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Higher derivatives of holomorphic function
with positive real part

Shinji YAMASHITA
(Received September 9, 1998)

Abstract. Upper estimates of |f^{(n)}(z)|/{\rm Re} f(z) , n\geq 2 , of f holomorphic and Re f>0
in a plane domain are proposed; the equality conditions are considered in detail.

Key words: function with positive real part, Schwarz-Pick’s lemma, hyperbolic domain,
Poincar\’e density, radius of univalency.

1. Introduction

Let \mathcal{P}(\Omega) be the family of functions f holomorphic with positive real
part Re f>0 in a domain \Omega in the complex plane C=\{z;|z|<+\infty\} . We
shall prove some sharp upper estimates of the quotient |f^{(n)}(z)|/{\rm Re} f(z) for
f\in \mathcal{P}(\Omega) at z\in\Omega for n\geq 2 , together with the detailed equality conditions.

The specified case n=1 and \Omega=D\equiv\{z;|z|<1\} is well known. For
f\in \mathcal{P}(D) ,

\frac{|f’(z)|}{{\rm Re} f(z)}\leq\frac{2}{1-|z|^{2}} (1.1)

at each z\in D . The extremal functions are essentially \ell_{\alpha}(z)=(1+\alpha z)/(1-

\alpha z) , where \alpha\in\partial D\equiv\{z;|z|=1\} . More precisely, if the equality holds in
(1.1) at a point z\in D , then

f(w) \equiv\frac{1-\overline{a}w+\beta(w-a)}{1-\overline{a}w-\beta(w-a)} ,

where \beta\in\partial D and a\in D , so that the equality holds in (1.1) everywhere in
D ; one can prove that f=A\ell_{\gamma}+iB , where

A= \frac{1-|a|^{2}}{|1+a\beta|^{2}}>0 , B= \frac{-2{\rm Im}(a\beta)}{|1+a\beta|^{2}} , and \gamma=\frac{\beta+\overline{a}}{1+a\beta}\in\partial D .

See Section 4 for the details on (1.1).
We begin with the case \Omega=D and n\geq 2 .
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Theorem 1 For f\in \mathcal{P}(D) the estimate

\frac{|f^{((n)}(z)|}{Rf(z)}\leq\frac{\ell_{1}^{(n)}(|z|)}{{\rm Re}\ell_{1}(|z|)}=\frac{n!2}{(1-|z|^{2})(1-|z|)^{n-1}} (1.2)

holds at each point z\in D and for all n\geq 2 . If the equality holds in (1.2)
at a point z\in D and for an n\geq 2 , then f=A\ell_{\alpha}+iB , for an \alpha\in\partial D , and
for A>0 and B both real constants. Conversely, if f=A\ell_{\alpha}+iB , \alpha\in\partial D ;
A>0 and B both real constants, then the equality holds in (1.2) at each
point of the radius

\mathcal{R}(\alpha)=\{\overline{\alpha}t;0\leq t<1\}

and for each n\geq 2 , whereas the inequality (1.2) is strict at each point of
D\backslash \mathcal{R}(\alpha) and for each n\geq 2 .

In Section 5 we shall prove Theorem 2 which is proposed in Section 4
and is a version of Theorem 1 for a hyperbolic domain \Omega again with the
detailed equality conditions.

2. Proof of Theorem 1

We begin with a lemma.

Lemma 1 Let f be holomorphic in D , let 0<\rho\leq 1 , and let A\neq 0 and
B both be complex constants. Set for a fixed z\in D ,

f( \frac{\rho w+z}{1+\overline{z}\rho w})-B

A
= \sum_{k=0}^{\infty}b_{k}w^{k} . w\in D . (2.1)

Then for each n\geq 1 ,

\frac{f^{(n)}(z)}{n!}=\frac{A}{\rho^{n}(1-|z|^{2})^{n}}\sum_{k=0}^{n-1} (\begin{array}{ll}n -1 k\end{array}) (\overline{z}\rho)^{n-1-k}b_{k+1} . (2.2)

Proof. Let g(w) be the left-hand side function in (2.1) of the variable
w\in D . Set

\zeta=\frac{\rho w+z}{1+\overline{z}\rho w} , w\in D , so that d \zeta=\frac{\rho(1-|z|^{2})}{(1+\overline{z}\rho w)^{2}}dw .
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Observe that

\frac{(1+\overline{z}\rho w)^{n-1}}{w^{n+1}}=\sum_{k=0}^{n-1} (\begin{array}{ll}n -1 k\end{array}) (\overline{z}\rho)^{n-1-k}w^{-k-2} for w\neq 0 .

