Korovkin type approximation theorems on the disk algebra

Go HIRASAWA, Keiji IZUCHI and Kazuhiro KASUGA

(Received December 25, 1998)

Abstract. We investigate *BKW*-operators on the disk algebra for the test functions $\{1, z, z^2\}$ having forms as $T = (C_{\varphi} + C_{\psi})/2$, $|\varphi| = |\psi| = 1$ on the unit circle. Our studies have some relation to extremal problems on Hardy spaces.

Key words: Korovkin type approximation theorem, disk algebra.

1. Introduction

In 1953, Korovkin [9, 10] proved a well known theorem as follows; if $\{T_n\}_n$ is a sequence of positive operators on C([0, 1]), the Banach space of real valued continuous functions on [0, 1], such that $||T_n x^j - x^j||_{\infty} \to 0$ for j = 0, 1, 2 as $n \to \infty$, then $||T_n f - f||_{\infty} \to 0$ for every $f \in C([0, 1])$ as $n \to \infty$. Since then, there are many researches on this field from various points of view, see the monograph by Altomare and Campiti [2]. In [16], Wulbert showed that in Korovkin's theorem, the condition of positivity of $\{T_n\}_n$ is replaced by the condition that $||T_n|| \leq 1$ for every n, see also [1].

Let X be a separable complex Banach space and S be a subset of X. In [14], Takahasi introduced a concept of BKW-operators to generalize Korovkin's approximation theorem. A bounded linear operator T on X is called a BKW-operator for the test functions S if $\{T_n\}_n$ is a sequence of bounded linear operators on X satisfying

i) $||T_n|| \le ||T||$ for every n

and

ii) $||T_nh - Th|| \to 0 \text{ as } n \to \infty \text{ for each } h \in S,$

then it holds $||T_n f - Tf|| \to 0$ for every $f \in X$ as $n \to \infty$. And in [15], Takahasi gave a sufficient conditions on an operator on X to be a *BKW*operator. To state this, let \tilde{S} be the closed linear span of S in X. We denote by $U_S = U_S(X)$ the set of $\varphi \in X^*$, the dual space of X, which satisfies that $||\varphi|| = ||\varphi|_{\tilde{S}}|| = 1$ and $\varphi|_{\tilde{S}}$ has a unique Hahn-Banach extension to X. The

¹⁹⁹¹ Mathematics Subject Classification: 41A35, 46J15.

set U_S is called the uniqueness set for the test functions S. Takahasi proved that a bounded linear operator T on X with ||T|| = 1 is a *BKW*-operator if there exists a weak*-compact subset Y of the closed unit ball of X^* such that $||f|| = \sup\{|\varphi(f)|; \varphi \in Y\}$ for every $f \in X$ and $T^*\varphi \in U_S$ for every $\varphi \in Y$.

Let Ω be a metrizable compact Hausdorff space and $C(\Omega)$ be the Banach space of complex valued continuous functions on Ω with the supremum norm. In [15], Takahasi showed that if $1 \in S \subset C(\Omega)$ and T is a bounded linear operator on $C(\Omega)$ with ||T|| = 1, then T is a *BKW*-operator for S if and only if $T^*\delta_{\zeta} \in U_S(C(\Omega))$ for every $\zeta \in \Omega$, where δ_{ζ} is a point evaluation at ζ . A closed subalgebra A of $C(\Omega)$ is called a function algebra if A contains constant functions and separates the points in Ω , see [4]. We denote by ∂A the Shilov boundary of A, the smallest closed subset of Ω on which every function in A attains the maximum modulus. Let $S \subset A$. By the Hahn-Banach extension theorem and the Riesz representation theorem, we may consider that $U_S(A)$ is a set of Borel measures on ∂A with total variation 1. In [6], the second author, Takagi and Watanabe showed the following theorem.

Theorem A Suppose that $1 \in S \subset A$ and T is a bounded linear operator on A with ||T|| = 1. Then T is a BKW-operator for S if and only if $T^*\delta_{\zeta} \in U_S(A)$ for every $\zeta \in \partial A$.

A typical example of function algebras is the disk algebra $A(\Gamma)$. Let Γ be the unit circle in the complex plane, and let $A(\Gamma)$ be the space of complex valued continuous functions on Γ which can be extended analytically in the open unit disk $D = \{|z| < 1\}$. Then $A(\Gamma)$ is a closed subalgebra of $C(\Gamma)$. It is known that $\partial A(\Gamma) = \Gamma$. For $\{z_j\}_{j=1}^n \subset D$, let

$$b(z) = \lambda \prod_{j=1}^{n} \frac{-\overline{z_j}}{|z_j|} \frac{z - z_j}{1 - \overline{z_j} z}, \quad z \in \overline{D},$$

