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Cyclides
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Abstract. We give a classification of cyclides as surfaces which contain many circles
and their geometric properties.
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0. Introduction

A sphere in E^{3} is characterized as a closed surface which contains an
infinite number of circles through each point. But we do not know a sur-
face other than a sphere or a plane, which contains infinitely many circles
through each point of it.

In 1980, Richard Blum [B] found a closed C^{\infty} surface of genus one
which contains six circles through each point, and he gave a conjecture:

Conjecture 1 (R. Blum) A closed C^{\infty} surface in E^{3} which contains
seven circles through each point is a sphere.

In 1984, Koichi Ogiue and Ryoichi Takagi [OT] have given the following:

Theorem (K. Ogiue and R. Takagi) A C^{\infty} surface in E^{3} is (a part of)
a plane or a sphere, if it contains two circles through each point, which are
tangent to each other.

Moreover considering the fact that an ellipsoid contains two circles
through each point except only at four points, they gave a conjecture in
[OT] such as

Conjecture 2 (K. Ogiue and R. Takagi) A simply connected complete
C^{\infty} surface in E^{3} is a plane or a sphere, if it contains two circles through
each point.

We had the following partial affirmative results toward conjectures 1
and 2:
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Theorem ([N1]) A simply connected complete C^{\infty} surface in E^{3} is a

plane or a sphere, if it contains three circles through each point.

Theorem ([N2]) A closed C^{\infty} surface of genus one in E^{3} cannot contain
seven circles through each point.

Moreover, we got following theorems.

Theorem ([N1]) A C^{\infty} surface in E^{3} is (a part of) a plane or a sphere,

if it contains three circles through each point, any two of which are tangent
to each other or have two points in common.

Theorem ([MN]) A simply connected complete C^{1} surface in E^{3} is (a

part of) a plane or a sphere, if it contains two circles through each point,
which are transversal to each other.

Theorem ([ON2]) A smooth ovaloid in E^{3} is a sphere, if the surface
contains a circle of an arbitrary but fixed radius through each point.

Here, we pay attention to the fact that cyclides contain many extrinsic
circles. A cyclide is a surface in a 3-dimensional Euclidean space E^{3} defined
by a quartic equation of the form

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}+2(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}) \sum_{i=1}^{3}b_{i}x_{i}

+ \sum_{i,j=1}^{3}a_{ij}x_{i}x_{j}+2\sum_{i=1}^{3}a_{i}x_{i}+a=0 .

It is known that such a surface corresponds to a complete intersection of
two quadrics in a 4-dimensional real projective space via pentaspherical
representation. An ordinary torus gives a typical example and quadratic
surfaces are considered as singular examples. A closed C^{\infty} surface of genus
one which contains six circles through each point found by R. Blum is also
one of cyclides.

In this paper, we study geometric properties of cyclides and give a clas-
sification of cyclides from conformal point of view because we are interested
in circles contained in a surface, so it is natural to apply conformal geometry.
Main results are summerized as

Theorem A non-singular cyclide is conformally equivalent to a cyclide
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of the form
(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}-2a_{3}x_{3}^{2}+a=0 (a\neq 0) ,

which is topologically a torus, a sphere or two spheres. A cyclide with sin-
gularities is conformally equivalent to a quadratic surface.

A cyclide contains n circles through each non-umbilic point and n-1
circles through each isolated umbilic point unless it is a sphere or a pair of
two spheres, where n=1,2,3,4,5 or 6.

According to this theorem, a cyclide is covered by at least one family
of circles. Therefore it is natural to regard a cyclide as a surface enveloped
by a family of some spheres (which are called Meusnier spheres) determined
by a family of circles. G. Darboux ([D]) took an interest in such a property
of cyclides and gave concrete expressions for families of such spheres that
envelope the given cyclide. We review such a property of cyclides and get
the following.

Proposition A cyclide which is topologically a torus is a surface en-
veloped by three distinct families of Meusnier spheres determined by circles
on the cyclide. Each sphere contains one or two circles on the cyclide and
it is tangent to the cyclide along the circle or at two points, respectively.

After all, to the author’s knowledge, circular tubes and cyclides are the
only surfaces that contain many circles through each point. Therefore it is
natural to conjecture the following.

Conjecture A surface in E^{3} is a cyclide if it contains two circles through
almost eve point.

1. Pentaspherical representation

Let x_{1} , x_{2} , x_{3} be natural coordinates in E^{3} and let u_{1} , u_{2} , u_{3} , u_{4} be
natural coordinates in E^{4} . Suppose that E^{3} is imbedded in E^{4} in such a
way that u_{1}=x_{1} , u_{2}=x_{2} , u_{3}=x_{3} , u_{4}=0 . Let S^{3} be a unit sphere in
E^{4} defined by u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}=1 . Then the stereographic projection of
S^{3}-\{(0,0,0,1)\} onto E^{3} is given by

x_{i}= \frac{u_{i}}{1-u_{4}} , 1\leq i\leq 3
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or equivalently

\{u_{2}=\frac{}{\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+12x_{3}}{\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+1x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+1}}}u1=\frac{2x_{1}}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+1,2x_{2}}u_{4}=u_{3}=’

.

Let P_{4}(R) be a 4-dimensional real projective space with homogeneous coor-
dinates v_{1} , v_{2} , v_{3} , v_{4} , v_{\infty} . Suppose that E^{4} is mapped onto P_{4}(R)-\{v_{\infty}=0\}

by

u_{i}= \frac{v_{i}}{v_{\infty}}, 1\leq i\leq 4 .

Then S^{3} can be identified with \Sigma=\{(v_{1}, v_{2}, v_{3}, v_{4}, v_{\infty})\in P_{4}(R)|v_{1}^{2}+v_{2}^{2}+

v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0\} . This identification combined with the stereographic
projection gives a correspondence between geometric objects in E^{3} and
those in \Sigma , which is called the pentaspherical representation. For example,
a sphere in E^{3} given by

(x_{1}- \frac{a_{1}}{a_{\infty}-a_{4}})2+(x_{2}-\frac{a_{2}}{a_{\infty}-a_{4}})2+(x_{3}-\frac{a_{3}}{a_{\infty}-a_{4}})2

= \frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}-a_{\infty}^{2}}{(a_{\infty}-a_{4})^{2}}

corresponds to a complete intersection in P_{4}(R) given by

\{

a_{1}v_{1}+a_{2}v_{2}+a_{3}v_{3}+a_{4}v_{4}-a_{\infty}v_{\infty}=0

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0 ,
(1.1)

and a plane in E^{3} given by

b_{1}x_{1}+b_{2}x_{2}+b_{3}x_{3}=b_{4}
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corresponds to a complete intersection in P_{4}(R) given by

\{

b_{1}v_{1}+b_{2}v_{2}+b_{3}v_{3}+b_{4}(v_{4}-v_{\infty})=0

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0 .
(1.1)

A circle in E^{3} is given as an intersection of a sphere and a plane. In
view of (1.1) and (1.2), we see that a circle in E^{3} corresponds to a complete
intersection in P_{4}(R) given by

\{\begin{array}{l}v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0a_{1}v_{1}+a_{2}v_{2}+a_{3}v_{3}+a_{4}v_{4}-a_{\infty}v_{\infty}=0b_{1}v_{1}+b_{2}v_{2}+b_{3}v_{3}+b_{4}(v_{4}-v_{\infty})=0.\end{array} (1.3)

A M\"obius transformation is a projective transformation of P_{4}(R) which
leaves \Sigma invariant, and a conformal transformation is a transformation of
E^{3} corresponding to a M\"obius transformation.