Then

\frac{f^{(n)}(z)}{n!}=\frac{1}{2\pi i}\int_{|\frac{\zeta-z}{1-\overline{z}\zeta}|=_{2}^{e}}

\frac{f(\zeta)}{(\zeta-z)^{n+1}}d\zeta

= \frac{A}{\rho^{n}(1-|z|^{2})^{n}}\sum_{k=0}^{n-1} (\begin{array}{ll}n -1 k\end{array})

( \overline{z}\rho)^{n-1-k_{\frac{1}{2\pi i}}}\int_{|w|=\frac{1}{2}}

\frac{g(w)}{w^{k+2}}dw .

This is (2.2).
Let \mathcal{P}_{o} be the family of functions f\in \mathcal{P}(D) with f(0)=1 . A typical

member of 7_{o}^{\supset} is \ell_{\alpha} , \alpha\in\partial D . For

f(z)=1+ \sum_{k=1}^{\infty}a_{k}z^{k}

of \mathcal{P}_{o} we have the estimate |a_{k}|\leq 2 for all k\geq 1 and furthermore, |a_{1}|=2

if and only if f=\ell_{\alpha} for an \alpha\in\partial D . See [G , p. 80]; the estimate |a_{1}|\leq 2

follows from the Schwarz inequality: |g’(0)|\leq 1 for g=(f-1)/(f+1) ; the
equality holds if and only if g(z)\equiv\alpha z for an \alpha\in\partial D or f=\ell_{\alpha} .

Simple computation shows that

\ell_{\alpha}(\frac{w-b}{1-\overline{b}w})\equiv\frac{1-|b|}{1+|b|}\ell_{\alpha}(w) (2.3)

in D for all \alpha\in\partial D and all b\in \mathcal{R}(\alpha) . \square

Proof of Theorem 1. Fix z\in D and let

g(w)= \frac{f(\frac{w+z}{1+\overline{z}w})-i{\rm Im} f(z)}{{\rm Re} f(z)}=1+\sum_{k=1}^{\infty}b_{k}w^{k}-

(2.4)

We apply Lemma 1 to g with \rho=1 , A={\rm Re} f(z) , and B=i Im f(z) . Then

\frac{f^{(n)}(z)}{n!}=\frac{{\rm Re} f(z)}{(1-|z|^{2})^{n}}\sum_{k=0}^{n-1} (\begin{array}{ll}n -1 k\end{array}) \overline{z}^{n-1-k}b_{k+1} , (2.5)
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which, together with g\in \mathcal{P}_{o} , yields that

\frac{|f^{(n)}(z)|}{n!}\leq\frac{2(1+|z|)^{n-1}{\rm Re} f(z)}{(1-|z|^{2})^{n}} ; (2.6)

this is equivalent to (1.2). \square

Suppose that the equality holds in (1.2) or in (2.6) at z and for an
n\geq 2 . Then |b_{k+1}|=2 for 0\leq k\leq n-1 , so that |b_{1}|=2 . Hence g=\ell_{\alpha}

for an \alpha\in\partial D . Since b_{k+1}=2\alpha^{k+1} for all k\geq 0 , it follows that

\frac{f^{(m)}(z)}{m!}=\frac{2\alpha(\overline{z}+\alpha)^{m-1}{\rm Re} f(z)}{(1-|z|^{2})^{m}} (2.7)

for all m\geq 1 . Since the equality holds in (2.6) we then have

|\overline{z}+\alpha|^{n-1}=(1+|z|)^{n-1} .

so that z\in \mathcal{R}(\alpha) . It then follows from (2.3) for b=z that

f(w)=({\rm Re} f(z)) \ell_{\alpha}(\frac{w-z}{1-\overline{z}w})+i Im f(z)=A\ell_{\alpha}(w)+iB ,

where

A= \frac{1-|z|}{1+|z|} Re f(z)>0 and B={\rm Im} f(z) .

