Korovkin type approximation theorems on the disk algebra

Go Hirasawa, Keiji Izuchi and Kazuhiro Kasuga

(Received December 25, 1998)

Abstract

We investigate $B K W$-operators on the disk algebra for the test functions $\left\{1, z, z^{2}\right\}$ having forms as $T=\left(C_{\varphi}+C_{\psi}\right) / 2,|\varphi|=|\psi|=1$ on the unit circle. Our studies have some relation to extremal problems on Hardy spaces.

Key words: Korovkin type approximation theorem, disk algebra.

1. Introduction

In 1953, Korovkin [9, 10] proved a well known theorem as follows; if $\left\{T_{n}\right\}_{n}$ is a sequence of positive operators on $C([0,1])$, the Banach space of real valued continuous functions on $[0,1]$, such that $\left\|T_{n} x^{j}-x^{j}\right\|_{\infty} \rightarrow 0$ for $j=0,1,2$ as $n \rightarrow \infty$, then $\left\|T_{n} f-f\right\|_{\infty} \rightarrow 0$ for every $f \in C([0,1])$ as $n \rightarrow \infty$. Since then, there are many researches on this field from various points of view, see the monograph by Altomare and Campiti [2]. In [16], Wulbert showed that in Korovkin's theorem, the condition of positivity of $\left\{T_{n}\right\}_{n}$ is replaced by the condition that $\left\|T_{n}\right\| \leq 1$ for every n, see also [1].

Let X be a separable complex Banach space and S be a subset of X. In [14], Takahasi introduced a concept of $B K W$-operators to generalize Korovkin's approximation theorem. A bounded linear operator T on X is called a $B K W$-operator for the test functions S if $\left\{T_{n}\right\}_{n}$ is a sequence of bounded linear operators on X satisfying
i) $\left\|T_{n}\right\| \leq\|T\|$ for every n and
ii) $\left\|T_{n} h-T h\right\| \rightarrow 0$ as $n \rightarrow \infty$ for each $h \in S$, then it holds $\left\|T_{n} f-T f\right\| \rightarrow 0$ for every $f \in X$ as $n \rightarrow \infty$. And in [15], Takahasi gave a sufficient conditions on an operator on X to be a $B K W$ operator. To state this, let \tilde{S} be the closed linear span of S in X. We denote by $U_{S}=U_{S}(X)$ the set of $\varphi \in X^{*}$, the dual space of X, which satisfies that $\|\varphi\|=\left\|\left.\varphi\right|_{\tilde{S}}\right\|=1$ and $\left.\varphi\right|_{\tilde{S}}$ has a unique Hahn-Banach extension to X. The
set U_{S} is called the uniqueness set for the test functions S. Takahasi proved that a bounded linear operator T on X with $\|T\|=1$ is a $B K W$-operator if there exists a weak*-compact subset Y of the closed unit ball of X^{*} such that $\|f\|=\sup \{|\varphi(f)| ; \varphi \in Y\}$ for every $f \in X$ and $T^{*} \varphi \in U_{S}$ for every $\varphi \in Y$.

Let Ω be a metrizable compact Hausdorff space and $C(\Omega)$ be the Banach space of complex valued continuous functions on Ω with the supremum norm. In [15], Takahasi showed that if $1 \in S \subset C(\Omega)$ and T is a bounded linear operator on $C(\Omega)$ with $\|T\|=1$, then T is a $B K W$-operator for S if and only if $T^{*} \delta_{\zeta} \in U_{S}(C(\Omega))$ for every $\zeta \in \Omega$, where δ_{ζ} is a point evaluation at ζ. A closed subalgebra A of $C(\Omega)$ is called a function algebra if A contains constant functions and separates the points in Ω, see [4]. We denote by ∂A the Shilov boundary of A, the smallest closed subset of Ω on which every function in A attains the maximum modulus. Let $S \subset A$. By the Hahn-Banach extension theorem and the Riesz representation theorem, we may consider that $U_{S}(A)$ is a set of Borel measures on ∂A with total variation 1. In [6], the second author, Takagi and Watanabe showed the following theorem.

Theorem A Suppose that $1 \in S \subset A$ and T is a bounded linear operator on A with $\|T\|=1$. Then T is a $B K W$-operator for S if and only if $T^{*} \delta_{\zeta} \in U_{S}(A)$ for every $\zeta \in \partial A$.

A typical example of function algebras is the disk algebra $A(\Gamma)$. Let Γ be the unit circle in the complex plane, and let $A(\Gamma)$ be the space of complex valued continuous functions on Γ which can be extended analytically in the open unit disk $D=\{|z|<1\}$. Then $A(\Gamma)$ is a closed subalgebra of $C(\Gamma)$. It is known that $\partial A(\Gamma)=\Gamma$. For $\left\{z_{j}\right\}_{j=1}^{n} \subset D$, let

$$
b(z)=\lambda \prod_{j=1}^{n} \frac{-\overline{z_{j}}}{\left|z_{j}\right|} \frac{z-z_{j}}{1-\overline{z_{j}} z}, \quad z \in \bar{D},
$$