2. Cyclides and their pentaspherical representation

A cyclide is a surface in E^{3} corresponding to a complete intersection in
P_{4}(R) of the form

\{\begin{array}{l}\sum_{i,j=1}^{\infty}a_{ij}v_{i}v_{j}=0 (a_{ij}=a_{ji})v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0.\end{array} (2.1)

We see that (2.1) corresponds to

(a_{44}+2a_{4\infty}+a_{\infty\infty})(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}

+4(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}) \sum_{i=1}^{3}(a_{i4}+a_{i\infty})x_{i}

+2 \sum_{i=1}^{3}(2a_{ii}-a_{44}+a_{\infty\infty})x_{i}^{2}+4\sum_{i\neq j}^{3}a_{ij}x_{i}x_{j}

-4 \sum_{i=1}^{3}(a_{i4}-a_{i\infty})x_{i}+a_{44}-2a_{4\infty}+a_{\infty\infty}=0 , (2.2)
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which is of the form

\epsilon(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}+2(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})\sum_{i=1}^{3}b_{i}x_{i}

+ \sum_{i,j=1}^{3}a_{ij}x_{i}x_{j}+2\sum_{i=1}^{3}a_{i}x_{i}+a=0 (a_{ij}=a_{ji}) , (2.3)

where \epsilon=1 or \epsilon=0 .
Conversely, we see that a cyclide given by (2.3) corresponds to a com-

plete intersection in P_{4}(R) given by

\{\begin{array}{l}3 3 3\Sigma a_{ij}v_{i}v_{j}+2\Sigma(b_{i}-a_{i})v_{i}v_{4}+2\Sigma(b_{i}+a_{i})v_{i}v_{\infty}i,j=1 i=1 i=1+(\epsilon+a)(v_{4}^{2}+v_{\infty}^{2})+2(\epsilon-a)v_{4}v_{\infty}=0v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0.\end{array} (2.4)

Since a M\"obius transformation maps a complete intersection of the form
(2.1) to a complete intersection of the form (2.1), a conformal transformation
maps a cyclide to a cyclide.

3. Cyclides of the form (x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}-2a_{3}x_{3}^{2}-

a^{2}=0

Consider the following “standard” form of a cyclide:

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}-2a_{3}x_{3}^{2}-a^{2}=0

(a_{1}\geq a_{2}\geq a_{3}, a>0) . (3.1)

We first prove the following.

Proposition 3.1 A cyclide (3.1) is topologically a sphere.

Proof. If a_{1}=a_{2}=a_{3} , then (3.1) is an ordinary sphere. Therefore we
consider the opposite case, and we may assume without loss of generality
that a_{1}\neq a_{2} . Then x_{3} , considered as a function of x_{1} and x_{2} , is a Morse
function on the surface, which has at most 10 critical points. By investigat-
ing the indices at the critical points of x_{3} , we see that the Euler number of
the surface is 2 so that the surface is topologically a sphere. \square
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By applying a conformal transformation given by

( 00\sqrt{a} 1/\sqrt{a}00 1/\sqrt{a}00),
we see that a cyclide given by (3.1) is conformally equivalent to a cyclide
given by

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2 \frac{a_{1}}{a}x_{1}^{2}-2\frac{a_{2}}{a}x_{2}^{2}-2\frac{a_{3}}{a}x_{3}^{2}-1=0 .

Therefore we may assume without loss of generality that a=1 in (3.1) as
far as we are interested in conformal properties of cyclides.

Proposition 3.2 A cyclide (3.1) contains
(i) two circles (resp. one circle) through each non-umbilic (resp. umbilic)

point if a_{1} , a_{2} and a_{3} are distinct.
(ii) one circle through each non-umbilic point if either a_{1}=a_{2} or a_{2}=a_{3} .
(iii) infinitely many circles through each point if a_{1}=a_{2}=a_{3} .

Proof. Since our assertion is conformal, we assume that a=1 . Then we
see that a cyclide given by (3.1) corresponds to a complete intersection in
P_{4}(R) given by

\{

a_{1}v_{1}^{2}+a_{2}v_{2}^{2}+a_{3}v_{3}^{2}-2v_{4}v_{\infty}=0

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0 .
(3.2)

We may assume without loss of generality that a_{1}\geq a_{2}\geq a_{3} . We see that
(3.2) is equivalent to

\{

(a_{1}-a_{2})v_{1}^{2}-(a_{2}-a_{3})v_{3}^{2}-a_{2}v_{4}^{2}-2v_{4}v_{\infty}+a_{2}v_{\infty}^{2}=0

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0 .
(3.3)

We first consider the case where a_{1}>a_{2}>a_{3} . Then (3.3) can be
written as

\{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0(\sqrt{a_{1}-a_{2}}v_{1}-\sqrt{a_{2}-a_{3}}v_{3})(.\sqrt{a_{1}-a_{2}}v_{1}+\sqrt{a_{2}-a_{3}}v_{3})=a_{2}(v_{4}+\frac{1-\sqrt{a_{2}^{2}+1}}{a_{2}}v_{\infty})(v_{4}+\frac{1+\sqrt{a_{2}^{2}+1}}{a_{2}}v_{\infty})
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Therefore we get

\{\begin{array}{l}v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0\sqrt{a_{1}-a_{2}}v_{1}-\sqrt{a_{2}-a_{3}}v_{3}=\alpha(v_{4}+\frac{1-\sqrt{a_{2}^{2}+1}}{a_{2}}v_{\infty})\sqrt{a_{l}-a_{2}}v_{1}+\sqrt{a_{2}-a_{3}}v_{3}=\frac{a_{2}}{\alpha}(v_{4}+\frac{1+\sqrt{a_{2}^{2}+1}}{a_{2}}v_{\infty})\end{array}

for an arbitrary \alpha or

\{\begin{array}{l}v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0\sqrt{a_{1}-a_{2}}v_{1}-\sqrt{a_{2}-a_{3}}v_{3}=\beta(v_{4}+\frac{1+\sqrt{a_{2}^{2}+1}}{a_{2}}v_{\infty})\sqrt{a_{1}-a_{2}}v_{1}+\sqrt{a_{2}-a_{3}}v_{3}=\frac{a_{2}}{\beta}(v_{4}+\frac{1-\sqrt{a_{2}^{2}+1}}{a_{2}}v_{\infty})\end{array}

for an arbitrary \beta . In view of (1.3), we see that (3.1) contains two families
of circles.

We next consider the case where a_{2}=a_{3} to prove (ii). We see that
(3.3) can be written as

\{\begin{array}{l}v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0\sqrt{a_{1}-a_{2}}v_{1}=\gamma( )\sqrt{a_{l}-a_{2}}v_{1}=\frac{a_{2}}{\gamma}(v_{4}+\frac{1+\sqrt{a_{2}^{2}+1}}{a_{2}}v_{\infty})\end{array}

for an arbitrary \gamma . This implies that (3.1) contains a family of circles.
Tha case (iii) is clear. \square

4. Cyclides of the form (x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}-2a_{3}x_{3}^{2}+

a^{2}=0

Consider the following “standard” form of a cyclide:

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}-2a_{3}x_{3}^{2}+a^{2}=0

(a_{1}\geq a_{2}\geq a_{3}, a>0) . (4.1)
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By the same reason as in the previous section, we may assume without loss
of generality that a=1 in (4.1) as far as we are interested in conformal
properties of cyclides.

We first consider the case where (4.1) has no singular point.

Proposition 4.1 A cyclide (4.1) is
(i) a sphere if a_{1}=a_{2}=a_{3}=a .
(ii) topologically a torus if a_{1}\geq a_{2}>a>a_{3} .
(iii) topologically concentric two spheres if a_{1}\geq a_{2}\geq a_{3}>a .
(iv) topologically exclusive two spheres if a_{1}>a>a_{2}\geq a_{3} .

Proof (i) is clear.
(ii): The surface is connected and x_{1} considered as a function of x_{2}

and x_{3} is a Morse function on the surface which has 4 critical points. By
investigating the indices at the critical points, we see that the Euler number
of the surface is 0 so that the surface is topologically a torus.

(iii) and (iv): The surface has two connected components and x_{1} con-
sidered as a function of x_{2} and x_{3} is a Morse function on the surface which
has at most 12 critical points. By investigating the indices at the critical
points of x_{1} , we see that the Euler number of each connected component
is 2. \square

R. Blum considers the four cases of torus type

(A)
(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{1}x_{2}^{2}+2ax_{3}^{2}+a^{2}=0 (a_{1}>a)

(B_{1})

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{1}x_{2}^{2}-2a_{3}x_{3}^{2}+a^{2}=0

(a_{1}>a>a_{3}\neq-a)

(B_{2})

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}+2ax_{3}^{2}+a^{2}=0 (a_{1}>a_{2}>a)

(C)
(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}-2a_{3}x_{3}^{2}+a^{2}=0

(a_{1}>a_{2}>a>a_{3}\neq-a)

and proves the following.
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Proposition 4.2 ([B])

(i) A cyclide of type (A) is an ordinary torus and it contains four circles
through each point.