where λ is a constant with $|\lambda| = 1$. This type of functions b(z) are called finite Blaschke products, and satisfy |b| = 1 on Γ . As a special case, a constant function with absolute modulus 1 is also called a finite Blaschke product. If $f \in A(\Gamma)$ and |f| = 1 on Γ , then f is a finite Blaschke product (see [5]). For a function φ (may not continuous) on Γ with $|\varphi| = 1$ on Γ , we put $C_{\varphi}f = f \circ \varphi$ for $f \in A(\Gamma)$. Then C_{φ} is a bounded linear operator on $A(\Gamma)$ if and only if $\varphi \in A(\Gamma)$. In [6], it is proved that if T is a bounded linear operator on $A(\Gamma)$ with ||T|| = 1, then T is a *BKW*-operator for $\{1, z\}$ if and only if $T = \psi C_{\varphi}$, where ψ and φ are finite Blaschke products. In [14], Takahasi proved that $a\delta_{\zeta_1} + (1-a)\delta_{\zeta_2} \in U_{\{1,z,z^2\}}(A(\Gamma))$ for $\zeta_1, \zeta_2 \in \Gamma$, $0 \leq a \leq 1$, and

$$T = aC_{\varphi_1} + (1-a)C_{\varphi_2}, \quad 0 \le a \le 1,$$

 φ_1 and φ_2 are finite Blaschke products

is a *BKW*-operator on $A(\Gamma)$ for $\{1, z, z^2\}$. In [6], it is pointed out that the converse of the above assertion is not true. Let $S_n = \{1, z, z^2, \ldots, z^n\}$. It seems difficult to describe all *BKW*-operators on $A(\Gamma)$ for the test functions S_n . See [7] for the polydisk and ball algebras.

In this paper, we study BKW-operators on $A(\Gamma)$. In Section 2, we determine measures μ in $U_{S_n}(A(\Gamma))$ such that $\mu \geq 0$. In Section 3, we study BKW-operators T on $A(\Gamma)$ for $\{1, z, z^2\}$ having a special form as follows;

$$T = (C_{\varphi} + C_{\psi})/2, \quad |\varphi| = |\psi| = 1 \text{ on } \Gamma$$

We give a characterization of a BKW-operator satisfying the above condition.

2. Positive measures in $U_{S_n}(A(\Gamma))$

We denote by $M(\Gamma)$ the set of bounded complex Borel measures on Γ and by $M_{+,1}(\Gamma)$ the set of $\mu \in M(\Gamma)$ with $\mu \geq 0$ and $\|\mu\| = 1$. Let T be a bounded linear operator on $A(\Gamma)$ with $\|T\| = 1$ and T1 = 1. Then for each $\zeta \in \Gamma$, we may consider that $T^*\delta_{\zeta}$ is a bounded Borel measure on Γ and $T^*\delta_{\zeta} \in M_{+,1}(\Gamma)$. In this section, we study when this operator T is a BKW-operator for the test functions $S_n = \{1, z, \ldots, z^n\}$, see Corollary 2.1. By Theorem A, we need to describe the set $U_{S_n} \cap M_{+,1}(\Gamma)$. In [14], Takahasi proved that

$$\left\{\sum_{j=1}^n a_j \delta_{\zeta_j}; \, \zeta_j \in \Gamma, \, a_j \ge 0, \, \sum_{j=1}^n a_j = 1\right\} \subset U_{S_n} \cap M_{+,1}(\Gamma).$$

We shall prove that the both sets in the above coincide.

Theorem 2.1 $U_{S_n}(A(\Gamma)) \cap M_{+,1}(\Gamma) = \{\sum_{j=1}^n a_j \delta_{\zeta_j}; \zeta_j \in \Gamma, a_j \geq 0, \}$

 $\sum_{j=1}^n a_j = 1 \}.$

Proof. Let

$$\mu = \sum_{j=1}^{n} a_j \delta_{\zeta_j}, \quad \zeta_j \in \Gamma, \quad a_j \ge 0, \quad \sum_{j=1}^{n} a_j = 1,$$

and $\zeta_i \ne \zeta_j$ if $i \ne j$. (2.1)

In [14], Takahasi proved that $\mu \in U_{S_n}$. Here we give a simple proof. Let $\nu \in M(\Gamma)$ with $\|\nu\| = 1$ such that

$$\int_{\Gamma} z^k d\nu = \int_{\Gamma} z^k d\mu \quad \text{for} \quad k = 0, 1, 2, \dots, n.$$
(2.2)

Then $\nu \in M_{+,1}(\Gamma)$. To prove $\mu \in U_{S_n}$, it is sufficient to show $\nu = \mu$. Put

$$p(z) = \prod_{j=1}^{n} |z - \zeta_j|^2, \quad z \in \Gamma.$$
 (2.3)

Then we can write p(z) as

$$p(z) = \left(\sum_{j=0}^{n} \alpha_j z^j\right) + \overline{\left(\sum_{j=0}^{n} \alpha_j z^j\right)}, \quad z \in \Gamma.$$
(2.4)