Conversely given f=A\ell_{\alpha}+iB , \alpha\in\partial D , A>0 , B both real constants,
and given n\geq 2 , we have the chain of identities

\frac{n!2}{(1-|z|^{2})|1-\alpha z|^{n-1}}=\frac{|f^{((n)}(z)|}{Rf(z)}=\frac{n!2}{(1-|z|^{2})(1-|z|)^{n-1}}

if and only if z\in \mathcal{R}(\alpha) .

3. Application of Theorem 1

Suppose that h>0 is harmonic in D . Then we have a holomorphic
function f with Re f=h in D . Since

f^{(n)}(z)=2 \frac{\partial^{n}h(z)}{\partial z^{n}} ,
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where

\frac{\partial}{\partial z}=\frac{1}{2}(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y})

for z=x+iy, n\geq 1 , we have

\frac{|f^{((n)}|}{Rf}=\frac{2}{h}|\frac{\partial^{n}h}{\partial z^{n}}| (3.1)

We then have the estimate of the right-hand side of (3.1) with the aid of
(1.1) and (1.2), together with the detailed equality conditions. Notice that,
in the case where n=1 ,

\frac{|f’|}{{\rm Re} f}=|grad(\log h)| ,

where for g=\log h ,

|gradg|=\sqrt{g_{x}^{2}+g_{y}^{2}} .

Let \Gamma be the family of f holomorphic in D such that f(z)+f(w)\neq 0
for all z , w\in D . In particular, f\in\Gamma never vanishes in D and \mathcal{P}(D)\subset\Gamma

We call f\in\Gamma a Gel’fer function. In [Yl, Theorem 5, p. 254] we proved
that if f(0)=1 for f\in\Gamma , then Re f(z)>0 in the disk \{|z|<1/\sqrt{2}\} .
The constant 1/\sqrt{2} is sharp. For p=(1+i)/\sqrt{2} , the function f(z)=
(1-\overline{p}z)/(1+pz) is in \Gamma , f(0)=1 , and further Re f(i/\sqrt{2})=0 .

If f\in\Gamma and z\in D , then for a constant \rho , 0<\rho\leq 1 , the function

g(w)= \frac{f(\frac{\rho w+z}{1+\overline{z}\rho w})}{f(z)}

of w\in D is in \Gamma with g(0)=1 . Since |g’(0)|\leq 2 (see, for example, [Yl,
(G8) ]) , it follows that

| \frac{f’(z)}{f(z)}|\leq\frac{2}{1-|z|^{2}} ;

the equality holds for f=\ell_{\alpha} at each point z=\overline{\alpha}t , -1<t<1 .
We now obtain
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Corollary to Theorem 1 For f\in\Gamma the strict inequality

| \frac{f^{((n)}(z)}{(z)}|<\frac{n!2\sqrt{2}(|z|+\sqrt{2})^{n-1}}{(1-|z|^{2})^{n}} (3.2)

holds for all n\geq 2 and at each z\in D .

Proof. Set \rho=1/\sqrt{2} and fix z\in D . Then the function

g(w)= \frac{f(\frac{\rho w+z}{1+\overline{z}\rho w})}{f(z)}=1+\sum_{k=1}^{\infty}b_{k}w^{k}

is in \prime p_{o} . It then follows from (2.2) with A=f(z) that

| \frac{f^{((n)}(z)}{(z)}|\leq\frac{n!2(1+\rho|z|)^{n-1}}{\rho^{n}(1-|z|^{2})^{n}} . (3.3)

If the equality would hold in (3.3) for an n\geq 2 , then |b_{k+1}|=2 for 0\leq k\leq

n-1 . Hence |b_{1}|=2 , so that there exists \alpha\in\partial D with g=\ell_{\alpha} . Then f has
(\rho\overline{\alpha}+z)/(1+\overline{z}\rho\overline{\alpha})\in D as a pole. This is a contradiction. \square

4. Hyperbolic domain

A domain \Omega in the plane C is called hyperbolic if C\backslash \Omega contains at
least two points. Let \phi be a universal covering projection from D onto a
hyperbolic domain \Omega (a projection \phi : D -

\Omega , for short); \phi is holomorphic
and \phi’ is zer0-free in D . The Poincar\’e density \Pi_{\Omega} is then the function in \Omega

defined by

\Pi_{\Omega}(z)=\frac{1}{(1-|w|^{2})|\phi’(w)|} , z\in\Omega ,

where z=\phi(w) ; the choice of \phi and w is immaterial as far as z=\phi(w) is
satisfied.