(ii) A cyclide of type (B_{i}) , i=1,2 , contains five circles through each point.
(iii) A cyclide of type (C) contains six circles through each point.

Proof. Since our assertion is conformal, we assume that a=1 in (4.1).
Then we see that a cyclide given by (4.1) corresponds to a complete inter-
section in P_{4}(R) given by

\{

a_{1}v_{1}^{2}+a_{2}v_{2}^{2}+a_{3}v_{3}^{2}-v_{4}^{2}-v_{\infty}^{2}=0

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0 .
(4.2)

We prove (iii): We see that (4.2) is equivalent to

\{

(a_{1}-a_{2})v_{1}^{2}-(a_{2}-a_{3})v_{3}^{2}=(a_{2}+1)v_{4}^{2}-(a_{2}-1)v_{\infty}^{2}

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0

(4.2’)

or

\{

(a_{1}-a_{3})v_{1}^{2}-(a_{3}+1)v_{4}^{2}=(1-a_{3})v_{\infty}^{2}-(a_{2}-a_{3})v_{2}^{2}

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0 (-1<a_{3}<1)
(4.2’)

or

\{

(a_{1}+1)v_{1}^{2}+(a_{3}+1)v_{3}^{2}=2v_{\infty}^{2}-(a_{2}+1)v_{2}^{2}

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0 (a_{3}<-1)
(4.2^{\prime//})

or

\{

(a_{1}-1)v_{1}^{2}-(1-a_{3})v_{3}^{2}=2v_{4}^{2}-(a_{2}-1)v_{2}^{2}

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0

(4.2”)

It is easily seen that (4.2’) can be written as

\{\begin{array}{l}(\sqrt{a_{1}-a_{2}}v_{1}-\sqrt{a_{2}-a_{3}}v_{3})(\sqrt{a_{1}-a_{2}}v_{1}+\sqrt{a_{2}-a_{3}}v_{3})=(\sqrt{a_{2}+1}v_{4}-\sqrt{a_{2}-1}v_{\infty})(\sqrt{a_{2}+1}v_{4}+\sqrt{a_{2}-1}v_{\infty})v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0.\end{array}
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Therefore we get

\{\begin{array}{l}v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0\sqrt{a_{1}-a_{2}}v_{1}-\sqrt{a_{2}-a_{3}}v_{3}=\alpha(\sqrt{a_{2}+1}v_{4}-\sqrt{a_{2}-1}v_{\infty})\sqrt{a_{1}-a_{2}}v_{1}+\sqrt{a_{2}-a_{3}}v_{3}=\frac{1}{\alpha}(\sqrt{a_{2}+1}v_{4}+\sqrt{a_{2}-1}v_{\infty})\end{array}

for an arbitrary \alpha or

\{

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0

\sqrt{a_{1}-a_{2}}v_{1}-\sqrt{a_{2}-a_{3}}v_{3}=\beta(\sqrt{a_{2}+1}v_{4}+\sqrt{a_{2}-1}v_{\infty})

\sqrt{a_{1}-a_{2}}v_{1}+\sqrt{a_{2}-a_{3}}v_{3}=\frac{1}{\beta}(\sqrt{a_{2}+1}v_{4}-\sqrt{a_{2}-1}v_{\infty})

for an arbitrary \beta . In view of (1.3), we see that the cyclide contains two
families of circles.

By applying the same argument to (4.2’) or (4.2’) and to (4.2”) , we
conclude that a cyclide of type (C) contains six circles through each point.

The assertions (i) and (ii) can be proved similarly. \square

Remark Let L and \mathfrak{M} be homotopy classes of a torus generated by a
“latitude” and a “meridian” respectively, so that the fundamental group
is generated by L and M. Then we see that the circles corresponding to
(4.2’) belong to L , the circles corresponding to (4.2’) or (4.2’) belong to
\mathfrak{M} and the circles corresponding to (4.2”) belong to L+\mathfrak{M} and L -\mathfrak{M} ,
respectively.

Proposition 4.3 A cyclide of type (B_{1}) is conformally equivalent to a
cyclide of type (B_{2}) and vice versa.

Proof. Since our assertion is conformal, we consider a cyclide of type (B_{2})

with a=1 :

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}+2x_{3}^{2}+1=0 . (4.3)

Then we see that a cyclide given by (4.3) corresponds to a complete inter-
section in P_{4}(R) given by

\{

a_{1}v_{1}^{2}+a_{2}v_{2}^{2}-v_{3}^{2}-v_{4}^{2}-v_{\infty}^{2}=0

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0 .
(4.4)
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We see that (4.4) is transformed to

\{

-v_{1}^{2}-v_{2}^{2}+a_{2}v_{3}^{2}+a_{1}v_{4}^{2}-v_{\infty}^{2}=0

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0

(4.5)

by a M\"obius transformation given by

(\begin{array}{lllll}0 0 0 1 00 0 1 0 00 1 0 0 01 0 0 0 00 0 0 0 1\end{array})

We see that (4.5) corresponds to a cyclide

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2 \frac{a_{1}+3}{a_{1}-1}x_{1}^{2}-2\frac{a_{1}+3}{a_{1}-1}x_{2}^{2}

-2 \frac{a_{1}-2a_{2}+1}{a_{1}-1}x_{3}^{2}+1=0 (4.6)

which is a cyclide of type (B_{1}) . The converse can be shown similarly. \square

Remark We see that (4.3) is transformed to (4.6) by a conformal trans-
formation (an inversion) given by

\{\begin{array}{l}x_{1}^{/}=\frac{2(x_{1}-1)}{(x_{1}-1)^{2}+x_{2}^{2}+x_{3}^{2}}+1x_{2},=\frac{2x_{3}}{(x_{1}-1)^{2}+x_{2}^{2}+x_{3}^{2}}x_{3},=\frac{2x_{2}}{(x_{1}-1)^{2}+x_{2}^{2}+x_{3}^{2}}.\end{array}

We next consider the case where (4.1) is topologically two spheres.

Proposition 4.4 A cyclide (4.1) of type a_{1}\geq a_{2}\geq a_{3}>a is conformally
equivalent to a cyclide (4.1) of type a_{1}>a>a_{2}\geq a_{3} .

Proof It follows from Proposition 4.1 that the former is topologically
concentric two spheres and the latter is topologically exclusive two spheres.
We see that the latter is mapped to the former by an inversion with respect
to a sphere which “separates” two portions of the latter. \square
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Proposition 4.5 A cyclide (4.1) contains two circles (resp. one circle)
through each non-umbilic (resp. umbilic) point if a_{1}>a_{2}>a_{3}>a or
a_{1}>a>a_{2}>a_{3} and it contains one circle through each non-umbilic point
if a_{1}>a_{2}=a_{3}>a or a_{1}=a_{2}>a_{3}>a or a_{1}>a>a_{2}=a_{3} .

Proof. Since our assertion is conformal, we assume that a=1 in (4.1).
Then we see that a cyclide given by (4.1) corresponds to a complete inter-
section in P_{4}(R) given by (4.2). If a_{1}\geq a_{2}\geq a_{3}>1 is the case, we see that
(4.2) is equivalent to (4.2’) and we obtain the assertion by the same method
as in the proof of Proposition 4.2. Note that a circle passing through an
umbilic point may reduce to a point. The case where a_{1}>1>a_{2}\geq a_{3} can
be proved similarly. \square

Finally we consider the case where (4.1) has singular points.

Proposition 4.6 A cyclide (4.1) is
(i) conformally equivalent to an elliptic cone if a_{1}\geq a_{2}>a_{3}=a .
(ii) conformally equivalent to a hyperbolic cone if a_{1}>a_{2}=a>a_{3} .
(iii) conformally equivalent to two planes if a_{1}=a_{2}=a>a_{3} .