Since μ and ν are real measures, by (2.2) we have

$$\int_{\Gamma} \overline{z}^j d\nu = \int_{\Gamma} \overline{z}^j d\mu \quad \text{for} \quad j = 0, 1, \dots, n.$$

Hence by (2.4), $\int_{\Gamma} p(z) d\nu = \int_{\Gamma} p(z) d\mu = 0$. Since ν is a probability measure, by (2.3) ν has a form as

$$u = \sum_{j=1}^{n} b_j \delta_{\zeta_j}, \quad b_j \ge 0 \quad \text{and} \quad \sum_{j=1}^{n} b_j = 1.$$

By (2.1) and (2.2),

$$\sum_{j=1}^{n} (a_j - b_j) \zeta_j^k = 0 \quad \text{for} \ k = 1, 2, \dots, n.$$

Since points $\{\zeta_j\}_{j=1}^n$ are distinct, we have

$$\begin{vmatrix} \zeta_1 & \zeta_2 & \dots & \zeta_n \\ \zeta_1^2 & \zeta_2^2 & \dots & \zeta_n^2 \\ \dots & \dots & \dots \\ \zeta_1^n & \zeta_2^n & \dots & \zeta_n^n \end{vmatrix} \neq 0.$$

Therefore we have $a_j = b_j$ for j = 1, 2, ..., n. Thus we obtain $\nu = \mu$.

Next, we prove the converse inclusion. We use the same idea of the proof of Theorem 1 in [8]. Let $\mu \in U_{S_n} \cap M_{+,1}(\Gamma)$. We shall prove that μ has a form in (2.1). Put

$$\rho(\sigma) = \left(\int_{\Gamma} z d\sigma, \int_{\Gamma} z^2 d\sigma, \dots, \int_{\Gamma} z^n d\sigma\right) \quad \text{for} \ \sigma \in M_{+,1}(\Gamma)$$

and

$$\Omega = \{\rho(\sigma); \sigma \in M_{+,1}(\Gamma)\}.$$

Then ρ is a continuous map from $M_{+,1}(\Gamma)$ with the weak*-topology into $\mathbf{C}^{\mathbf{n}}$. Since $M_{+,1}(\Gamma)$ is a weak*-compact convex set, Ω is a compact convex subset of $\mathbf{C}^{\mathbf{n}}$.

Claim 1. int $\Omega \neq \emptyset$, where int Ω denotes the interior of Ω .

To prove this, suppose not. Then there exist complex numbers $c_j, 1 \le j \le n$, such that $(c_1, c_2, \ldots, c_n) \ne (0, 0, \ldots, 0)$ and

$$\operatorname{Re}\sum_{j=1}^{n} c_{j} \int_{\Gamma} z^{j} d\sigma = 0 \quad \text{for every} \ \sigma \in M_{+,1}(\Gamma).$$

This implies that

$$\int_{\Gamma} \left(\operatorname{Re} \sum_{j=1}^{n} c_j z^j \right) d\lambda = 0 \quad \text{for every} \ \lambda \in M(\Gamma).$$

Since $\operatorname{Re} \sum_{j=1}^{n} c_j z^j \neq 0$ on Γ , this is absurd.

Claim 2. $\rho(\mu)$ is a boundary point of Ω .

To prove this, suppose that $\rho(\mu) \in \operatorname{int} \Omega$. We shall prove that

$$\rho(\mu) = \rho(\nu) \text{ for some } \nu \in M_{+,1}(\Gamma) \text{ with } \nu \neq \mu.$$
(2.5)

We note that $M_{+,1}(\Gamma)$ coincides with the weak^{*}-closed convex hull of $\{\delta_{\zeta}; \zeta \in \Gamma\}$. Since $\{\rho(\delta_{\zeta}); \zeta \in \Gamma\}$ is a compact subset of $\mathbb{C}^{\mathbf{n}}$, its convex hull coincides with its closed convex hull. Hence

 $\Omega = \text{the convex hull of } \{\rho(\delta_{\zeta}); \zeta \in \Gamma\},\$

so that

$$\rho(\mu) = \rho\left(\sum_{j=1}^{k} c_j \delta_{\zeta_j}\right) \text{ for some } \zeta_j \in \Gamma, \ c_j \ge 0, \text{ and } \sum_{j=1}^{k} c_j = 1.$$
(2.6)

Let $L_{+,1} = \{\nu \in M_{+,1}(\Gamma); d\nu \ll d\theta/2\pi\}$. Then $L_{+,1}$ is also a weak*-dense convex subset of $M_{+,1}(\Gamma)$, so that $\{\rho(\nu); \nu \in L_{+,1}\}$ is a dense convex subset of Ω . Since $\Omega \subset \mathbb{C}^n$, we have that

$$\operatorname{int} \Omega \subset \{\rho(\nu); \nu \in L_{+,1}\}.$$

Since $\rho(\mu) \in \operatorname{int} \Omega$, there exists $\nu \in L_{+,1}$ such that $\rho(\mu) = \rho(\nu)$. Hence by (2.6),

$$\rho(\mu) = \rho\left(\sum_{j=1}^{k} c_j \delta_{\zeta_j}\right) = \rho(\nu), \quad \sum_{j=1}^{k} c_j \delta_{\zeta_j} \neq \nu.$$

Thus we get (2.5).