Let \Omega and \Sigma both be hyperbolic domains and let f : \Omega
-arrow\Sigma be holds

morphic. The Schwarz-Pick lemma is the estimate of |f’| in terms of \Pi_{\Omega}

and \Pi_{\Sigma} , namely,

\Pi_{\Sigma}(f(z))|f’(z)|\leq\Pi_{\Omega}(z) (4.1)

at each point z\in\Omega ; see, for example, [Y2, p. 304]. If the equality holds at
a point z\in\Omega , then f\circ\phi : Darrow\Sigma is a projection for each projection \phi :
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Darrow\Omega , and, moreover, the equality holds in (4.1) everywhere in \Omega . See, for
example, [Y2] and [Y3], for recent researches on the Schwarz-Pick lemma.

The case where \Omega=D and \Sigma is the half-plane H= {w ; Re w>0} is
of our main interest. Since

\Pi_{D}(z)=\frac{1}{1-|z|^{2}} and \Pi_{H}(z)=\frac{1}{2{\rm Re} z} ,

(4.1) for f\in \mathcal{P}(D) is reduced to (1.1).
To consider the higher derivatives we need a device. For a projection

\phi : Darrow\Omega we suppose that z=\phi(w) . Let \rho_{\Omega}(z) be the greatest r such
that 0<r\leq 1 and \phi is univalent in

\{\zeta;|\frac{(-w}{1-\overline{w}(}|<r\}

which is the non-Euclidean disk of center w and the non-Euclidean radius
arctanh r, and also is the disk of

center \frac{w(1-r^{2})}{1-r^{2}|w|^{2}}\in D and radius \frac{r(1-|w|^{2})}{1-r^{2}|w|^{2}}\leq 1 .

Again \rho_{\Omega}(z) is independent of the particular choice of \phi and w as far as
z=\phi(w) is satisfied. We may therefore call \rho_{\Omega}(z) the radius of univalency
of \Omega at z\in\Omega . In particular, the set

\triangle(z)=\{\phi(\zeta);|\frac{\zeta-w}{1-\overline{w}\zeta}|<\rho_{\Omega}(z)\} , z=\phi(w) , (4.2)

is a simply connected domain depending only on z\in\Omega;\triangle(z) will be con-
sidered in Section 6.

Theorem 2 For f\in \mathcal{P}(\Omega) of a hyperbolic domain \Omega\subset C the inequality

\frac{|f^{((n)}(z)|}{Rf(z)}\leq 2 \frac{(2n-1)!}{(n-1)!}(\frac{\Pi_{\Omega}(z)}{\rho_{\Omega}(z)})^{n} (4.3)

holds for each n\geq 2 and at each z\in\Omega . If the equality holds in (4.3) at a
point z\in\Omega and for an n\geq 2 , then the following two items hold.

(I) There exist complex constants Q\neq 0 and R such that \Omega is the slit
domain

\Omega=C\backslash \{Qt+R;t\leq-\frac{1}{4}\} ; (4.4)
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in particular, \rho_{\Omega}(z)\equiv 1 .
(II) The function f is of the form

f(w)=A \sqrt\frac{Q}{4w+Q-4R}+iB , (4.5)

where A>0 and B are real constants and the branch of \sqrt{}^{-} is chosen so
that f(R)=A+iB .

Conversely suppose that f of (4.5) is given in \Omega of (4.4). Then the
equality holds in (4.3) at each point of the half-line

\mathcal{L}=\{Qt+R;t>-\frac{1}{4}\} (4.6)

and for each n\geq 2 , whereas the inequality (4.3) is strict at each point of
\Omega\backslash \mathcal{L} and for each n\geq 2 .