where λ is a constant with $|\lambda|=1$. This type of functions $b(z)$ are called finite Blaschke products, and satisfy $|b|=1$ on Γ. As a special case, a constant function with absolute modulus 1 is also called a finite Blaschke product. If $f \in A(\Gamma)$ and $|f|=1$ on Γ, then f is a finite Blaschke product (see [5]). For a function φ (may not continuous) on Γ with $|\varphi|=1$ on Γ, we put $C_{\varphi} f=f \circ \varphi$ for $f \in A(\Gamma)$. Then C_{φ} is a bounded linear operator
on $A(\Gamma)$ if and only if $\varphi \in A(\Gamma)$. In [6], it is proved that if T is a bounded linear operator on $A(\Gamma)$ with $\|T\|=1$, then T is a $B K W$-operator for $\{1, z\}$ if and only if $T=\psi C_{\varphi}$, where ψ and φ are finite Blaschke products. In [14], Takahasi proved that $a \delta_{\zeta_{1}}+(1-a) \delta_{\zeta_{2}} \in U_{\left\{1, z, z^{2}\right\}}(A(\Gamma))$ for $\zeta_{1}, \zeta_{2} \in \Gamma$, $0 \leq a \leq 1$, and

$$
\begin{aligned}
& T=a C_{\varphi_{1}}+(1-a) C_{\varphi_{2}}, \quad 0 \leq a \leq 1 \\
& \quad \varphi_{1} \text { and } \varphi_{2} \text { are finite Blaschke products }
\end{aligned}
$$

is a $B K W$-operator on $A(\Gamma)$ for $\left\{1, z, z^{2}\right\}$. In [6], it is pointed out that the converse of the above assertion is not true. Let $S_{n}=\left\{1, z, z^{2}, \ldots, z^{n}\right\}$. It seems difficult to describe all $B K W$-operators on $A(\Gamma)$ for the test functions S_{n}. See [7] for the polydisk and ball algebras.

In this paper, we study $B K W$-operators on $A(\Gamma)$. In Section 2, we determine measures μ in $U_{S_{n}}(A(\Gamma))$ such that $\mu \geq 0$. In Section 3, we study $B K W$-operators T on $A(\Gamma)$ for $\left\{1, z, z^{2}\right\}$ having a special form as follows;

$$
T=\left(C_{\varphi}+C_{\psi}\right) / 2, \quad|\varphi|=|\psi|=1 \quad \text { on } \Gamma .
$$

We give a characterization of a $B K W$-operator satisfying the above condition.

2. Positive measures in $U_{S_{n}}(A(\Gamma))$

We denote by $M(\Gamma)$ the set of bounded complex Borel measures on Γ and by $M_{+, 1}(\Gamma)$ the set of $\mu \in M(\Gamma)$ with $\mu \geq 0$ and $\|\mu\|=1$. Let T be a bounded linear operator on $A(\Gamma)$ with $\|T\|=1$ and $T 1=1$. Then for each $\zeta \in \Gamma$, we may consider that $T^{*} \delta_{\zeta}$ is a bounded Borel measure on Γ and $T^{*} \delta_{\zeta} \in M_{+, 1}(\Gamma)$. In this section, we study when this operator T is a $B K W$-operator for the test functions $S_{n}=\left\{1, z, \ldots, z^{n}\right\}$, see Corollary 2.1. By Theorem A, we need to describe the set $U_{S_{n}} \cap M_{+, 1}(\Gamma)$. In [14], Takahasi proved that

$$
\left\{\sum_{j=1}^{n} a_{j} \delta_{\zeta_{j}} ; \zeta_{j} \in \Gamma, a_{j} \geq 0, \sum_{j=1}^{n} a_{j}=1\right\} \subset U_{S_{n}} \cap M_{+, 1}(\Gamma) .
$$

We shall prove that the both sets in the above coincide.
Theorem 2.1 $U_{S_{n}}(A(\Gamma)) \cap M_{+, 1}(\Gamma)=\left\{\sum_{j=1}^{n} a_{j} \delta_{\zeta_{j}} ; \zeta_{j} \in \Gamma, a_{j} \geq 0\right.$,
$\left.\sum_{j=1}^{n} a_{j}=1\right\}$.
Proof. Let

$$
\begin{gather*}
\mu=\sum_{j=1}^{n} a_{j} \delta_{\zeta_{j}}, \quad \zeta_{j} \in \Gamma, \quad a_{j} \geq 0, \quad \sum_{j=1}^{n} a_{j}=1, \\
\text { and } \quad \zeta_{i} \neq \zeta_{j} \quad \text { if } i \neq j . \tag{2.1}
\end{gather*}
$$

In [14], Takahasi proved that $\mu \in U_{S_{n}}$. Here we give a simple proof. Let $\nu \in M(\Gamma)$ with $\|\nu\|=1$ such that

$$
\begin{equation*}
\int_{\Gamma} z^{k} d \nu=\int_{\Gamma} z^{k} d \mu \quad \text { for } \quad k=0,1,2, \ldots, n . \tag{2.2}
\end{equation*}
$$

Then $\nu \in M_{+, 1}(\Gamma)$. To prove $\mu \in U_{S_{n}}$, it is sufficient to show $\nu=\mu$. Put

$$
\begin{equation*}
p(z)=\prod_{j=1}^{n}\left|z-\zeta_{j}\right|^{2}, \quad z \in \Gamma . \tag{2.3}
\end{equation*}
$$

Then we can write $p(z)$ as

$$
\begin{equation*}
p(z)=\left(\sum_{j=0}^{n} \alpha_{j} z^{j}\right)+\overline{\left(\sum_{j=0}^{n} \alpha_{j} z^{j}\right)}, \quad z \in \Gamma . \tag{2.4}
\end{equation*}
$$