Since μ and ν are distinct probability measures, we have $\int_{\Gamma} f d\mu \neq \int_{\Gamma} f d\nu$ for some $f \in A(\Gamma)$. This means that $\mu \notin U_{S_n}$. This is a contradiction, so we get Claim 2.

Claim 3. $\mu = \sum_{j=1}^{n} a_j \delta_{\zeta_j}$ for $\zeta_j \in \Gamma$, $a_j \ge 0$ and $\sum_{j=1}^{n} a_j = 1$.

By Claims 1 and 2, there exist complex numbers $\{d_j\}_{j=0}^n$ such that

 $d_j \neq 0$ for some $j, 1 \le j \le n$, (2.7)

$$\operatorname{Re}\left(d_0 + \sum_{j=1}^n d_j \int_{\Gamma} z^j d\mu\right) = 0, \qquad (2.8)$$

and

$$\operatorname{Re}\left(d_{0} + \sum_{j=1}^{n} d_{j} \int_{\Gamma} z^{j} d\sigma\right) \geq 0 \quad \text{for every} \ \sigma \in M_{+,1}(\Gamma).$$
(2.9)

By (2.9),

$$\int_{\Gamma} \operatorname{Re} \left(d_0 + \sum_{j=1}^n d_j z^j \right) d\sigma \ge 0 \quad \text{for every} \ \ \sigma \in M_{+,1}(\Gamma).$$

so that we have

$$\operatorname{Re}\left(d_0 + \sum_{j=1}^n d_j z^j\right) \ge 0 \quad \text{on} \quad \Gamma.$$
(2.10)

Moreover by (2.7),

$$\operatorname{Re}\left(d_{0} + \sum_{j=1}^{n} d_{j} z^{j}\right) \neq 0 \quad \text{on} \quad \Gamma.$$
(2.11)

Putting $z = e^{i\theta}$, we can write as

$$\operatorname{Re}\left(d_0 + \sum_{j=1}^n d_j z^j\right) = \sum \{a_{k,l} \sin^k \theta \cos^l \theta; \ 0 \le k+l \le n, \ k,l \ge 0\}$$

for some real numbers $\{a_{k,l}\}_{k,l}$. Put

$$F(\theta) = \sum \{a_{k,l} \sin^k \theta \cos^l \theta; 0 \le k+l \le n, k, l \ge 0\}, \quad 0 \le \theta < 2\pi.$$

Then by (2.10) and (2.11), $F(\theta) \ge 0$ and $F(\theta) \not\equiv 0, 0 \le \theta < 2\pi$. By (2.8), $\int_0^{2\pi} F(\theta) d\mu(e^{i\theta}) = 0$. Hence to prove Claim 3, we need to prove that the number of zeros of the function $F(\theta), 0 \le \theta < 2\pi$, is less than or equal to n. Since $F(\theta)$ is a 2π -periodic function, to prove this it is sufficient to show that the number of distinct zeros of $F'(\theta), 0 \le \theta < 2\pi$, is less than or equal to 2n + 1. Here we can write $F'(\theta)$ as

$$F'(\theta) = \sum_{0 < k+l \le n} b_{k,l} \sin^k \theta \cos^l \theta.$$

Put $t = \tan \frac{\theta}{2}$, $\theta \neq \pi$. Then $\sin \theta = 2t/(1+t^2)$ and $\cos \theta = (1-t^2)/(1+t^2)$. Hence the equation $F'(\theta) = 0$ becomes

$$\sum_{0 < k+l \le n} b_{k,l} \left(\frac{2t}{1+t^2}\right)^k \left(\frac{1-t^2}{1+t^2}\right)^l = 0.$$

This equation has a number of distinct zeros up to 2n. Since $\tan \frac{\theta}{2}$ is one to one on $[0,\pi] \cup (\pi, 2\pi)$, the number of distinct zeros of $F'(\theta)$, $0 \le \theta < 2\pi$,

is less than or equal to 2n + 1. This completes the proof.

As an application of Theorems A and 2.1, we have the following.

Corollary 2.1 Let T be a bounded operator on $A(\Gamma)$ such that ||T|| = 1and T1 = 1. Then T is a BKW-operator for the test functions S_n if and only if T has a following form;

$$(Tf)(\zeta) = \sum_{j=1}^{n} a_j(\zeta)(C_{\varphi_j}f)(\zeta), \quad for \ \zeta \in \Gamma \quad and \quad f \in A(\Gamma),$$

where $|\varphi_j| = 1$ on Γ , $a_j(\zeta) \ge 0$ for every j and $\sum_{j=1}^n a_j(\zeta) = 1$ for $\zeta \in \Gamma$.