The function of (4.5) maps \Omega of (4.4) univalently onto H .
The inequality (4.3) in the specified case \Omega=D reads that

\frac{|f^{((n)}(z)|}{Rf(z)}\leq 2\cdot\frac{(2n-1)!}{(n-1)!} \frac{1}{(1-|z|^{2})^{n}} (4.7)

at each z\in D and for each n\geq 2 . Since

2^{n-1}< \frac{(2n-1)!}{n!(n-1)!} for n\geq 2 ,

(4.7) is worse than (1.2). Hence Theorem 2 is not an extension of Theorem 1.
As preparation for the proof of Theorem 2 we begin with the class S

of functions f holomorphic and univalent in D with f(0)=f’(0)-1=0.
Typical members of S are the rotations of the Koebe function K=K_{1} ,
namely, K_{\alpha}(z)=z/(1-\alpha z)^{2} , \alpha\in\partial D . K.S . Chua’s coefficient theorem [C ,
Theorem 2] for the inverse function f^{*} of f\in S in f(D) is the following.
Let f^{*k} be the k-th power of f^{*}(k=1,2, \cdots) having the expansion

f^{*k}(w)= \sum_{n=k}^{\infty}B_{nk}(f)w^{n}

in a neighborhood of 0. Note that B_{kk}(f)=1 . Then

|B_{nk}(f)|\leq|B_{nk}(K)| (4.8)
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for n\geq k\geq 1 . If n\geq 2 and if the equality holds in (4.8) for a pair n , k
with n>k , then f=K_{\alpha} for an \alpha\in\partial D , so that the equality holds in (4.8)
for all n\geq k\geq 1 . Chua observed that [C , (8) and (16)]

B_{nk}(K)=(-1)^{n-k} \frac{k}{n} (\begin{array}{l}2nn-k\end{array}) . 1\leq k\leq n ,

and further that

\sum_{k=1}^{n}|B_{nk}(K)|= (2n n-1) (4.9)

For later use we remark that

\frac{1-K^{*}(w)}{1+K^{*}(w)}=\frac{1}{\sqrt{4w+1}} (4.10)

because

K^{*}(w)= \frac{2w+1-\sqrt{4w+1}}{2w}

for w\in K(D) . It follows from

(K_{\alpha})^{*}(w)=\overline{\alpha}K^{*}(\alpha w) , w\in K_{\alpha}(D) ,

that

B_{nk}(K_{\alpha})=B_{nk}(K)\alpha^{n-k} . for 1\leq k\leq n and \alpha\in\partial D .

5. Proof of Theorem 2

Supposing first that 0\in\Omega and \phi(0)=\phi’(0)-1=0 for a projection
\phi : Darrow\Omega , and further that f(0)=1 , we shall prove that

\frac{\rho_{\Omega}(0)^{n}|f^{(n)}(0)|}{n!}\leq 2 (2n n-1) (5.1)

for all n\geq 2 . Furthermore we shall observe that if the equality holds in
(5.1) for an n\geq 2 , then there exists \beta\in\partial D such that \Omega=K_{\beta}(D) and

f(w)= \frac{1}{\sqrt{4\beta w+1}} (5.2)

for w\in\Omega , the branch satisfying f(0)=1 .
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Set \rho=\rho_{\Omega}(0) . Then \Phi(z)=\rho^{-1}\phi(\rho z) is a member of S and

F(z)\equiv f(\rho\Phi(z))=f(\phi(\rho z))

is of \mathcal{P}_{o} . Applying the composite function theorem [T , Theorem 1] to

Fo\Phi^{*}(\zeta)=f(\rho\zeta) , \zeta=\Phi(z)\in\Phi(D) ,

we have

\rho^{n}f^{(n)}(\rho\zeta)=(F\circ\Phi^{*})^{(n)}(\zeta)=\sum_{k=1}^{n}A_{nk}(\zeta)F^{(k)}(\Phi^{*}(\zeta)) , (5.3)

where

A_{nk}( \zeta)=\frac{1}{k!}\sum_{j=1}^{k}(-1)^{k-j} (\begin{array}{l}kj\end{array}) (\Phi^{*})^{k-j}(()(\Phi^{*j})^{(n)}(\zeta) ,

and further, (\Phi^{*})^{k-j} is the (k-j)-th power of \Phi^{*} with (\Phi^{*})^{0}=1 and
(\Phi^{*j})^{(n)} is the n-th derivative of the j-th power of \Phi^{*} , 1\leq j\leq k\leq n .
Setting \zeta=0 in (5.3) one now has

\frac{\rho^{n}f^{(n)}(0)}{n!}=\sum_{k=1}^{n}B_{nk}(\Phi)\frac{F^{(k)}(0)}{k!} . (5.4)

Since |F^{(k)}(O)|\leq k!2 for all k\geq 1 , and since (4.8) holds for \Phi\in S , one
immediately has (5.1) with the aid of (4.9).