Since μ and ν are real measures, by (2.2) we have

$$
\int_{\Gamma} \bar{z}^{j} d \nu=\int_{\Gamma} \bar{z}^{j} d \mu \quad \text { for } \quad j=0,1, \ldots, n \text {. }
$$

Hence by (2.4), $\int_{\Gamma} p(z) d \nu=\int_{\Gamma} p(z) d \mu=0$. Since ν is a probability measure, by (2.3) ν has a form as

$$
\nu=\sum_{j=1}^{n} b_{j} \delta_{\zeta_{j}}, \quad b_{j} \geq 0 \quad \text { and } \quad \sum_{j=1}^{n} b_{j}=1 .
$$

By (2.1) and (2.2),

$$
\sum_{j=1}^{n}\left(a_{j}-b_{j}\right) \zeta_{j}^{k}=0 \quad \text { for } k=1,2, \ldots, n
$$

Since points $\left\{\zeta_{j}\right\}_{j=1}^{n}$ are distinct, we have

$$
\left|\begin{array}{cccc}
\zeta_{1} & \zeta_{2} & \ldots & \zeta_{n} \\
\zeta_{1}^{2} & \zeta_{2}^{2} & \ldots & \zeta_{n}^{2} \\
\ldots & \ldots & \ldots & \cdots \\
\zeta_{1}^{n} & \zeta_{2}^{n} & \ldots & \zeta_{n}^{n}
\end{array}\right| \neq 0
$$

Therefore we have $a_{j}=b_{j}$ for $j=1,2, \ldots, n$. Thus we obtain $\nu=\mu$.
Next, we prove the converse inclusion. We use the same idea of the proof of Theorem 1 in [8]. Let $\mu \in U_{S_{n}} \cap M_{+, 1}(\Gamma)$. We shall prove that μ has a form in (2.1). Put

$$
\rho(\sigma)=\left(\int_{\Gamma} z d \sigma, \int_{\Gamma} z^{2} d \sigma, \ldots, \int_{\Gamma} z^{n} d \sigma\right) \text { for } \sigma \in M_{+, 1}(\Gamma)
$$

and

$$
\Omega=\left\{\rho(\sigma) ; \sigma \in M_{+, 1}(\Gamma)\right\} .
$$

Then ρ is a continuous map from $M_{+, 1}(\Gamma)$ with the weak*-topology into $\mathbf{C}^{\mathbf{n}}$. Since $M_{+, 1}(\Gamma)$ is a weak*-compact convex set, Ω is a compact convex subset of $\mathbf{C}^{\mathbf{n}}$.

Claim 1. $\quad \operatorname{int} \Omega \neq \emptyset$, where int Ω denotes the interior of Ω.
To prove this, suppose not. Then there exist complex numbers $c_{j}, 1 \leq$ $j \leq n$, such that $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \neq(0,0, \ldots, 0)$ and

$$
\operatorname{Re} \sum_{j=1}^{n} c_{j} \int_{\Gamma} z^{j} d \sigma=0 \quad \text { for every } \sigma \in M_{+, 1}(\Gamma)
$$

This implies that

$$
\int_{\Gamma}\left(\operatorname{Re} \sum_{j=1}^{n} c_{j} z^{j}\right) d \lambda=0 \quad \text { for every } \lambda \in M(\Gamma)
$$

Since $\operatorname{Re} \sum_{j=1}^{n} c_{j} z^{j} \neq 0$ on Γ, this is absurd.
Claim 2. $\quad \rho(\mu)$ is a boundary point of Ω.
To prove this, suppose that $\rho(\mu) \in \operatorname{int} \Omega$. We shall prove that

$$
\begin{equation*}
\rho(\mu)=\rho(\nu) \text { for some } \nu \in M_{+, 1}(\Gamma) \text { with } \nu \neq \mu \text {. } \tag{2.5}
\end{equation*}
$$

We note that $M_{+, 1}(\Gamma)$ coincides with the weak*-closed convex hull of $\left\{\delta_{\zeta} ; \zeta \in\right.$ $\Gamma\}$. Since $\left\{\rho\left(\delta_{\zeta}\right) ; \zeta \in \Gamma\right\}$ is a compact subset of $\mathbf{C}^{\mathbf{n}}$, its convex hull coincides with its closed convex hull. Hence

$$
\Omega=\text { the convex hull of }\left\{\rho\left(\delta_{\zeta}\right) ; \zeta \in \Gamma\right\}
$$

so that

$$
\begin{equation*}
\rho(\mu)=\rho\left(\sum_{j=1}^{k} c_{j} \delta_{\zeta_{j}}\right) \text { for some } \zeta_{j} \in \Gamma, c_{j} \geq 0, \text { and } \sum_{j=1}^{k} c_{j}=1 \tag{2.6}
\end{equation*}
$$

Let $L_{+, 1}=\left\{\nu \in M_{+, 1}(\Gamma) ; d \nu \ll d \theta / 2 \pi\right\}$. Then $L_{+, 1}$ is also a weak*-dense convex subset of $M_{+, 1}(\Gamma)$, so that $\left\{\rho(\nu) ; \nu \in L_{+, 1}\right\}$ is a dense convex subset of Ω. Since $\Omega \subset \mathbf{C}^{\mathbf{n}}$, we have that

$$
\operatorname{int} \Omega \subset\left\{\rho(\nu) ; \nu \in L_{+, 1}\right\}
$$