For given functions $\{\varphi_j(\zeta)\}$ and $\{a_j(\zeta)\}$ on Γ satisfying that $|\varphi_j| = 1$ on Γ , $a_j(\zeta) \ge 0$, and $\sum_{j=1}^n a_j(\zeta) = 1$ for $\zeta \in \Gamma$, we can defined T as $(Tf)(\zeta) = \sum_{j=1}^n a_j(\zeta)(C_{\varphi_j}f)(\zeta)$ for $\zeta \in \Gamma$ and $f \in A(\Gamma)$. Generally, $Tf \notin A(\Gamma)$ for some $f \in A(\Gamma)$, so that T may not be a bounded linear operator on $A(\Gamma)$. If $Tf \in A(\Gamma)$ for $f \in A(\Gamma)$, then T is a bounded linear operator on $A(\Gamma)$. Hence by Corollary 2.1, T becomes a BKW-operator on $A(\Gamma)$ for S_n . We have a question when $Tf \in A(\Gamma)$ for $f \in A(\Gamma)$. It seems difficult to answer. In the next section, we study on this problem when n = 2.

3. BKW-operators for $\{1, z, z^2\}$

Let T be a *BKW*-operator on $A(\Gamma)$ for the test functions $S_2 = \{1, z, z^2\}$ such that ||T|| = 1 and T1 = 1. Then by Corollary 2.1, T has a form as

$$(Tf)(\zeta) = a(\zeta)(C_{\varphi}f)(\zeta) + b(\zeta)(C_{\psi}f)(\zeta),$$

for $\zeta \in \Gamma$ and $f \in A(\Gamma)$, (3.1)

where

$$\begin{aligned} |\varphi(\zeta)| &= |\psi(\zeta)| = 1, \quad a(\zeta) + b(\zeta) = 1, \quad a(\zeta), b(\zeta) \ge 0 \\ \text{for every } \zeta \in \Gamma. \end{aligned}$$
(3.2)

We note that a, b, φ , and ψ may not be continuous on Γ , see [6].

Suppose that a, b, φ , and ψ are functions on Γ satisfying (3.2), and define T by (3.1). As mentioned in the end of the last section, we have a question when $Tf \in A(\Gamma)$ for every $f \in A(\Gamma)$.

We have another question. For a function $h \in A(\Gamma)$ with $||h||_{\infty} \leq 1$, when there exists a *BKW*-operator *T* on $A(\Gamma)$ for the test functions S_2

such that ||T|| = 1, T1 = 1, and Tz = h.

In this section, we study BKW-operators T on $A(\Gamma)$ for $\{1, z, z^2\}$ having a following form;

(#)
$$T = (C_{\varphi} + C_{\psi})/2, \quad |\varphi| = 1 \text{ and } |\psi| = 1 \text{ on } \Gamma.$$

In this case, T1 = 1 and ||T|| = 1.

The following lemma follows the definition of BKW-operators.

Lemma 3.1 Let $1 \in S \subset A(\Gamma)$. Let T be a BKW-operator on $A(\Gamma)$ for S with ||T|| = 1. Let T_1 be a bounded linear operator on $A(\Gamma)$ with $||T_1|| \leq 1$. If $Th = T_1h$ for $h \in S$, then $T = T_1$.

For a function $h \in A(\Gamma)$, $h \neq 0$, we can define $(h/\overline{h})(\zeta) = h(\zeta)/\overline{h(\zeta)}$ for almost every $\zeta \in \Gamma$. When h/\overline{h} can be extended continuously on Γ , we consider that h/\overline{h} is an extended function.

Theorem 3.1 Let T be a bounded linear operator on $A(\Gamma)$ with ||T|| = 1and T1 = 1. Put Tz = h and $Tz^2 = g$. Then we have the following.

i) If $h \neq 0$, then T is a BKW-operator for $\{1, z, z^2\}$ satisfying (#) if and only if h/\overline{h} is a finite Blaschke product and $h/\overline{h} = 2h^2 - g$. In this case, we have

$$\varphi = h + \sqrt{g - h^2}$$
 and $\psi = h - \sqrt{g - h^2}$,

where $\sqrt{g-h^2}$ is one of root functions of $g-h^2$.

ii) If h = 0, then T is a BKW-operator for $\{1, z, z^2\}$ satisfying (#) if and only if g is a finite Blaschke product. In this case, $\varphi = \sqrt{g}$ and $\psi = -\sqrt{g}$.