Suppose that the equality holds in (5.1) for an n\geq 2 . Then |B_{21}(\Phi)|=

|B_{21}(K)| and |F’(0)|=2 . Hence we have \alpha and \beta of \partial D such that F=\ell_{\alpha}

and \Phi=K_{\beta} . If \rho<1 , then f(\phi(\rho\overline{\alpha}))=\ell_{\alpha}(\overline{\alpha})=\infty , so that f is not
holomorphic in \Omega . Hence \rho=1 , so that

f=F\circ\Phi^{*}=\ell_{\alpha}\circ(K_{\beta})^{*} ,

and \Omega=\phi(D)=\Phi(D)=K_{\beta}(D) . To have (5.2) we next show that \alpha\overline{\beta}=-1 .
Set \gamma=-\alpha\overline{\beta} . Then (5.4) reads that

\frac{f^{(n)}(0)}{n!}=\sum_{k=1}^{n}B_{nk}(K_{\beta})\frac{(\ell_{\alpha})^{(k)}(0)}{k!}

= \sum_{k=1}^{n}(-\beta)^{n-k}|B_{nk}(K)|2\alpha^{k}
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=2(- \beta)^{n}\sum_{k=1}^{n}\gamma^{k}|B_{nk}(K)| .

It then follows from (4.9) that

\sum_{k=1}^{n}|B_{nk}(K)|=(2n n-1) = \frac{|f^{(n)}(0)|}{n!2}=|\sum_{k=1}^{n}\gamma^{k}|B_{nk}(K)||

Hence, squaring the left- and the right-most terms one has

\sum|B_{nk}(K)||B_{nj}(K)|(1-\gamma^{k-j})=0 ,

where the summation is taken over all k , j with 1\leq k\leq n , 1\leq j\leq n ; note
that n\geq 2 . Since {\rm Re}(1-\gamma^{k-j})\geq 0 , it follows that {\rm Re}(1-\gamma^{k-j})=0 so
that \gamma^{k-j}=1 for k\neq j , 1\leq k\leq n , 1\leq j\leq n . Hence \gamma=1 . We thus have,
with the aid of (4.10), that

f(w)= \ell_{\alpha}\circ(K_{\beta})^{*}(w)=\frac{1+\alpha\overline{\beta}K^{*}(\beta w)}{1-\alpha\overline{\beta}K^{*}(\beta w)}=\frac{1-K^{*}(\beta w)}{1+K^{*}(\beta w)}=\frac{1}{\sqrt{4\beta w+1}} .

Given f of (5.2) in \Omega=K_{\beta}(D) , \beta\in\partial D , we consider the set E of points
z\in\Omega where the equality holds in (4.3) for all n\geq 2 . Since w=K_{\beta}(\zeta)\in\Omega ,
\zeta\in D , simple calculation yields that

Re f(w)= \frac{1-|\zeta|^{2}}{|1+\beta\zeta|^{2}} , |f^{(n)}(w)|=2 \frac{(2n-1)!}{(n-1)!}|\frac{1-\beta\zeta}{1+\beta(}|^{2n+1} ,

because

\prod_{k=0}^{n-1}(\frac{1}{2}+k)=2^{1-2n} \frac{(2n-1)!}{(n-1)!} ,

and further, \rho_{\Omega}(w)\equiv 1 , and

\frac{1}{\Pi_{\Omega}(w)}=\frac{(1-|\zeta|^{2})|1+\beta\zeta|}{|1-\beta\zeta|^{3}}

for \zeta\in D . Hence

\frac{|f^{((n)}(w)|}{\Pi_{\Omega}(wRnef(w)}=2\cdot\frac{(2n-1)!}{(n-1)!}(\frac{1-|(|^{2}}{|1-\beta^{2}\zeta^{2}|})^{n-1} (5.5)

for \zeta\in D . Consequently, w=K_{\beta}(\zeta) is in E if and only if \beta( is on the real
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diameter (-1, 1) or equivalently, if and only if

w \in\Lambda\equiv\{\overline{\beta}t;t>-\frac{1}{4}\}

Hence E=\Lambda . It is easy to prove that the inequality (4.3) is strict at each
point z\in K_{\beta}(\Omega)\backslash \Lambda and for each n\geq 2 .