Since $\rho(\mu) \in \operatorname{int} \Omega$, there exists $\nu \in L_{+, 1}$ such that $\rho(\mu)=\rho(\nu)$. Hence by (2.6),

$$
\rho(\mu)=\rho\left(\sum_{j=1}^{k} c_{j} \delta_{\zeta_{j}}\right)=\rho(\nu), \quad \sum_{j=1}^{k} c_{j} \delta_{\zeta_{j}} \neq \nu
$$

Thus we get (2.5).
Since μ and ν are distinct probability measures, we have $\int_{\Gamma} f d \mu \neq$ $\int_{\Gamma} f d \nu$ for some $f \in A(\Gamma)$. This means that $\mu \notin U_{S_{n}}$. This is a contradiction, so we get Claim 2.

Claim 3. $\quad \mu=\sum_{j=1}^{n} a_{j} \delta_{\zeta_{j}}$ for $\zeta_{j} \in \Gamma, a_{j} \geq 0$ and $\sum_{j=1}^{n} a_{j}=1$.
By Claims 1 and 2, there exist complex numbers $\left\{d_{j}\right\}_{j=0}^{n}$ such that

$$
\begin{align*}
& d_{j} \neq 0 \text { for some } j, 1 \leq j \leq n \tag{2.7}\\
& \operatorname{Re}\left(d_{0}+\sum_{j=1}^{n} d_{j} \int_{\Gamma} z^{j} d \mu\right)=0 \tag{2.8}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(d_{0}+\sum_{j=1}^{n} d_{j} \int_{\Gamma} z^{j} d \sigma\right) \geq 0 \quad \text { for every } \sigma \in M_{+, 1}(\Gamma) \tag{2.9}
\end{equation*}
$$

By (2.9),

$$
\int_{\Gamma} \operatorname{Re}\left(d_{0}+\sum_{j=1}^{n} d_{j} z^{j}\right) d \sigma \geq 0 \quad \text { for every } \quad \sigma \in M_{+, 1}(\Gamma)
$$

so that we have

$$
\begin{equation*}
\operatorname{Re}\left(d_{0}+\sum_{j=1}^{n} d_{j} z^{j}\right) \geq 0 \quad \text { on } \Gamma \tag{2.10}
\end{equation*}
$$

Moreover by (2.7),

$$
\begin{equation*}
\operatorname{Re}\left(d_{0}+\sum_{j=1}^{n} d_{j} z^{j}\right) \not \equiv 0 \quad \text { on } \Gamma . \tag{2.11}
\end{equation*}
$$

Putting $z=e^{i \theta}$, we can write as

$$
\operatorname{Re}\left(d_{0}+\sum_{j=1}^{n} d_{j} z^{j}\right)=\sum\left\{a_{k, l} \sin ^{k} \theta \cos ^{l} \theta ; 0 \leq k+l \leq n, k, l \geq 0\right\}
$$

for some real numbers $\left\{a_{k, l}\right\}_{k, l}$. Put

$$
F(\theta)=\sum\left\{a_{k, l} \sin ^{k} \theta \cos ^{l} \theta ; 0 \leq k+l \leq n, k, l \geq 0\right\}, \quad 0 \leq \theta<2 \pi
$$

Then by (2.10) and $(2.11), F(\theta) \geq 0$ and $F(\theta) \not \equiv 0,0 \leq \theta<2 \pi$. By (2.8), $\int_{0}^{2 \pi} F(\theta) d \mu\left(e^{i \theta}\right)=0$. Hence to prove Claim 3, we need to prove that the number of zeros of the function $F(\theta), 0 \leq \theta<2 \pi$, is less than or equal to n. Since $F(\theta)$ is a 2π-periodic function, to prove this it is sufficient to show that the number of distinct zeros of $F^{\prime}(\theta), 0 \leq \theta<2 \pi$, is less than or equal to $2 n+1$. Here we can write $F^{\prime}(\theta)$ as

$$
F^{\prime}(\theta)=\sum_{0<k+l \leq n} b_{k, l} \sin ^{k} \theta \cos ^{l} \theta
$$

Put $t=\tan \frac{\theta}{2}, \theta \neq \pi$. Then $\sin \theta=2 t /\left(1+t^{2}\right)$ and $\cos \theta=\left(1-t^{2}\right) /\left(1+t^{2}\right)$. Hence the equation $F^{\prime}(\theta)=0$ becomes

$$
\sum_{0<k+l \leq n} b_{k, l}\left(\frac{2 t}{1+t^{2}}\right)^{k}\left(\frac{1-t^{2}}{1+t^{2}}\right)^{l}=0
$$