Proof. First, we note that $h, g \in A$, $||h||_{\infty} \leq 1$, and $||g||_{\infty} \leq 1$. Suppose that T has a form (#). Then $\varphi + \psi = 2h$ and $\varphi^2 + \psi^2 = 2g$. Since $(\varphi + \psi)^2 = \varphi^2 + \psi^2 + 2\varphi\psi$,

$$2h^2 - g = \varphi\psi. \tag{3.3}$$

Since $h, g \in A$, $\varphi \psi \in A$. Since $|\varphi \psi| = 1$ on Γ , $\varphi \psi$ is a finite Blaschke product. When $h \neq 0$, $h/\overline{h} = (\varphi + \psi)/(\overline{\varphi} + \overline{\psi}) = \varphi \psi = 2h^2 - g$ by (3.3). When h = 0, $g = -\varphi \psi$ and g is a finite Blaschke product.

Next, we prove the converse. Suppose that $h \neq 0$. Put

$$b = h/\overline{h} = 2h^2 - g. \tag{3.4}$$

Then by our assumption, b is a finite Blaschke product. Since

$$b = h^2 / |h|^2, (3.5)$$

by (3.4) we have

$$g - h^2 = h^2 - b = (-b)(1 - |h|^2).$$
 (3.6)

Take one root function $\sqrt{g-h^2}$, and we put

$$\varphi = h + \sqrt{g - h^2}$$
 and $\psi = h - \sqrt{g - h^2}$. (3.7)

Then

$$(\varphi + \psi)/2 = h \in A(\Gamma)$$
 and $\varphi \psi = 2h^2 - g \in A(\Gamma).$ (3.8)

By (3.6),

$$|h|^2 + \left|\sqrt{g - h^2}\right|^2 = 1.$$
 (3.9)

Let $\zeta \in \Gamma$. If $h(\zeta) = 0$, then by (3.9) $|(\sqrt{g - h^2})(\zeta)| = 1$, so that $|\varphi(\zeta)| = |\psi(\zeta)| = 1$. If $h(\zeta) \neq 0$, then by (3.5) and (3.6)

$$(\sqrt{g-h^2})(\zeta) = ih(\zeta)\sqrt{1-|h(\zeta)|^2}/|h(\zeta)|$$

or $(\sqrt{g-h^2})(\zeta) = -ih(\zeta)\sqrt{1-|h(\zeta)|^2}/|h(\zeta)|.$

Therefore by (3.7), we have

$$\begin{aligned} |\varphi(\zeta)| &= \left| h(\zeta) + \left(\sqrt{g - h^2} \right)(\zeta) \right| \\ &= \left| h(\zeta) \pm \frac{ih(\zeta)}{|h(\zeta)|} \sqrt{1 - |h(\zeta)|^2} \right| \\ &= \left| |h(\zeta)| \pm i\sqrt{1 - |h(\zeta)|^2} \right| = 1 \end{aligned}$$

and similarly $|\psi(\zeta)| = 1$ for every $\zeta \in \Gamma$. Hence

$$|\varphi| = |\psi| = 1 \quad \text{on} \quad \Gamma. \tag{3.10}$$

Put

$$T_0 f = \frac{1}{2} (C_{\varphi} + C_{\psi}) f \quad \text{for} \quad f \in A(\Gamma).$$

$$(3.11)$$

Then by (3.7),

$$T_0 1 = 1, \quad T_0 z = h, \quad \text{and} \quad T_0 z^2 = g.$$
 (3.12)

Since

$$\varphi^n + \psi^n = (\varphi^{n-1} + \psi^{n-1})(\varphi + \psi) - \varphi\psi(\varphi^{n-2} + \psi^{n-2}),$$

by (3.8) and by induction we have

$$T_0 z^n \in A(\Gamma)$$
 for every non-negative integer $n.$ (3.13)

Let $f \in A$. Then there exists a sequence of analytic polynomials $\{p_k\}_k$ such that $||f-p_k||_{\infty} \to 0$ as $k \to \infty$. Then by (3.10) and (3.11), $||T_0f-T_0p_k||_{\infty} \to 0$ as $k \to \infty$. By (3.13), $T_0p_k \in A(\Gamma)$, so that we have $T_0f \in A(\Gamma)$ for every $f \in A(\Gamma)$. As a consequence, T_0 is a bounded linear operator on $A(\Gamma)$ with $||T_0|| = 1$ and $T_01 = 1$. By Corollary 2.1, T_0 is a *BKW*-operator on $A(\Gamma)$ for $\{1, z, z^2\}$. By (3.12), $T_0z^j = Tz^j$ for j = 0, 1, 2. Hence by Lemma 3.1, we have $T = T_0$.

Suppose that h = 0 and g is a finite Blaschke product. Put

$$T_1 f = \frac{1}{2} (C_{\sqrt{g}} + C_{-\sqrt{g}}) f \text{ for } f \in A.$$

Then $T_1 1 = 1$, $T_1 z^{2n-1} = 0$, and $T_1 z^{2n} = g^n$ for $n \ge 1$. In the same way as above, we can prove that $T_1 = T$ and T is a *BKW*-operator for $\{1, z, z^2\}$.