To prove (4.3) at z=a\in\Omega we choose a projection \phi : D -
\Omega , with

\phi(0)=a and consider the domain

\Sigma=\{\frac{\zeta-a}{\phi’(0)} ; \zeta\in\Omega\}

for which 0\in\Sigma and \psi=(\phi-a)/\phi’(0) is a projection \psi : D - \Sigma with
\psi(0)=\psi’(0)-1=0 . Then the function

g(w)= \frac{f(a+\phi’(0)w)-i{\rm Im} f(a)}{{\rm Re} f(a)}

is in \mathcal{P}(\Sigma) with g(0)=1 . Since g^{(n)}(0)=\phi’(0)^{n}f^{(n)}(a)/{\rm Re} f(a) , since
\rho\Sigma(0)=\rho_{\Omega}(a) , and since |\phi’(0)|=1/\Pi_{\Omega}(a) , we may apply (5.1) to g in \Sigma

to have

( \frac{\rho_{\Omega}(a)}{\Pi_{\Omega}(a)})^{n}\frac{|f^{(n)}(a)|}{n!{\rm Re} f(a)}=\frac{\rho\Sigma(0)^{n}|g^{(n)}(0)|}{n!}\leq 2 (\begin{array}{ll}2n -1 n\end{array})

for all n\geq 2 . This is equivalent to (4.3) for z=a. If the equality holds in
(4.3) at z=a, thenwe have (I) and (II) with

Q=\overline{\beta}\phi’(0) , R=a, A={\rm Re} f(a) , and B=f(a) .

The detailed proof is obvious.

Remark 1. How about the case n=1 in Theorem 2 ? Since (4.1) for
\Sigma=H is valid, we have

\frac{|f’(z)|}{{\rm Re} f(z)}\leq 2\Pi_{\Omega}(z)\leq 2\frac{\square _{\Omega}(z)}{\rho_{\Omega}(z)} . (5.6)

Suppose that the left- and the right-most are the same in (5.6). Then
\rho_{\Omega}(z)=1 , so that \Omega must be simply connected, and furthermore, the
equalities hold in (5.6) for every poit of \Omega . The function F in the proof
must be \ell_{\alpha} for some \alpha\in\partial D because |F’(0)|=2 (and we have no explicit
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form for \Phi=\phi .) We can also prove (the weaker result)

\frac{|f’(z)|}{{\rm Re} f(z)}\leq 2\frac{\Pi_{\Omega}(z)}{\rho_{\Omega}(z)}

by the same method as in the proof of Theorem 2.

Remark 2. It is known that \mathcal{P}(\Omega)=C if the closed set C\backslash \Omega is of logarith-
mic capacity zero. In other words, \mathcal{P}(\Omega)=C if \Omega\in O_{HP}=O_{G} ; see [AS, p .
208]. More generally, g is holomorphic and bounded in modulus by M>0
in \Omega if and only if f=(g+M)/(g-M)\in \mathcal{P}(\Omega) . Hence one observes that
\mathcal{P}(\Omega)=C if and only if \Omega\in O_{AB} .

6. Positive harmonic function in \Omega

Let h>0 be harmonic in a hyperbolic domain \Omega . Then for each \triangle(z)

of (4.2) we have a holomorphic function f with Re f=h in \triangle(z) . Since the
proof of Theorem 2 is “local” in its character, we have

| \frac{\partial^{n}h(z)}{\partial z^{n}}|\frac{1}{h(z)}\leq\frac{(2n-1)!}{(n-1)!}(\frac{\square _{\Omega}(z)}{\rho_{\Omega}(z)})^{n}

at each z\in\Omega and for each n\geq 1 . Actually, (4.3) for the present f is valid,
and the case n=1 is obvious by \rho_{\Omega}(z)\leq 1 . If the equality holds at a point
z\in D , then \rho_{\Omega}(z)=1 , so that f can be defined in the whole \Omega , the slit
domain of (4.4). The equality conditions are different according as n=1
or n>1 .
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