Proof. (i) It is easily seen that (0, 0, \pm\sqrt{a}) are the singular points.
By applying an inversion with center at (0, 0, \sqrt{a}) , we see that (4.1) is
conformally equivalent to an elliptic cone.

(ii) It is easily seen that (0, \pm\sqrt{a}, 0) are the singular points. By ap-
plying an inversion with center at (0, \sqrt{a}, 0) , we see that (4.1) is conformally
equivalent to a hyperbolic cone.

(iii) It is easily seen that \{(x_{1}, x_{2},0)|x_{1}^{2}+x_{2}^{2}=a\} is the set of singular
points. By applying an inversion with center at (0, \sqrt{a}, 0) , we see that (4.1)
is conformally equivalent to two planes. \square

Remark Since we are interested in conformal properties, we do not dis-
tinguish between circles and lines in the following:
(i) A generic elliptic cone contains three circles through each non-singular

point.
(ii) A circular cone contains two circles through each non-singular point.
(iii) A hyperbolic cone contains one circle through each non-singular point.
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5. Cyclides of the form (x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}-2a_{3}x_{3}^{2}=0

Consider the following particular form of a cyclide:

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}-2a_{3}x_{3}^{2}=0 (a_{1}\geq a_{2}\geq a_{3}) .

(5.1)

We see that a cyclide (5.1) has a singular point at the origin and it is con-
formally equivalent to a quadratic surface, that is, we prove the following.

Proposition 5.1 A cyclide (5.1) with the origin removed is
(i) conformally equivalent to an ellipsoid if a_{1}\geq a_{2}\geq a_{3}>0 .
(ii) conformally equivalent to a hyperboloid of one sheet if a_{1}\geq a_{2}>0>

a3.
(iii) conformally equivalent to a hyperboloid of two sheets if a_{1}>0>a_{2}\geq

a3.
(iv) conformally equivalent to an elliptic cylinder if a_{1}\geq a_{2}>a_{3}=0 .
(v) conformally equivalent to a hyperbolic cylinder if a_{1}>a_{2}=0>a_{3} .
(vi) a pair of siamese-twin spheres which is conformally equivalent to two

planes if a_{1}>a_{2}=a_{3}=0 .

Proof By applying an inversion with center at the origin, we easily verify
the assertions. \square

Remark Since we are interested in conformal properties, we do not dis-
tinguish between circles and lines in the following:
(i) A generic ellipsoid contains two circles through each non-umbilic point

and one circle through each umbilic point.
(ii) An ellipsoid of revolution contains one circle through each non-umbilic

point, unless it is a sphere,
(iii) A generic hyperboloid of one sheet contains four circles through each

point.
(iv) A hyperboloid of one sheet of revolution contains three circles through

each point.
(v) A generic hyperboloid of two sheets contains two circles through each

non-umbilic point and one circle through each umbilic point.
(vi) A hyperboloid of two sheets of revolution contains one circle through

each non-umbilic point.
(vii) A generic elliptic cylinder contains three circles through each point.
(viii) A circular cylinder contains two circles through each point.
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(ix) A hyperbolic cylinder contains one circle through each point.

6. Conformal classification of cyclides

The purpose of this section is to give a conformal classification of cy-
clides. First of all, we prove the following.

Proposition 6.1 A cyclide (2.3) with \epsilon=1 can be transformed to a cy-
clide (2.3) with \epsilon=0 by a conformal transformation and vice versa.

Proof. A straightforward computation shows that a translation followed
by an inversion with center at a point on the surface is a desired conformal
transformation. \square

Therefore it is sufficient to consider cyclides of the form (2.3) with \epsilon=1

as far as we are interested in conformal properties.

Proposition 6.2 A cyclide (2.3) with \epsilon=1 can be transformed to a cy-
clide of the form

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}+ \sum_{i=1}^{3}a_{ii}x_{i}^{2}+2\sum_{i=1}^{3}a_{i}x_{i}+a=0 (6.1)

by an isometry.

Proof. A straightforward computation shows that a translation x_{i} –

x_{i}+ \frac{b_{i}}{2} followed by a rotation is a desired isometry. \square

Proposition 6.3 A cyclide (2.3) with \epsilon=1 is conformally equivalent to
a cyclide of the form

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}+ \sum_{i=1}^{3}a_{ii}x_{i}^{2}+2a_{3}x_{3}+a=0 . (6.2)

Proof. By Proposition 6.2, it suffices to show that a cyclide of the form
(6.1) is conformally equivalent to a cyclide of the form (6.2).

Note that a cyclide (6.1) corresponds to a complete intersection in P_{4}(R)

given by



134 N. Takeuchi

\{\begin{array}{l}\sum_{i=1}^{3}a_{ii}v_{i}^{2}-2\sum_{i=1}^{3}a_{i}v_{i}(v_{4}-v_{\infty})+(1+a)(v_{4}^{2}+v_{\infty}^{2})+2(1-a)v_{4}v_{\infty}=0v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0.\end{array} (6.3)

Put

A=(\begin{array}{llllll}a_{11} 0 0 -a_{1} a_{1} 0 a_{22} 0 -a_{2} a_{2} 0 0 a_{33} -a_{3} a_{3} -a_{1} -a_{2} -a_{3} 1+a 1- aa_{1} a_{2} a_{3} 1-a 1+ a\end{array}) ,

and consider the equation in \lambda:\det(A-\lambda J)=0 or equivalently \det(JA-
\lambda I)=0 , where J is given by

J=(\begin{array}{lllll}1 0 0 0 00 1 0 0 00 0 l 0 00 0 0 1 00 0 0 0 -1\end{array})

and I denotes the identity matrix. This is equivalent to

(\lambda^{2}-4a)(\lambda-a_{11})(\lambda-a_{22})(\lambda-a_{33})

-4a_{1}^{2}(\lambda-a_{22})(\lambda-a_{33})-4a_{2}^{2}(\lambda-a_{11})(\lambda-a_{33})

-4a_{3}^{2}(\lambda-a_{11})(\lambda-a_{22})=0 . (6.4)

We may assume without loss of generality that a_{11}\geq a_{22}\geq a_{33} . It is clear
that if a_{11}=a_{22}=a_{33} , then a cyclide of the form (6.1) is rotationally
equivalent to a cyclide of the form (6.2).

We next consider the case where a_{11}=a_{22}>a_{33} . We see that (6.4) is
reduced to

(\lambda-a_{11})\{(\lambda^{2}-4a)(\lambda-a_{11})(\lambda-a_{33})

-4(a_{1}^{2}+a_{2}^{2})(\lambda-a_{33})-4a_{3}^{2}(\lambda-a_{11})\}=0
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which is equivalent to \lambda=a_{11} and

(\lambda^{2}-4a)(\lambda-a_{11})(\lambda-a_{33})

-4(a_{1}^{2}+a_{2}^{2})(\lambda-a_{33})-4a_{3}^{2}(\lambda-a_{11})=0 . (6.5)

Let g(\lambda) stand for the left-hand-side of (6.5). Then we obtain g(a_{11})=

-4(a_{1}^{2}+a_{2}^{2})(a_{11}-a_{33})\leq 0 . If a_{1}=a_{2}=0 , then the assertion is trivial.
Otherwise, since g(a_{11})<0 , (6.5) has at least one simple real solution
(\neq a_{11}) . Let \lambda_{1}(=a_{11}) and \lambda_{2} be simple real solutions of (6.4) and let
e_{1} and e_{2} be vectors satisfying Ae_{i}=\lambda_{i}Je_{i}(i=1,2) and {}^{t}e_{1}Je_{1}=1 ,
{}^{t}e_{2}Je_{2}=1 and {}^{t}e_{1}Je_{2}=0 . Then we can see that A is transformed to a
matrix of the form

(\begin{array}{lllll}\lambda_{1} 0 0 0 00 \lambda_{2} 0 0 00 0 * * *0 0 * * *0 0 * * *\end{array}) (6.6)

by a M\"obius transformation given by ( e_{1} , e_{2} , e3, e_{4} , e_{\infty} ), where e3, e_{4} and e_{\infty}

are vectors satisfying {}^{t}e_{3}Je_{3}=1,{}^{t}e_{4}Je_{4}=1,{}^{t}e_{\infty}Je_{\infty}=-1 and {}^{t}e_{i}Je_{j}=0

(1\leq i\neq j\leq\infty) . This implies that (6.1) can be transformed to a cyclide of
the form (x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}+b_{3}x_{3}(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})+ \sum_{i=1}^{3}a_{ii}x_{i}^{2}+2a_{3}x_{3}+a=0

by a conformal transformation. This can be transformed to a cyclide of the
form (6.2) by a translation x_{3}arrow x_{3}+b_{1\vec{2}} . The case where a_{11}>a_{22}=a_{33}

can be treated similarly.
We finally consider the case where a_{11}>a_{22}>a_{33} . Let f stand for the

left-hand-side of (6.4). Note that f(a_{ii})=0 if and only if a_{i}=0(i=1,2,3) .