This equation has a number of distinct zeros up to $2 n$. Since $\tan \frac{\theta}{2}$ is one to one on $[0, \pi] \cup(\pi, 2 \pi)$, the number of distinct zeros of $F^{\prime}(\theta), 0 \leq \theta<2 \pi$,
is less than or equal to $2 n+1$. This completes the proof.
As an application of Theorems A and 2.1, we have the following.
Corollary 2.1 Let T be a bounded operator on $A(\Gamma)$ such that $\|T\|=1$ and $T 1=1$. Then T is a BKW-operator for the test functions S_{n} if and only if T has a following form;

$$
(T f)(\zeta)=\sum_{j=1}^{n} a_{j}(\zeta)\left(C_{\varphi_{j}} f\right)(\zeta), \quad \text { for } \quad \zeta \in \Gamma \quad \text { and } \quad f \in A(\Gamma),
$$

where $\left|\varphi_{j}\right|=1$ on $\Gamma, a_{j}(\zeta) \geq 0$ for every j and $\sum_{j=1}^{n} a_{j}(\zeta)=1$ for $\zeta \in \Gamma$.
For given functions $\left\{\varphi_{j}(\zeta)\right\}$ and $\left\{a_{j}(\zeta)\right\}$ on Γ satisfying that $\left|\varphi_{j}\right|=1$ on $\Gamma, a_{j}(\zeta) \geq 0$, and $\sum_{j=1}^{n} a_{j}(\zeta)=1$ for $\zeta \in \Gamma$, we can defined T as $(T f)(\zeta)=$ $\sum_{j=1}^{n} a_{j}(\zeta)\left(C_{\varphi_{j}} f\right)(\zeta)$ for $\zeta \in \Gamma$ and $f \in A(\Gamma)$. Generally, $T f \notin A(\Gamma)$ for some $f \in A(\Gamma)$, so that T may not be a bounded linear operator on $A(\Gamma)$. If $T f \in A(\Gamma)$ for $f \in A(\Gamma)$, then T is a bounded linear operator on $A(\Gamma)$. Hence by Corollary 2.1, T becomes a $B K W$-operator on $A(\Gamma)$ for S_{n}. We have a question when $T f \in A(\Gamma)$ for $f \in A(\Gamma)$. It seems difficult to answer. In the next section, we study on this problem when $n=2$.

3. $B K W$-operators for $\left\{1, z, z^{2}\right\}$

Let T be a $B K W$-operator on $A(\Gamma)$ for the test functions $S_{2}=\left\{1, z, z^{2}\right\}$ such that $\|T\|=1$ and $T 1=1$. Then by Corollary 2.1, T has a form as

$$
\begin{align*}
& (T f)(\zeta)=a(\zeta)\left(C_{\varphi} f\right)(\zeta)+b(\zeta)\left(C_{\psi} f\right)(\zeta), \\
& \text { for } \zeta \in \Gamma \text { and } f \in A(\Gamma), \tag{3.1}
\end{align*}
$$

where

$$
\begin{gather*}
|\varphi(\zeta)|=|\psi(\zeta)|=1, \quad a(\zeta)+b(\zeta)=1, \quad a(\zeta), b(\zeta) \geq 0 \\
\text { for every } \zeta \in \Gamma . \tag{3.2}
\end{gather*}
$$

We note that a, b, φ, and ψ may not be continuous on Γ, see [6].
Suppose that a, b, φ, and ψ are functions on Γ satisfying (3.2), and define T by (3.1). As mentioned in the end of the last section, we have a question when $T f \in A(\Gamma)$ for every $f \in A(\Gamma)$.

We have another question. For a function $h \in A(\Gamma)$ with $\|h\|_{\infty} \leq 1$, when there exists a $B K W$-operator T on $A(\Gamma)$ for the test functions S_{2}
such that $\|T\|=1, T 1=1$, and $T z=h$.
In this section, we study $B K W$-operators T on $A(\Gamma)$ for $\left\{1, z, z^{2}\right\}$ having a following form;
(\#) $\quad T=\left(C_{\varphi}+C_{\psi}\right) / 2, \quad|\varphi|=1$ and $|\psi|=1$ on Γ.
In this case, $T 1=1$ and $\|T\|=1$.
The following lemma follows the definition of $B K W$-operators.
Lemma 3.1 Let $1 \in S \subset A(\Gamma)$. Let T be a $B K W$-operator on $A(\Gamma)$ for S with $\|T\|=1$. Let T_{1} be a bounded linear operator on $A(\Gamma)$ with $\left\|T_{1}\right\| \leq 1$. If $T h=T_{1} h$ for $h \in S$, then $T=T_{1}$.

For a function $h \in A(\Gamma), h \neq 0$, we can define $(h / \bar{h})(\zeta)=h(\zeta) / \overline{h(\zeta)}$ for almost every $\zeta \in \Gamma$. When h / \bar{h} can be extended continuously on Γ, we consider that h / \bar{h} is an extended function.

Theorem 3.1 Let T be a bounded linear operator on $A(\Gamma)$ with $\|T\|=1$ and $T 1=1$. Put $T z=h$ and $T z^{2}=g$. Then we have the following.
i) If $h \neq 0$, then T is a BKW-operator for $\left\{1, z, z^{2}\right\}$ satisfying (\#) if and only if h / \bar{h} is a finite Blaschke product and $h / \bar{h}=2 h^{2}-g$. In this case, we have

$$
\varphi=h+\sqrt{g-h^{2}} \quad \text { and } \quad \psi=h-\sqrt{g-h^{2}},
$$

where $\sqrt{g-h^{2}}$ is one of root functions of $g-h^{2}$.
ii) If $h=0$, then T is a BKW-operator for $\left\{1, z, z^{2}\right\}$ satisfying (\#) if and only if g is a finite Blaschke product. In this case, $\varphi=\sqrt{g}$ and $\psi=-\sqrt{g}$.
Proof. First, we note that $h, g \in A,\|h\|_{\infty} \leq 1$, and $\|g\|_{\infty} \leq 1$. Suppose that T has a form (\#). Then $\varphi+\psi=2 h$ and $\varphi^{2}+\psi^{2}=2 g$. Since $(\varphi+\psi)^{2}=\varphi^{2}+\psi^{2}+2 \varphi \psi$,