Remark 3.1. Let $h \in A$ such that h/\overline{h} is a finite Blaschke product. Then h is a rational function and all such h are described in [3]. For finite Blaschke products b_1 and b_2 , put $h = b_1 + b_2$. Then $h/\overline{h} = b_1b_2$ is a finite Blaschke product. Sum of inner functions are studied in [11, 12, 13]. These functions h are deeply concerned with extremal problems.

The converse of the proof of Theorem 3.1 proves the following actually.

Corollary 3.1 Suppose that $h, g \in A(\Gamma)$ satisfy the following conditions; i) $\|h\|_{\infty} \leq 1$ and $\|g\|_{\infty} \leq 1$,

ii) h/\overline{h} is a finite Blaschke product (or h = 0),

iii) $h/\overline{h} = 2h^2 - g$ (when h = 0, g is a finite Blaschke product).

Then there exists a unique bounded linear operator T on $A(\Gamma)$ such that ||T|| = 1, T1 = 1, Tz = h, and $Tz^2 = g$. Moreover T is a BKW-operator on $A(\Gamma)$ for $\{1, z, z^2\}$ having a form (#).

Corollary 3.2 Let $h \in A$ such that $0 < ||h||_{\infty} \le 1$ and h/\overline{h} is a finite Blaschke product. Then there exists a BKW-operator T on $A(\Gamma)$ for

 $\{1, z, z^2\}$ such that ||T|| = 1, T1 = 1 and Tz = h. In such BKW-operators T, there is a unique operator satisfying (#).

Proof. Put $g = 2h^2 - (h/\overline{h})$. Then $g \in A(\Gamma)$. Since $2h^2 - (h/\overline{h}) = h^2(2|h|^2 - 1)/|h|^2$, $||g||_{\infty} \leq 1$. By Corollary 3.1, we have the first part of our assertion. Let T_1 and T_2 be BKW-operators for $\{1, z, z^2\}$ satisfying (#) such that $||T_i|| = 1$, $T_i 1 = 1$, and $T_i z = h$ for j = 1, 2. Then by Theorem 3.1, $T_1 z^2 = 2h^2 - h/\overline{h} = T_2 z^2$. Hence by Lemma 3.1, $T_1 = T_2$.

In Corollary 3.2, a *BKW*-operator T with ||T|| = 1, T1 = 1 and Tz = h is not unique generally.

Example 3.1. Let h = z/2. Then $h/\overline{h} = z^2$. Then by Takahasi's theorem [14],

$$T = (C_{\varphi} + C_{\psi})/2, \quad \varphi = e^{\frac{\pi}{3}i}z, \quad \psi = e^{-\frac{\pi}{3}i}z$$

is a *BKW*-operator for $\{1, z, z^2\}$ satisfying T1 = 1, Tz = z/2, and $Tz^2 = -z^2/2$. Also

$$T_0 = (C_{-z} + 3C_z)/4.$$

is a *BKW*-operator for $\{1, z, z^2\}$ satisfying $T_0 = 1$, $T_0 = z/2$, and $T_0 z^2 = z^2$.

By Theorem 3.1 ii), we have the following.

Corollary 3.3 There are uncountable many BKW-operators T on $A(\Gamma)$ for $\{1, z, z^2\}$ satisfying ||T|| = 1, T1 = 1, and Tz = 0.

Next, we study that for BKW-operators T satisfying (#), when both φ and ψ are continuous or analytic.

Corollary 3.4 Let $h \in A(\Gamma)$ such that $0 < ||h|| \le 1$ and h/\overline{h} is a finite Blaschke product. Let T be a BKW-operators on $A(\Gamma)$ for $\{1, z, z^2\}$ such that Tz = h and $T = (C_{\varphi} + C_{\psi})/2$, $|\varphi| = |\psi| = 1$ on Γ . Then we have the following.

- i) If number of zeros of h/\overline{h} in D, counting multiplicities, is even or $h^2 h/\overline{h}$ vanishes at some points in Γ , then φ and ψ are continuous on Γ .
- ii) If $h^2 h/\overline{h} = f^2$ for some $f \in A(\Gamma)$, then φ and ψ are finite Blaschke products.

Proof. Put $Tz^2 = g$. Then by Theorem 3.1, we have

$$2h^2 - g = h/\overline{h} \tag{3.14}$$

and

$$\varphi = h + \sqrt{g - h^2}$$
 and $\psi = h - \sqrt{g - h^2}$. (3.15)

By (3.14),

$$g - h^2 = h^2 - h/\overline{h} = (-h/\overline{h})(1 - |h|^2).$$
 (3.16)

We note that the usual root function $\sqrt{1-|h|^2}$ is continuous on Γ .

i) Suppose that number of zeros of h/\overline{h} in D is even. Then we can take such as $\sqrt{-h/\overline{h}}$ is continuous on Γ . Hence by (3.15) and (3.16), φ and ψ are continuous.