Case 1: Neither of a_{11} , a_{22} , a_{33} is a solution of (6.4).

We see that f(a_{11})=-4a_{1}^{2}(a_{11}-a_{22})(a_{11}-a_{33})<0 , f(a_{22})=-4a_{2}^{2}

(a_{22}-a_{11})(a_{22}-ass)>0 and f(a_{33})=-4a_{3}^{2}(a_{33}-a_{11})(a_{33}-a_{22})<0 .
This implies that (6.4) has at least two simple real solutions. Therefore, by
the same argument as above, we see that A is transformed to a matrix of
the form (6.6) by a M\"obius transformation.

Case 2: Some of a_{11} , a_{22} , a_{33} are solutions of (6.4).

Suppose that f(a_{11})=0 so that a_{1}=0 . If, in addition, one of a_{2} and
a3 is zero, then the assertion is trivial. Therefore we consider the case where
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a_{2}a_{3}\neq 0 . We see that (6.4) is reduced to

(\lambda-a_{11})\{(\lambda^{2}-4a)(\lambda-a_{22})(\lambda-a_{33})

-4a_{2}^{2}(\lambda-a_{33})-4a_{3}^{2}(\lambda-a_{22})\}=0

which is equivalent to \lambda=a_{11} and

(\lambda^{2}-4a)(\lambda-a_{22})(\lambda-a_{33})-4a_{2}^{2}(\lambda-a_{33})-4a_{3}^{2}(\lambda-a_{22})=0 .
(6.7)

If a_{11} is a simple solution of (6.4), then we see that (6.4) has another
simple real solution, say, \lambda_{2} . Let {}^{t}e_{1}=(1,0,0,0,0) and let e_{2} be a vector
satisfying Ae_{2}=\lambda_{2}Je_{2},{}^{t}e_{2}Je_{2}=1 and {}^{t}e_{1}Je_{2}=0 . Then A is transformed
to a matrix of the form (6.6) with \lambda_{1}=a_{11} by a M\"obius transformation given
by ( e_{1} , e_{2} , e3, e_{4} , e_{\infty} ), where e3, e_{4} and e_{\infty} are vectors satisfying {}^{t}e_{3}Je_{3}=1 ,
{}^{t}e_{4}Je_{4}=1,{}^{t}e_{\infty}Je_{\infty}=-1 and {}^{t}e_{i}Je_{j}=0(1\leq i\neq j\leq\infty) .

If a_{11} is a double solution of (6.4), then either (6.4) has at least one
simple real solution or it has a triple solution. In the former case, we can
apply the same argument as above to see that A is transformed to a matrix
of the form (6.6) with \lambda_{1}=a_{11} by a M\"obius transformation.

In the latter case, (6.4) can be written as (\lambda-a_{11})^{2}(\lambda-\beta)^{3}=0 for
some \beta with a_{33}<\beta<a_{22} so that we have

\{\begin{array}{l}a_{11}+3\beta=a_{22}+a_{33}3\beta(a_{11}+\beta)=a_{22}a_{33}-4a\beta^{2}(3a_{11}+\beta)=4a_{2}^{2}+4a_{3}^{2}-4a(a_{22}+a_{33})a_{11}\beta^{3}=4a_{2}^{2}a_{33}+4a_{3}^{2}a_{22}-4aa_{22}a_{33}.\end{array} (6.8)

We see that the eigenspace \{X|AX=a_{11}JX\} is spanned by {}^{t}(1,0,0,0,0)

and t (0, \frac{-4a_{2}}{(a_{11}-a_{22})(a_{11}-2)} , \frac{-4a_{3}}{(a_{11}-a_{33})(a_{11}-2)} , \frac{a_{11}+2}{a_{11}-2} , 1 ) if a_{11}\neq 2 . It follows
from (6.8) that the square of the norm of the latter is given by

4(a_{11}-\beta)^{3}

\overline{(a_{11}-2)^{2}(a_{11}-a_{22})(a_{11}-a_{33})}>0 . Therefore A is transformed to a matrix of
the form (6.6) with \lambda_{1}=\lambda_{2}=a_{11} by a M\"obius transformation.

If a_{11}=2 , then the eigenspace \{X|AX=2JX\} is spanned by
{}^{t}(1,0,0,0,0) and t(0, \frac{a_{2}}{a_{22}-2} , \frac{a_{3}}{a_{33}-2} , 1, 0) and the latter is of course not null.
Therefore A is transformed to a matrix of the form (6.6) with \lambda_{1}=\lambda_{2}=2

by a M\"obius transformation.
If a_{11} is a triple or quadruple solution of (6.4), then we see that the
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remaining solution(s) is/are simple and hence A can be transformed to a
matrix of the form (6.6) with \lambda_{1}=a_{11} by a M\"obius transformation. \square

Proposition 6.4 A cyclide (6.2) is conformally equivalent to a cyclide of
the form (3.1), (4.1) or (5.1) unless 27a_{3}^{2}=-2a_{33}^{3} and 12a=-a_{33}^{2} .

Proof. Note that a cyclide (6.2) corresponds to a complete intersection
in P_{4}(R) given by

\{\begin{array}{l}\Sigma a_{ii}v_{i}^{2}-2a_{3}v_{3}(v_{4}-v_{\infty})+(1+a)(v_{4}^{2}+v_{\infty}^{2})3i=1 +2(1-a)v_{4}v_{\infty}=0v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0.\end{array} (6.9)

Put

A=(\begin{array}{llllll}a_{11} 0 0 0 0 0 a_{22} 0 0 0 0 0 a_{33} -a_{3} a_{3} 0 0 -a_{3} 1+a 1- a0 0 a_{3} 1-a 1+ a\end{array}) , (6.10)

and consider the equation in \lambda:\det(A-\lambda J)=0 or equivalently \det(JA-
\lambda I)=0 , where J is given by (6.4) and I denotes the identity matrix. This
is equivalent to \lambda=a_{11} , \lambda=a_{22} and

\lambda^{3}-a_{33}\lambda^{2}-4a\lambda+4aa_{33}-4a_{3}^{2}=0 . (6.11)

We see that (6.11) has triple solutions if and only if 27a_{3}^{2}=-2a_{33}^{3} and
12a=-a_{33}^{2} . If (6.11) does not have triple solutions, then it has at least one
simple solution, say, \lambda_{3} . Let {}^{t}e_{1}=(1,0,0,0,0) and {}^{t}e_{2}=(0,1,0,0,0) and
let e3 be a vector satisfying Ae_{3}=\lambda_{3}Je_{3} and {}^{t}e_{3}Je_{3}=\pm 1 . We can find
vectors e_{4} and e_{\infty} which satisfy {}^{t}e_{4}Je_{4}=1,{}^{t}e_{\infty}Je_{\infty}=\mp 1 and te_{i}Je_{j}=0

(1\leq i\neq j\leq\infty) . It is easy to see that (6.11) is transformed to a matrix of
the form

(\begin{array}{lllll}a_{1l} 0 0 0 00 a_{22} 0 0 00 0 \lambda_{3} 0 00 0 0 * *0 0 0 * *\end{array})
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by a M\"obius transformation given by ( e_{1} , e_{2} , e3, e_{4} , e_{\infty} ). This implies that
(6.2) can be transformed to a cyclide of the form

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}+ \sum_{i=1}^{3}a_{ii}x_{i}^{2}+\square

a=0 by a conformal transformation.