$$
\begin{equation*}
2 h^{2}-g=\varphi \psi \tag{3.3}
\end{equation*}
$$

Since $h, g \in A, \varphi \psi \in A$. Since $|\varphi \psi|=1$ on $\Gamma, \varphi \psi$ is a finite Blaschke product. When $h \neq 0, h / \bar{h}=(\varphi+\psi) /(\bar{\varphi}+\bar{\psi})=\varphi \psi=2 h^{2}-g$ by (3.3). When $h=0, g=-\varphi \psi$ and g is a finite Blaschke product.

Next, we prove the converse. Suppose that $h \neq 0$. Put

$$
\begin{equation*}
b=h / \bar{h}=2 h^{2}-g . \tag{3.4}
\end{equation*}
$$

Then by our assumption, b is a finite Blaschke product. Since

$$
\begin{equation*}
b=h^{2} /|h|^{2}, \tag{3.5}
\end{equation*}
$$

by (3.4) we have

$$
\begin{equation*}
g-h^{2}=h^{2}-b=(-b)\left(1-|h|^{2}\right) \tag{3.6}
\end{equation*}
$$

Take one root function $\sqrt{g-h^{2}}$, and we put

$$
\begin{equation*}
\varphi=h+\sqrt{g-h^{2}} \quad \text { and } \quad \psi=h-\sqrt{g-h^{2}} \tag{3.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
(\varphi+\psi) / 2=h \in A(\Gamma) \quad \text { and } \quad \varphi \psi=2 h^{2}-g \in A(\Gamma) \tag{3.8}
\end{equation*}
$$

By (3.6),

$$
\begin{equation*}
|h|^{2}+\left|\sqrt{g-h^{2}}\right|^{2}=1 \tag{3.9}
\end{equation*}
$$

Let $\zeta \in \Gamma$. If $h(\zeta)=0$, then by $(3.9)\left|\left(\sqrt{g-h^{2}}\right)(\zeta)\right|=1$, so that $|\varphi(\zeta)|=$ $|\psi(\zeta)|=1$. If $h(\zeta) \neq 0$, then by (3.5) and (3.6)

$$
\begin{aligned}
& \left(\sqrt{g-h^{2}}\right)(\zeta)=i h(\zeta) \sqrt{1-|h(\zeta)|^{2}} /|h(\zeta)| \\
& \quad \text { or } \quad\left(\sqrt{g-h^{2}}\right)(\zeta)=-i h(\zeta) \sqrt{1-|h(\zeta)|^{2}} /|h(\zeta)|
\end{aligned}
$$

Therefore by (3.7), we have
and similarly $|\psi(\zeta)|=1$ for every $\zeta \in \Gamma$. Hence

$$
\begin{equation*}
|\varphi|=|\psi|=1 \quad \text { on } \Gamma . \tag{3.10}
\end{equation*}
$$

Put

$$
\begin{equation*}
T_{0} f=\frac{1}{2}\left(C_{\varphi}+C_{\psi}\right) f \quad \text { for } \quad f \in A(\Gamma) \tag{3.11}
\end{equation*}
$$

Then by (3.7),

$$
\begin{equation*}
T_{0} 1=1, \quad T_{0} z=h, \quad \text { and } \quad T_{0} z^{2}=g \tag{3.12}
\end{equation*}
$$

Since

$$
\varphi^{n}+\psi^{n}=\left(\varphi^{n-1}+\psi^{n-1}\right)(\varphi+\psi)-\varphi \psi\left(\varphi^{n-2}+\psi^{n-2}\right),
$$

by (3.8) and by induction we have

$$
\begin{equation*}
T_{0} z^{n} \in A(\Gamma) \text { for every non-negative integer } n . \tag{3.13}
\end{equation*}
$$

Let $f \in A$. Then there exists a sequence of analytic polynomials $\left\{p_{k}\right\}_{k}$ such that $\left\|f-p_{k}\right\|_{\infty} \rightarrow 0$ as $k \rightarrow \infty$. Then by (3.10) and (3.11), $\left\|T_{0} f-T_{0} p_{k}\right\|_{\infty} \rightarrow$ 0 as $k \rightarrow \infty$. By (3.13), $T_{0} p_{k} \in A(\Gamma)$, so that we have $T_{0} f \in A(\Gamma)$ for every $f \in A(\Gamma)$. As a consequence, T_{0} is a bounded linear operator on $A(\Gamma)$ with $\left\|T_{0}\right\|=1$ and $T_{0} 1=1$. By Corollary 2.1, T_{0} is a $B K W$-operator on $A(\Gamma)$ for $\left\{1, z, z^{2}\right\}$. By (3.12), $T_{0} z^{j}=T z^{j}$ for $j=0,1,2$. Hence by Lemma 3.1, we have $T=T_{0}$.

Suppose that $h=0$ and g is a finite Blaschke product. Put

$$
T_{1} f=\frac{1}{2}\left(C_{\sqrt{g}}+C_{-\sqrt{g}}\right) f \text { for } f \in A .
$$

Then $T_{1} 1=1, T_{1} z^{2 n-1}=0$, and $T_{1} z^{2 n}=g^{n}$ for $n \geq 1$. In the same way as above, we can prove that $T_{1}=T$ and T is a $B K W$-operator for $\left\{1, z, z^{2}\right\}$.

