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Global attractivity of a nonautonomous
discrete logistic model

Qinqin ZHANG and Zhan ZHOU
(Received October 14, 1998; Revised February 10, 1999)

Abstract. In this paper we consider the nonautonomous discrete logistic model

x_{n+1}=x_{n} exp [r_{n}(1-x_{n})] , n\in N , (1.1)

where \{r_{n}\} is a sequence of nonnegative numbers. We obtain some sufficient conditions
for an arbitrary solution \{x_{n}\} satisfying the initial condition

x_{0}=a>0 , (1.2)

to converge to 1 as n – \infty . Under appropriate hypotheses, the necessary and sufficient
conditions for any solution of (1.1) with (1.2) tending to 1 as n – \infty have also been
obtained.
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1. Introduction

Consider the discrete nonautonomous logistic model

x_{n+1}=x_{n} exp [r_{n}(1-x_{n})] , n\in N , (1.1)

where \{r_{n}\} is a sequence of nonnegative numbers. It is easy to see that, for
any given initial condition

x_{0}=a>0 , (1.2)

Eq. (1.1) has an unique solution \{x_{n}\} which is positive for all n\in N and
satisfies (1.2). In [1], it was proved that every solution of (1.1) with (1.2)
tends to 1 if r_{n}\leq 3/2 and \sum_{n=0}^{\infty}r_{n}=\infty .

When r_{n}\equiv r>0 , Eq. (1.1) reduces to

x_{n+1}=x_{n} exp [r(1-x_{n})] , n\in N , (1.3)
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which has been studied in the literature in its own right as a discrete pop-
ulation model of a single species with non-0verlapping generations. It was
shown in [2, 3] that for some values of the parameter r , solutions of Eq.
(1.3) are “chaotic” It was also proved in [4] that any solution of Eq. (1.3)
with (1.2) converges to 1 as narrow\infty if and only if r\leq 2 .

In this paper, we discuss Eq. (1.1) and obtain the following results.

Theorem 1.1 If

\sum_{n=0}^{\infty}r_{n}=\infty , (1.4)

and

lim sup r_{n}\leq 2 . (1.6)
narrow\infty

Then any solution \{x_{n}\} of Eq. (1.1) with (1.2) converges to 1 as narrow\infty .

Theorem 1.2 Assume that \{r_{n}\} is bounded. If
\lim_{narrow}\inf_{\infty}r_{n}>2 , (1.6)

then every nontrivial solution \{x_{n}\} of Eq. (1.1) with (1.2) cannot converge
to 1 as narrow\infty .

Combining Theorem 1.1 and 1.2, we obtain the following necessary and
sufficient conditions, that is

Corollary 1.1 Assume that (1.4) holds and the limit \lim_{narrow\infty}r_{n} exists.
Then any solution \{x_{n}\} of Eq. (1.1) with (1.2) converges to 1 as narrow\infty if
and only if

\lim_{narrow\infty}r_{n}\leq 2 . (1.7)

2. Proofs of Theorem 1.1 and 1.2

First, we establish the following lemma.

Lemma 2.1 Assume that r is a nonnegative constant, let

f(x)=x(\exp[r(1-x)]+1)-2 .
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If there exists a constant x^{*} such that

f(x^{*})(x^{*}-1)<0 , (2.1)

then

(x^{*}-1)^{2}< \frac{3}{2}(r-2) . (2.2)

Proof. Clearly, f(1)=0, f(x)\leq-2 for x\leq 0 , and f(x)\geq 0 for x\geq 2 .
Since (2.1) holds, we see that either x^{*}\in(0,1) or x^{*}\in(1,2) .

If x^{*}\in(0,1) , by (2.1), we know that f(x^{*})>0 , this implies

r> \frac{1}{1-x^{*}}\ln\frac{2-x^{*}}{x}*

= \frac{1}{1-x^{*}}\ln\frac{1+(1-x^{*})}{1-(1-x^{*})}

= \frac{1}{1-x^{*}}(\sum_{k=1}^{\infty}(-1)^{k+1}\frac{(1-x^{*})^{k}}{k}+\sum_{k=1}^{\infty}\frac{(1-x^{*})^{k}}{k})

\geq\frac{2}{1-x^{*}}((1-x^{*})+\frac{(1-x^{*})^{3}}{3})

=2+ \frac{2}{3}(1-x^{*})^{2} ,

which leads to (2.2).
If x^{*}\in(1,2) , by (2.1), we know that f(x^{*})<0 , this implies that

r> \frac{1}{x^{*}-1}\ln\frac{x^{*}}{2-x^{*}}

= \frac{1}{x^{*}-1}\ln\frac{1+(x^{*}-1)}{1-(x^{*}-1)}

\geq 2+\frac{2}{3}(x^{*}-1)^{2} .