Proposition 6.5 A cyclide (6.2) with 27a_{3}^{2}=-2a_{33}^{3} and 12a=-a_{33}^{2}

(a_{33}<0) has singular points and it is
(i) conformally equivalent to an elliptic paraboloid if (a_{33}-3a_{11})(a_{33}-

3a_{22})>0 .
(ii) conformally equivalent to a hyperbolic paraboloid if (a_{33}-3a_{11})(a_{33}-

3a_{22})<0 .
(iii) conformally equivalent to a parabolic cylinder if either a_{33}=3a_{11} or

a_{33}=3a_{22} .
(iv) a sphere if a_{11}=a_{22}= \frac{1}{3}a_{33} .

Proof We see that (0, 0, \pm\sqrt{-_{6}^{\underline{a}_{33}}}) are singular points. By applying an
inversion with center at (0, 0, \sqrt{-_{6}^{\underline{a}_{Ba}}}) , we get the assertions (i), (ii), (iii).
Under the assumption of (iv), (6.2) is reduced to

\{x_{1}^{2}+x_{2}^{2}+(x_{3}\pm\sqrt{-\frac{a_{33}}{6}})^{2}+\frac{2}{3}a_{33}\}\{ x_{1}^{2}+x_{2}^{2}+(x_{3}\mp\sqrt{-\frac{a_{33}}{6}})^{2}\}=0 .

This implies that the surface is a sphere with a singular point. \square

Remark Since we are interested in conformal properties, we do not dis-
tinguish between circles and lines in the following:
(i) A generic elliptic paraboloid contains two circles through each non-

umbilic point and one circle through each umbilic point.
(ii) An elliptic paraboloid of revolution contains one circle through each

non-umbilic point.
(iii) A hyperbolic paraboloid contains two circles through each point.
(iv) A parabolic cylinder contains one circle through each point.

Summarizing these results, we get the following.

Theorem 6.6 A cyclide is conformally equivalent to one of the standard
forms (3.1) and (4.1) or a quadratic surface.

7. How many circles does a cyclide contain through each point?

R. Blum ([B]) gives an answer to the above question when the cyclide
is topologically a torus (cf. Proposition 4.2). Summarizing the results given
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in sections 3, 4, 5 and 6, we get a complete answer to the question given as
the title of this section.

Theorem 7.1 A cyclide contains n circles through each non-umbilic point
and n-1 circles through each isolated umbilic point unless it is a sphere or
a pair of two spheres, where n=1,2,3,4,5 or 6.

8. Cyclides as enveloping surfaces of families of spheres: Con-
sideration \‘a la Darboux

Let X be a tangent vector at a point p of a surface. Then we can
associate a sphere S(p, X) with the properties that (1) S(p, X) is tangent
to the surface and (2) the radius of S(p, X) is equal to the normal curvature
of the surface in the direction of X . Let \gamma be a circle lying on a cyclide.
Then, by the theorem of Meusnier, we see that S(p,\dot{\gamma}) contains \gamma . We call
S(p,\dot{\gamma}) the Meusnier sphere determined by \gamma and p.

According to Theorem 7.1, a cyclide is covered by at least one family of
circles. Therefore it is natural to regard a cyclide as a surface enveloped by
a family of Meusnier spheres determined by a family of circles. We review
such a property of cyclides following G. Darboux ([D]). He gave concrete
and explicit expressions for families of such spheres that envelope the given
cyclide.

We consider cyclides which are topologically tori, that is, cyclides of
the form (4.1) with a_{1}\geq a_{2}>a>a_{3} .

Consider a sphere

x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2c_{1}x_{1}-2c_{2}x_{2}-2c_{3}x_{3}-2c=0 . (8.1)

Since a circle is a plane curve, the necessary condition for a cyclide (4.1)
and a sphere (8.1) to intersect along a circle is that a quadratic surface

4(c_{1}x_{1}+c_{2}x_{2}+c_{3}x_{3}+c)^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}-2a_{3}x_{3}^{2}+a^{2}

+\lambda(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2c_{1}x_{1}-2c_{2}x_{2}-2c_{3}x_{3}-2c)=0 (8.2)

represents two planes for a suitable choice of a constant \lambda . Note that these
two planes may coincide. We see that (8.2) reduces to

(p_{1}x_{1}+p_{2}x_{2}+p_{3}x_{3}+p)(q_{1}x_{1}+q_{2}x_{2}+q_{3}x_{3}+q)=0 (8.3)
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so that it represents two planes only when

(\lambda^{2}-4a^{2})(\lambda-2a_{1})(\lambda-2a_{2})(\lambda-2a_{3})=0 (8.4)

(\lambda-4c)(\lambda-2a_{1})(\lambda-2a_{2})(\lambda-2a_{3})=0 (8.5)

4(\lambda-2a_{2})(\lambda-2a_{3})c_{1}^{2}+4(\lambda-2a_{1})(\lambda-2a_{3})c_{2}^{2}

+4(\lambda-2a_{1})(\lambda-2a_{2})c_{3}^{2}+(\lambda-2a_{1})(\lambda-2a_{2})(\lambda-2a_{3})=0 .
(8.6)

hold. Note that one of the planes given by (8.3) contains the circle under
consideration and another plane also contains a circle on the cyclide. It
follows from (8.4) that \lambda has five possibilities: \pm 2a , 2a_{1},2a_{2},2a_{3} .

Case I : \lambda=2a .

We see from (8.5) and (8.6) that the necessary condition for (8.2) to
represent two planes is that c_{1} , c_{2} and c_{3} satisfy

\frac{2c_{1}^{2}}{a_{1}-a}+\frac{2c_{2}^{2}}{a_{2}-a}-\frac{2c_{3}^{2}}{a-a_{3}}=1

and c= \frac{a}{2} . We can verify that a family of spheres (8.1) with these conditions
actually envelopes the given cyclide.

Moreover we see that p_{1} , p_{2} , p_{3} , p;q_{1} , q_{2} , q_{3} , q in (8.3) satisfy

( \frac{p_{1}^{2}}{a_{1}-a}+\frac{p_{2}^{2}}{a_{2}-a}-\frac{p_{3}^{2}}{a-a_{3}})(\frac{q_{1}^{2}}{a_{1}-a}+\frac{q_{2}^{2}}{a_{2}-a}-\frac{q_{3}^{2}}{a-a_{3}})=0

and p=q=0.

Case IIa: \lambda=-2a(>2a_{3}) .

We see from (8.5) and (8.6) that the necessary condition for (8.2) to
represent two planes is that c_{1} , c_{2} and c_{3} satisfy

\frac{2c_{1}^{2}}{a+a_{1}}+\frac{2c_{2}^{2}}{a+a_{2}}+\frac{2c_{3}^{2}}{a+a_{3}}=1

and c=- \frac{a}{2} . We can verify that a family of spheres (8.1) with these condi-
tions actually envelopes the cyclide.
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Moreover we see that p_{1} , p_{2} , p_{3} , p;q_{1} , q_{2} , q_{3} , q in (8.3) satisfy

( \frac{p_{1}^{2}}{a+a_{1}}+\frac{p_{2}^{2}}{a+a_{2}}+\frac{p_{3}^{2}}{a+a_{3}})(\frac{q_{1}^{2}}{a+a_{1}}+\frac{q_{2}^{2}}{a+a_{2}}+\frac{q_{3}^{2}}{a+a_{3}})=0

and p=q=0.

Case lib: \lambda=-2a(<2a_{3}) .

We see from (8.5) and (8.6) that the necessary condition for (8.2) to
represent two planes is that c_{1} , c_{2} and c_{3} satisfy

\frac{2c_{1}^{2}}{a+a_{1}}+\frac{2c_{2}^{2}}{a+a_{2}}+\frac{2c_{3}^{2}}{a+a_{3}}=1

and c=- \frac{a}{2} . Under these conditions, the quadratic part of (8.2) is semi-
definite so that (8.2) cannot represent two planes. Therefore this case does
not occur.

Case III: \lambda=-2a=2a_{3} .

We get from (8.6) that c_{3}=0 . Hence (8.2) reduces to

4(c_{1}x_{1}+c_{2}x_{2}+c)^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}+a^{2}

(8.2’)
-2a(x_{1}^{2}+x_{2}^{2}-2c_{1}x_{1}-2c_{2}x_{2}-2c)=0 .