Remark 3.1. Let $h \in A$ such that h / \bar{h} is a finite Blaschke product. Then h is a rational function and all such h are described in [3]. For finite Blaschke products b_{1} and b_{2}, put $h=b_{1}+b_{2}$. Then $h / \bar{h}=b_{1} b_{2}$ is a finite Blaschke product. Sum of inner functions are studied in [11, 12, 13]. These functions h are deeply concerned with extremal problems.

The converse of the proof of Theorem 3.1 proves the following actually.
Corollary 3.1 Suppose that $h, g \in A(\Gamma)$ satisfy the following conditions;
i) $\|h\|_{\infty} \leq 1$ and $\|g\|_{\infty} \leq 1$,
ii) h / \bar{h} is a finite Blaschke product (or $h=0$),
iii) $h / \bar{h}=2 h^{2}-g($ when $h=0, g$ is a finite Blaschke product).

Then there exists a unique bounded linear operator T on $A(\Gamma)$ such that $\|T\|=1, T 1=1, T z=h$, and $T z^{2}=g$. Moreover T is a $B K W$-operator on $A(\Gamma)$ for $\left\{1, z, z^{2}\right\}$ having a form (\#).

Corollary 3.2 Let $h \in A$ such that $0<\|h\|_{\infty} \leq 1$ and h / \bar{h} is a finite Blaschke product. Then there exists a BKW-operator T on $A(\Gamma)$ for
$\left\{1, z, z^{2}\right\}$ such that $\|T\|=1, T 1=1$ and $T z=h$. In such $B K W$-operators T, there is a unique operator satisfying (\#).

Proof. Put $g=2 h^{2}-(h / \bar{h})$. Then $g \in A(\Gamma)$. Since $2 h^{2}-(h / \bar{h})=$ $h^{2}\left(2|h|^{2}-1\right) /|h|^{2},\|g\|_{\infty} \leq 1$. By Corollary 3.1, we have the first part of our assertion. Let T_{1} and T_{2} be $B K W$-operators for $\left\{1, z, z^{2}\right\}$ satisfying (\#) such that $\left\|T_{i}\right\|=1, T_{i} 1=1$, and $T_{i} z=h$ for $j=1,2$. Then by Theorem 3.1, $T_{1} z^{2}=2 h^{2}-h / \bar{h}=T_{2} z^{2}$. Hence by Lemma 3.1, $T_{1}=T_{2}$.

In Corollary 3.2, a $B K W$-operator T with $\|T\|=1, T 1=1$ and $T z=h$ is not unique generally.

Example 3.1. Let $h=z / 2$. Then $h / \bar{h}=z^{2}$. Then by Takahasi's theorem [14],

$$
T=\left(C_{\varphi}+C_{\psi}\right) / 2, \quad \varphi=e^{\frac{\pi}{3} i} z, \quad \psi=e^{-\frac{\pi}{3} i} z
$$

is a $B K W$-operator for $\left\{1, z, z^{2}\right\}$ satisfying $T 1=1, T z=z / 2$, and $T z^{2}=$ $-z^{2} / 2$. Also

$$
T_{0}=\left(C_{-z}+3 C_{z}\right) / 4
$$

is a $B K W$-operator for $\left\{1, z, z^{2}\right\}$ satisfying $T_{0} 1=1, T_{0} z=z / 2$, and $T_{0} z^{2}=$ z^{2}.

By Theorem 3.1 ii), we have the following.
Corollary 3.3 There are uncountable many $B K W$-operators T on $A(\Gamma)$ for $\left\{1, z, z^{2}\right\}$ satisfying $\|T\|=1, T 1=1$, and $T z=0$.

Next, we study that for $B K W$-operators T satisfying (\#), when both φ and ψ are continuous or analytic.

Corollary 3.4 Let $h \in A(\Gamma)$ such that $0<\|h\| \leq 1$ and h / \bar{h} is a finite Blaschke product. Let T be a $B K W$-operators on $A(\Gamma)$ for $\left\{1, z, z^{2}\right\}$ such that $T z=h$ and $T=\left(C_{\varphi}+C_{\psi}\right) / 2,|\varphi|=|\psi|=1$ on Γ. Then we have the following.
i) If number of zeros of h / \bar{h} in D, counting multiplicities, is even or $h^{2}-h / \bar{h}$ vanishes at some points in Γ, then φ and ψ are continuous on Γ.
ii) If $h^{2}-h / \bar{h}=f^{2}$ for some $f \in A(\Gamma)$, then φ and ψ are finite Blaschke products.

Proof. Put $T z^{2}=g$. Then by Theorem 3.1, we have

$$
\begin{equation*}
2 h^{2}-g=h / \bar{h} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi=h+\sqrt{g-h^{2}} \quad \text { and } \quad \psi=h-\sqrt{g-h^{2}} . \tag{3.15}
\end{equation*}
$$

By (3.14),

$$
\begin{equation*}
g-h^{2}=h^{2}-h / \bar{h}=(-h / \bar{h})\left(1-|h|^{2}\right) . \tag{3.16}
\end{equation*}
$$

We note that the usual root function $\sqrt{1-|h|^{2}}$ is continuous on Γ.
i) Suppose that number of zeros of h / \bar{h} in D is even. Then we can take such as $\sqrt{-h / \bar{h}}$ is continuous on Γ. Hence by (3.15) and (3.16), φ and ψ are continuous.