Suppose that $h^2 - h/\overline{h}$ vanishes at some points in Γ . Then $1 - |h|^2$ vanishes at these points. Hence we can take $\sqrt{g - h^2}$ such as

 $\sqrt{g-h^2} = \sqrt{-h(1-|h|^2)/\overline{h}}$ is continuous on Γ .

ii) Suppose that $h^2 - h/\overline{h} = f^2$ for some $f \in A(\Gamma)$. Then by (3.16), we can take such as $\sqrt{g - h^2} = f$. Hence $\varphi, \psi \in A(\Gamma)$, so that both of these functions are finite Blaschke products.

Remark 3.2. Let 0 < r < 1. If T_0 is a bounded linear operator on $A(\Gamma)$ such that

$$(\#_r)$$
 $T_0 = rC_{\varphi} + (1-r)C_{\psi}, \quad |\varphi| = |\psi| = 1 \text{ on } \Gamma,$

then by Takahasi's theorem [14], T_0 is a *BKW*-operator for $\{1, z, z^2\}$ and T1 = 1. For a bounded linear operator T on $A(\Gamma)$ such that ||T|| = 1 and T1 = 1, put Tz = h and $Tz^2 = g$. We do not known conditions on h and g for which T has a form $(\#_r)$.

Remark 3.3. Let T_1 be a bounded linear operator on $A(\Gamma)$ such that

$$(\#_{-})$$
 $T_1 = (C_{\varphi} - C_{\psi})/2, \quad |\varphi| = |\psi| = 1 \text{ on } \Gamma.$

Then T_1 may not be a *BKW*-operator for $\{1, z, z^2\}$. For, let $T_2 = (C_z - C_{-z})/2$ and

$$Pf = \left(\int_0^{2\pi} f(e^{i\theta})e^{-i\theta}d\theta/2\pi\right)z \text{ for } f \in A(\Gamma).$$

Then T_2 and P are bounded linear operators on $A(\Gamma)$ satisfying that $T_2 \neq P$, $||T_2|| = ||P|| = 1$, $T_2 = P = 0$, $T_2 = P = 2$, and $T_2 = P = 2$. Then by Lemma 3.1, T_2 is not a *BKW*-operator for $\{1, z, z^2\}$.

References

- Altomare F. and Boccaccio C., On Korovkin-type theorems in spaces continuous complex-valued functions. Bollettino U. M. I. (6) 1-B (1982), 75-86.
- [2] Altomare F. and Campiti M., Korovkin-Type Approximation Theory and its Applications. de Gruyter, Berlin, New York, 1994.
- [3] Duren P., Theory of H^p Spaces. Academic Press, New York, 1970.
- [4] Gamelin T.W., Uniform Algebras. Prentice-Hall, Englewood Cliffa, New Jersey, 1969.
- [5] Hoffman K., Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- [6] Izuchi K., Takagi H. and Watanabe S., Sequential BKW-operators and function algebras. J. Approx. Theory 85 (1996), 185-200.
- [7] Izuchi K., Matsugu Y. and Takagi H., BKW-operators on the polydisc and ball algebras. Far East J. Math. Sci. 3 (1995), 9-22.
- [8] Izuchi K. and Takahasi S.-E., BKW-operators on the interval [0, 1]. Rend. Circ. Mat. Palermo (2) 46 (1997), 477-489.
- [9] Korovkin P.P., On convergence of linear operators in the space of continuous functions. Dokl. Akad. Nauk. SSSR(N.S) 90 (1953), 961–964. [In Russian]
- [10] Korovkin P.P., Linear Operators and Approxiomation Theory. Hindustan Pub., Delhi, 1960.
- [11] Nakazi T., Sum of two inner functions and exposed points in H^1 . Proc. Edinburgh Math. Soc. **35** (1992), 349–357.
- [12] Nakazi T., Factorizations of outer functions and extremal problems. Proc. Edinburgh Math. Soc. 39 (1996), 535–546.
- [13] Sarason D., Making an outer function from two inner functions. Contemp. Math.
 137 (1991), 407-414.
- [14] Takahasi S.-E., Bohman-Korovkin-Wulbert operators on normed spaces. J. Approx. Theory 72 (1993), 174–184.
- [15] Takahasi S.-E., (T, E)-Korovkin closures in normed spaces and BKW-operators. J.
 Approx. Theory 82 (1995), 340-351.
- [16] Wulbert D., Convergence of operators and Korovkin's theorem. J. Approx. Theory 1 (1968), 381-390.

Go Hirasawa Department of Mathematical Science Graduate School of Science and Technology Niigata University Niigata 950-2181, Japan

Keiji Izuchi Department of Mathematics Niigata University Niigata 950-2181, Japan E-mail: izuchi@math.sc.niigata-u.ac.jp

Kazuhiro Kasuga Department of Mathematical Science Graduate School of Science and Technology Niigata University Niigata 950-2181, Japan