Note that if (8.2) represents two planes, then (8.2’) gives two lines on the
x_{1}x_{2}-plane. We see that (8.2’) gives two lines on the x_{1}x_{2}-plane only when
c=- \frac{a}{2} . If this is the case, (8.2’) reduces to

(2c_{1}^{2}-a_{1}-a)x_{1}^{2}+4c_{1}c_{2}x_{1}x_{2}+(2c_{2}^{2}-a_{2}-a)x_{2}^{2}=0 ,

which represents two planes containing x_{3}-axis. We see that the sphere
containing two circles determined by these two planes is tangent to the
cyclide only when these two planes are coincidental. The condition for the
two planes to be coincidental is given by

\frac{2c_{1}^{2}}{a+a_{1}}+\frac{2c_{2}^{2}}{a+a_{2}}=1 .

We can verify that, under these conditions, a family of spheres (8.1) with
c_{3}=0 actually envelopes the cyclide.

Case IV : \lambda=2a_{1}(\neq 2a_{2}) .
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We get from (8.6) that c_{1}=0 . Hence (8.2) reduces to

4(c_{2}x_{2}+c_{3}x_{3}+c)^{2}-2a_{2}x_{2}^{2}-2a_{3}x_{3}^{2}+a^{2}

(8.2’)
+2a_{1}(x_{2}^{2}+x_{3}^{2}-2c_{2}x_{2}-2c_{3}x_{3}-2c)=0 .

Note that if (8.2) represent two planes, then (8.2’) gives two lines on the
x_{2}x_{3}-plane. But it is impossible, because the quadratic part of (8.2’) is
positive definite. Therefore this case does not occur.

Case V : \lambda=2a_{1}=2a_{2} .

We see that (8.2) reduces to

4(c_{1}x_{1}+c_{2}x_{2})^{2}+8c_{3}(c_{1}x_{1}+c_{2}x_{2})x_{3}+2(2c_{3}^{2}+a_{1}-a_{3})x_{3}^{2}

-4(a_{1}-2c)(c_{1}x_{1}+c_{2}x_{2})-4c_{3}(a_{1}-2c)x_{3}+a^{2}

-4a_{1}c+4c^{2}=0 ,

which represents two real planes (possibly coincidental) only if c_{1}=c_{2}=0 .
If this is the case, we get

2 (2c_{3}^{2}+a_{1}-a_{3})x_{3}^{2}-4c_{3}(a_{1}-2c)x_{3}+a^{2}-4a_{1}c+4c^{2}=0 .

This represents coincidental two planes if and only if

2c_{3}^{2}(a_{1}^{2}-a^{2})- ( a_{1}- a3) (a^{2}-4a_{1}c+4c^{2})=0 .

We can verify that, under this condition, a family of spheres (8.1) with
c_{1}=c_{2}=0 actually envelopes the cyclide.

Case VI : \lambda=2a_{2}(\neq 2a_{1}) .

We get from (8.6) that c_{2}=0 . Hence (8.2) reduces to

4(c_{1}x_{1}+c_{3}x_{3}+c)^{2}-2a_{1}x_{1}^{2}-2a_{3}x_{3}^{2}+a^{2}

(8.2’)
+2a_{2}(x_{1}^{2}+x_{3}^{2}-2c_{1}x_{1}-2c_{3}x_{3}-2c)=0 .

Note that if (8.2) represents two planes, then (8.2^{\prime\prime/}) gives two lines on the
x_{1}x_{3}-plane. We see that the necessary condition for (8.2’) to give two lines
on the x_{1}x_{3}-plane is that c_{1} , c_{3} and c satisfy

\frac{2c_{1}^{2}}{a_{1}-a_{2}}-\frac{2c_{3}^{2}}{a_{2}-a_{3}}=1-\frac{(a_{2}-2c)^{2}}{a_{2}^{2}-a^{2}} .
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We can verify that, under this condition, a family of spheres (8.1) with
c_{2}=0 actually envelopes the cyclide.

Moreover we see that p_{1} , p_{2} , p_{3} , p;q_{1} , q_{2} , q_{3} , q in (8.3) satisfy

( \frac{p_{1}^{2}}{a_{1}-a_{2}}-\frac{p_{3}^{2}}{a_{2}-a_{3}})(\frac{q_{1}^{2}}{a_{1}-a_{2}}-\frac{q_{3}^{2}}{a_{2}-a_{3}})=4(\frac{pq}{a_{2}^{2}-a^{2}})^{2}

and p_{2}=q_{2}=0 .

Case Vila: \lambda=2a_{3}(<-2a) .

We get from (8.6) that c_{3}=0 . Hence (8.2) reduces to

4(c_{1}x_{1}+c_{2}x_{2}+c)^{2}-2a_{1}x_{1}^{2}-2a_{2}x_{2}^{2}+a^{2}

(8.2”)
+2a_{3}(x_{1}^{2}+x_{2}^{2}-2c_{1}x_{1}-2c_{2}x_{2}-2c)=0 .

Note that if (8.2) represents two planes, then (8.2”) gives two lines on the
x_{1}x_{2}-plane. But it is impossible, because the quadratic part of (8.2”) is
positive definite. Therefore this case does not occur.

Case Vllb: \lambda=2a_{3}(>-2a) .

We see that the necessary condition for (8.2”) to give two lines on the
x_{1}x_{2}-plane is that c_{1} , c_{2} and c satisfy

\frac{2c_{1}^{2}}{a_{1}-a_{3}}+\frac{2c_{2}^{2}}{a_{2}-a_{3}}=1-\frac{(a_{3}-2c)^{2}}{a_{3}^{2}-a^{2}} .

We can verify that, under this condition, a family of spheres (8.1) with
c_{3}=0 actually envelopes the cyclide.

Moreover we see that p_{1} , p_{2} , p_{3} , p;q_{1} , q_{2} , q_{3} , q in (8.3) satisfy

( \frac{p_{1}^{2}}{a_{1}-a_{3}}+\frac{p_{2}^{2}}{a_{2}-a_{3}})(\frac{q_{1}^{2}}{a_{1}-a_{3}}+\frac{q_{2}^{2}}{a_{2}-a_{3}})=4(\frac{pq}{a_{3}^{2}-a^{2}})^{2}

and p_{3}=q_{3}=0 .
Respective cases occur as follows:

(A) If a_{1}=a_{2}>a>a_{3}=-a , then cases I , III and V occur.
(B_{1}a) If a_{1}=a_{2}>a>-a>a_{3} , then cases I , IIa and V occur.
(B_{1}b) If a_{1}=a_{2}>a>a_{3}>-a , then cases I , V and Vllb occur.

(B_{2}) If a_{1}>a_{2}>a>a_{3}=-a , then cases I , III and VI occur.
(Ca) If a_{1}>a_{2}>a>-a>a_{3} , then cases I , IIa and VI occur.
(Cb) If a_{1}>a_{2}>a>a_{3}>-a , then cases I , VI and Vllb occur.
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Summerizing the above consideration, we get the following.

Proposition 8.1 A cyclide which is topologically a torus is a surface en-
veloped by three distinct families of Meusnier spheres determined by circles
on the cyclide. Each sphere contains one or two circles on the cyclide and
it is tangent to the cyclide along the circle or at two points, respectively.

Remark Let ,C and \mathfrak{M} be homotopy classes of a torus generated by a
“latitude” and a “meridian” respectively, so that the fundamental group
is generated by L and \mathfrak{M} . Then we see that the circles corresponding to
case V or VI belong to L , the circles corresponding to case IIa, III or Vllb
belong to \mathfrak{M} and the circles corresponding to case I belong to L+\mathfrak{M} and
,C -\mathfrak{M} , respectively.