Suppose that $h^{2}-h / \bar{h}$ vanishes at some points in Γ. Then $1-|h|^{2}$ vanishes at these points. Hence we can take $\sqrt{g-h^{2}}$ such as

$$
\sqrt{g-h^{2}}=\sqrt{-h\left(1-|h|^{2}\right) / \bar{h}} \text { is continuous on } \Gamma \text {. }
$$

ii) Suppose that $h^{2}-h / \bar{h}=f^{2}$ for some $f \in A(\Gamma)$. Then by (3.16), we can take such as $\sqrt{g-h^{2}}=f$. Hence $\varphi, \psi \in A(\Gamma)$, so that both of these functions are finite Blaschke products.

Remark 3.2. Let $0<r<1$. If T_{0} is a bounded linear operator on $A(\Gamma)$ such that
$\left(\#_{r}\right) \quad T_{0}=r C_{\varphi}+(1-r) C_{\psi}, \quad|\varphi|=|\psi|=1$ on Γ,
then by Takahasi's theorem [14], T_{0} is a $B K W$-operator for $\left\{1, z, z^{2}\right\}$ and $T 1=1$. For a bounded linear operator T on $A(\Gamma)$ such that $\|T\|=1$ and $T 1=1$, put $T z=h$ and $T z^{2}=g$. We do not known conditions on h and g for which T has a form $\left(\#_{r}\right)$.

Remark 3.3. Let T_{1} be a bounded linear operator on $A(\Gamma)$ such that (\#-) $\quad T_{1}=\left(C_{\varphi}-C_{\psi}\right) / 2, \quad|\varphi|=|\psi|=1$ on Γ.
Then T_{1} may not be a $B K W$-operator for $\left\{1, z, z^{2}\right\}$. For, let $T_{2}=\left(C_{z}-\right.$ $\left.C_{-z}\right) / 2$ and

$$
P f=\left(\int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{-i \theta} d \theta / 2 \pi\right) z \quad \text { for } \quad f \in A(\Gamma) .
$$

Then T_{2} and P are bounded linear operators on $A(\Gamma)$ satisfying that $T_{2} \neq$ $P,\left\|T_{2}\right\|=\|P\|=1, T_{2} 1=P 1=0, T_{2} z=P z=z$, and $T_{2} z^{2}=P z^{2}=0$. Then by Lemma 3.1, T_{2} is not a $B K W$-operator for $\left\{1, z, z^{2}\right\}$.

References

[1] Altomare F. and Boccaccio C., On Korovkin-type theorems in spaces continuous complex-valued functions. Bollettino U. M. I. (6) 1-B (1982), 75-86.
[2] Altomare F. and Campiti M., Korovkin-Type Approximation Theory and its Applications. de Gruyter, Berlin, New York, 1994.
[3] Duren P., Theory of H^{p} Spaces. Academic Press, New York, 1970.
[4] Gamelin T.W., Uniform Algebras. Prentice-Hall, Englewood Cliffa, New Jersey, 1969.
[5] Hoffman K., Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
[6] Izuchi K., Takagi H. and Watanabe S., Sequential BKW-operators and function algebras. J. Approx. Theory 85 (1996), 185-200.
[7] Izuchi K., Matsugu Y. and Takagi H., BKW-operators on the polydisc and ball algebras. Far East J. Math. Sci. 3 (1995), 9-22.
[8] Izuchi K. and Takahasi S.-E., BKW-operators on the interval [0, 1]. Rend. Circ. Mat. Palermo (2) 46 (1997), 477-489.
[9] Korovkin P.P., On convergence of linear operators in the space of continuous functions. Dokl. Akad. Nauk. SSSR(N.S) 90 (1953), 961-964. [In Russian]
[10] Korovkin P.P., Linear Operators and Approxiomation Theory. Hindustan Pub., Delhi, 1960.
[11] Nakazi T., Sum of two inner functions and exposed points in H^{1}. Proc. Edinburgh Math. Soc. 35 (1992), 349-357.
[12] Nakazi T., Factorizations of outer functions and extremal problems. Proc. Edinburgh Math. Soc. 39 (1996), 535-546.
[13] Sarason D., Making an outer function from two inner functions. Contemp. Math. 137 (1991), 407-414.
[14] Takahasi S.-E., Bohman-Korovkin-Wulbert operators on normed spaces. J. Approx. Theory 72 (1993), 174-184.
[15] Takahasi S.-E., (T,E)-Korovkin closures in normed spaces and BKW-operators. J. Approx. Theory 82 (1995), 340-351.
[16] Wulbert D., Convergence of operators and Korovkin's theorem. J. Approx. Theory 1 (1968), 381-390.

Go Hirasawa
Department of Mathematical Science
Graduate School of Science and Technology
Niigata University
Niigata 950-2181, Japan

Keiji Izuchi
Department of Mathematics
Niigata University
Niigata 950-2181, Japan
E-mail: izuchi@math.sc.niigata-u.ac.jp

Kazuhiro Kasuga
Department of Mathematical Science
Graduate School of Science and Technology
Niigata University
Niigata 950-2181, Japan

