it was first proved in [VO1] that all crossed products
of AF algebras by approximately inner automorphisms are AF embeddable
(see also [Br]) and Corollary 2.6 asserts the same thing for algebras in
the class C (defined in Section 2) we conclude that A>\triangleleft_{\alpha}\mathbb{R} is always AF
embeddable whenever A is AF or if A\in C . Similarly, Theorem 3.3 and
Corollary 2.7 imply that A x_{\alpha}\mathbb{R}^{2} is always AF embeddable whenever A\in C

is AF .
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