9. Hulahoop surfaces: A construction of cyclides of type (A) and
(B1)

A hulahoop surface is defined in [ON1] to be a smooth surface obtained
by revolving a circle around a suitable axis. Let \gamma(a, b, r) , r>0 , be a circle
on the x_{1}x_{2}-plane defined by (x_{1}-a)^{2}+(x_{2}-b)^{2}=r^{2} and let \gamma(a, b, r, \alpha)

be the circle obtained by tilting \gamma(a, b, r) around the diameter parallel to
the x_{1} -axis by the angle \alpha , - \frac{\pi}{2}<\alpha\leq\frac{\pi}{2} . Let H(a, b, r, \alpha) be the surface
obtained by rotating \gamma(a, b, r, \alpha) around the x_{3}-axis. Then H(a, b, r, \alpha) is
given by

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}- \frac{4b\cos\alpha}{\sin\alpha}(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})x_{3}

-2 (a^{2}+b^{2}+r^{2})(x_{1}^{2}+x_{2}^{2})-2(a^{2}+b^{2}+r^{2}- \frac{2a^{2}+2b^{2}\cos^{2}\alpha}{\sin^{2}\alpha})x_{3}^{2}

+ \frac{4b\cos\alpha}{\sin\alpha}(a^{2}+b^{2}+r^{2})x_{3}+(a^{2}+b^{2}+r^{2})^{2}-4a^{2}r^{2}=0 .

(9.1)

It is easily seen that H(a, b, r, \alpha) is a smooth surface if and only if a=b=0
and \alpha=\frac{\pi}{2} or a\neq 0 and (a^{2}-r^{2}) cos2 \alpha+b^{2}\neq 0 . We see that H(0,0, r, \frac{\pi}{2})

is a sphere and otherwise H(a, b, r, \alpha) is topologically a torus. Note that
H(a, b, r, \alpha) is a cyclide corresponding to a complete intersection in P_{4}(R)

given by
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\{

\sum_{i,j=1}^{\infty}a_{ij}v_{i}v_{j}=0

v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0 ,

(9.2)

where

\{

a_{11}=a_{22}=-2(a^{2}+b^{2}+r^{2})

a_{33}=-2(a^{2}+b^{2}+r^{2}- \frac{2a^{2}+2b^{2}\cos^{2}\alpha}{\sin^{2}\alpha})

a_{44}=a_{\infty\infty}=(a^{2}+b^{2}+r^{2})^{2}-4a^{2}r^{2}+1

a_{34}=a_{43}=- \frac{2b\cos\alpha}{\sin\alpha}(a^{2}+b^{2}+r^{2}+1)

a_{3\infty}=a_{\infty 3}= \frac{2b\cos\alpha}{\sin\alpha}(a^{2}+b^{2}+r^{2}-1)

a_{4\infty}=a_{\infty 4}=-(a^{2}+b^{2}+r^{2})^{2}+4a^{2}r^{2}+1

0 otherwise.

(9.3)

Proposition 9.1 A hulahoop surface is conformally equivalent to a cy-
clide of type (A) or of type (B_{1}) .

Proof Put A=(a_{ij}) , where a_{ij} ’s are given by (9.3), and put

J=(\begin{array}{lllll}1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 -1\end{array})

Consider the equation in \lambda:\det(A-\lambda J)=0 or equivalently \det(JA-\lambda I)=

0 , where I denotes the identity matrix. This is equivalent to \lambda=-2(a^{2}+

b^{2}+r^{2}) and

\lambda^{3}+2(a^{2}+b^{2}+r^{2}-\frac{2a^{2}+2b^{2}\cos^{2}\alpha}{\sin^{2}\alpha})\lambda^{2}

-4 \{(a^{2}+b^{2}+r^{2})^{2}+\frac{4b^{2}\cos^{2}\alpha}{\sin^{2}\alpha}(a^{2}+b^{2}+r^{2})-4a^{2}r^{2}\}\lambda
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-8 \{(a^{2}+b^{2}+r^{2})^{3}-\frac{2a^{2}-2b^{2}\cos^{2}\alpha}{\sin^{2}\alpha}(a^{2}+b^{2}+r^{2})^{2}

-4a^{2}r^{2}(a^{2}+b^{2}+r^{2})+ \frac{8a^{4}r^{2}}{\sin^{2}\alpha}\}=0 . (9.4)

We see that (9.4) has three real solutions, say, \lambda_{3} , \lambda_{4} , \lambda_{\infty} , which are different
from -2(a^{2}+b^{2}+r^{2}) . We first consider the case where \lambda_{3} , \lambda_{4} and \lambda_{\infty} are
distinct. Then, we can find vectors e3, e_{4} and e_{\infty} which satisfy Ae_{i}=\lambda_{i}Je_{i}

(i=3,4, \infty),{}^{t}e_{3}Je_{3}=1,{}^{t}e_{4}Je_{4}=1,{}^{t}e_{\infty}Je_{\infty}=-1,{}^{t}e_{i}Je_{j}=0(i\neq j) . It
is easy to see that the quadratic equation (9.2)_{1} is transformed to

-2 (a^{2}+b^{2}+r^{2})(v_{1}^{2}+v_{2}^{2})+\lambda_{3}v_{3}^{2}+\lambda_{4}v_{4}^{2}-\lambda_{\infty}v_{\infty}^{2}=0 (9.5)

by a M\"obius transformation given by ( e_{1} , e_{2} , e3, e_{4} , e_{\infty} ), where {}^{t}e_{1} =

(1,0,0,0,0) and {}^{t}e_{2}=(0,1,0,0,0) . Note that (9.5), together with v_{1}^{2}+

v_{2}^{2}+v_{3}^{2}+v_{4}^{2}-v_{\infty}^{2}=0 , corresponds to a cyclide of the form (x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-

2a_{1}x_{1}^{2}-2a_{1}x_{2}^{2}-2a_{3}x_{3}^{2}+1=0 , which is of type (B_{1}) .
We next consider the case where (9.4) has multiple solutions. Since

(a^{2}-r^{2}) cos2 \alpha+b^{2}\neq 0 , (9.4) has multiple solutions only when b=0 and
sin \alpha=1 or b=0 and sin \alpha=\frac{a}{r} . In this case, it is clear that the surface is
nothing but an ordinary torus. \square

10. A construction of cyclides of type (B2)

Let \gamma be a curve given as an intersection of a sphere x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=r^{2}

and an elliptic cylinder \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1(r>a>b) . Then \gamma is represented as

\{\begin{array}{l}x_{l}=acos\theta x_{2}=bsin\theta x_{3}=\sqrt{r^{2}-a^{2}cos^{2}\theta-b^{2}sin^{2}\theta}.\end{array}

Consider a family of circles c(\theta) with the following properties:
(a) c(\theta) is vertical
(b) the center of c(\theta) is on the x_{1}x_{2}-plane
(c) c(\theta) is tangent to O\gamma(\theta) at \gamma(\theta) , where O denotes the origin.

Then c(\theta) is a circle with center at ([mathring]_{\frac{ar^{2}cs\theta}{a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta}} , \frac{br^{2}\sin\theta}{a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta} , 0) and

of radius r\sqrt{[mathring]_{\frac{r^{2}-a^{2}cs^{2}\theta-b^{2}\sin^{2}\theta}{a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta}}} . Therefore the surface M(a, b, r) generated
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by the family of circles is represented as

\{x_{3}=x_{2}=x_{1}=\frac{ar\cos\theta(r+\sqrt{r^{2}-a^{2}\cos^{2}\theta-b^{2}\sin^{2}\theta}\cos\varphi)}{\frac{br\sin\theta(r+\sqrt{r^{2}-a^{2}\cos^{2}\theta-b^{2}\sin^{2}\theta}a^{2}\cos^{2}\theta b^{2}\sin^{2}\theta\cos\varphi)}{\frac\sin\varphi r\sqrt{r^{2}-a^{2}\cos^{2}\theta-b^{2}\sin^{2}\theta}\sqrt{a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta}a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta}+},

.

By eliminating \theta and \varphi from these equations, we obtain

(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}-2 \frac{r^{2}(2r^{2}-a^{2})}{a^{2}}x_{1}^{2}

-2 \frac{r^{2}(2r^{2}-b^{2})}{b^{2}}x_{2}^{2}+2r^{2}x_{3}^{2}+r^{4}=0

which is a cyclide of type (B_{2}) .
Note that the above construction is different from an enveloping by a

family of spheres given as Case III in \S 8.
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