So, (2.2) holds.
The proof of Lemma 1.1 is now complete. \square

Proof of Theorem 1.1. Assume that \{x_{n}\} is a solution of Eq. (1.1) with
(1.2). Let

V(n)=(x_{n}-1)^{2} , n\in N . (2.3)
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Then

\triangle V(n)=(x_{n+1}-1)^{2}-(x_{n}-1)^{2}

=(x_{n+1}-x_{n})(x_{n+1}+x_{n}-2) (2.4)
=x_{n}(\exp[r_{n}(1-x_{n})]-1) (x_{n}(\exp[r_{n}(1-x_{n})]+1)-2) ,

here \triangle denotes the forward difference operator defined by \triangle V(n)=V(n+

1)-V(n) .
Since

(exp [r_{n}(1-x_{n})]-1 ) (x_{n}-1)\leq 0 , n\in N . (2.5)

We claim that, for any m\in N ,

\triangle V(m)>0 implies V(m)< \frac{3}{2}(r_{m}-2) . (2.6)

In fact, if \triangle V(m)>0 , by (2.4) and (2.5), we have

(x_{m}(\exp[r_{m}(1-x_{m})]+1)-2)(x_{m}-1)<0 ,

this leads to, by Lemma 1.1, that

(x_{m}-1)^{2}< \frac{3}{2}(r_{m}-2) .

So (2.6) holds.
We consider three possible cases.

Case 1: There is a n^{*}\in N , such that \triangle V(n)>0 for n\geq n^{*}-

In this case, by (2.6), we have

V(n)< \frac{3}{2}(r_{n}-2) for n\geq n^{*} (2.7)

By this and (1.5), we know that \lim\sup_{narrow\infty}V(n)\leq 0 . Since V(n)\geq 0 for
n\in N , we see that \lim_{narrow\infty}V(n)=0 , which is equivalent to \lim_{narrow\infty}x_{n}=1 .

Case 2: There is a n^{*}\in N , such that \triangle V(n)\leq 0 for n\geq n^{*}

In this case, \{V(n)\} is nonincreasing for n\geq n^{*} Since V(n)\geq 0 , we
see that \lim_{narrow\infty}V(n) exists. Let

\alpha=\lim_{narrow\infty}V(n) ,
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then

\lim_{narrow\infty}|x_{n}-1|=\sqrt{\alpha} . (2.8)

Denote \beta=\sqrt{\alpha} , we shall prove that \beta=0 .
In fact, if \beta>0 , we consider three subcases.

Subcase a: x_{n}-1>0 for large n .
In this subcase, by (2.8), we have

\lim_{narrow\infty}x_{n}=1+\beta . (2.9)

There is a sufficient large integer m_{1} , such that

x_{n}-1 \geq\frac{\beta}{2} for n\geq m_{1} . (2.10)

By (1.1), we get

x_{n+1}=x_{n} exp [r_{n}(1-x_{n})]\leq x_{n} exp [- \frac{\beta}{2}r_{n}] for n\geq m_{1} ,

this leads to, for p\in N , that

x_{m_{1}+p+1}\leq x_{m_{1}} exp [- \frac{\beta}{2}\sum_{i=m_{1}}^{m_{1}+p}r_{i}] (2.11)

Let parrow\infty in (2.11), and noting (1.4), we get

\lim_{parrow\infty}x_{m_{1}+p+1}=0 .

This contradicts (2.9), so subcase a is impossible.

Subcase b : x_{n}-1<0 for large n .
In this case, by (2.8), we have

\lim_{narrow\infty}x_{n}=1-\beta . (2.12)

There is a sufficient large integer m_{2} such that

1-x_{n} \geq\frac{\beta}{2} for n\geq m_{2} . (2.13)

By (1.1), we get

x_{n+1}=x_{n} exp [r_{n}(1-x_{n})]\geq x_{n} exp [ \frac{\beta}{2}r_{n}] for n\geq m_{2} .
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So, for p\in N , that

x_{m_{2}+p+1}\geq x_{m_{2}} exp [ \frac{\beta}{2}\sum_{i=m_{2}}^{m_{2}+p}r_{i}] (2.14)

Let parrow\infty in (2.14), and noting (1.4), we are led to

\lim_{parrow\infty}x_{m_{2}+p+1}=\infty ,

which contradicts (2.12). So subcase b is impossible.

Subcase c : There is a sequence \{n_{i}\} of positive integers, such that

x_{n_{i}}-1<0 , x_{n_{i}+1}-1>0 .

Thus

\lim_{iarrow\infty}x_{n_{i}}=1-\beta , \lim_{iarrow\infty}x_{n_{i}+1}=1+\beta . (2.15)

Since

x_{n_{i}+1}=x_{n_{i}} exp [r_{n_{i}}(1-x_{n_{i}})] ,

by (2. 15), we have

\lim_{iarrow\infty}r_{n_{i}}=\lim_{iarrow\infty}\frac{1}{1-x_{n_{i}}}\ln\frac{x_{n_{i}+1}}{x_{n_{i}}}

= \frac{1}{\beta}\ln\frac{1+\beta}{1-\beta}

= \frac{1}{\beta}(\sum_{k=1}^{\infty}(-1)^{k+1}\frac{\beta^{k}}{k}+\sum_{k=1}^{\infty}\frac{\beta^{k}}{k})

=2 \sum_{k=0}^{\infty}\frac{\beta^{2k}}{2k+1}

>2 .

This contradicts (1.5), and subcase c is impossible.

According to the above discussions, we know that \beta=0 and so
\lim_{narrow\infty}x_{n}=1 for case 2.

Case 3: There exists a sequence \{n_{j}\} of integers, such that

\triangle V(n_{1})\leq 0 , \triangle V(n)>0 for n_{2k-1}+1\leq n\leq n_{2k} ,
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\triangle V(n)\leq 0 for n_{2k}+1\leq n\leq n_{2k+1} , k=1,2 , . . \tau

In this case, we see that

V(n)\leq V(n_{2k}+1) for n_{2k-1}+1\leq n\leq n_{2k+1} , k=1,2 , .
(2.16)

Since \triangle V(n_{2k})>0 for k=1,2 , . ., by (2.6), we get

V(n_{2k})< \frac{3}{2}(r_{n_{2k}}-2) , k=1,2 , . . 1 (2.17)

By (1.5), this implies that \lim_{karrow\infty}V(n_{2k})=0 , that is,

\lim_{karrow\infty}x_{n_{2k}}=1 . (2.18)

By (1.1),

x_{n_{2k}+1}=x_{n_{2k}} exp [r_{n_{2k}}(1-x_{n_{2k}})] ,

so

\lim_{karrow\infty}x_{n_{2k}+1}=1 and \lim_{karrow\infty}V(n_{2k}+1)=0 .

Noting (2.16), it is obvious that

\lim_{narrow\infty}V(n)=0 , i.e. \lim_{narrow\infty}x_{n}=1 .

In view of the above three cases, we know that Theorem 1.1 holds. This
completes the proof. \square

Proof of Theorem 1.2. Assume, for the sake of contradiction, that (1.1)
has a nontrivial solution \{x_{n}\} such that \lim_{narrow\infty}x_{n}=1 .

By (1.1), we have

x_{n+1}-1=(x_{n}-1) exp [r_{n}(1-x_{n})]+\exp[r_{n}(1-x_{n})]-1 ,

so,

\frac{|x_{n+1}-1|}{|x_{n}-1|}\geq\frac{|\exp[r_{n}(1-x_{n})]-1|}{|r_{n}(1-x_{n})|}r_{n}- exp [r_{n}(1-x_{n})] . (2.19)

Since \{r_{n}\} is bounded, we know \lim_{narrow\infty}r_{n}(1-x_{n})=0 . By (2.19) and
(1.6), we get

\lim_{narrow}\inf_{\infty}\frac{|x_{n+1}-1|}{|x_{n}-1|}\geq\lim_{narrow}\inf_{\infty}r_{n}-1>1 ,
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which leads to

\lim_{narrow\infty}|x_{n}-1|=\infty .

This is a contradiction. Therefore, Theorem 1.2 holds, the proof is complete.
\square
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