On purifiable torsion-free rank-one subgroups

Takashi Okuyama

(Received March 6, 2000)

Abstract

First, we give a necessary and sufficient condition for a torsion-free rank-one subgroup of an arbitrary abelian group to be purifiable in a given group and show that all pure hulls of a purifiable torsion-free rank-one subgroup are isomorphic. Next, we show that if a $T(G)$-high subgroup A of an abelian group G is purifiable in G, then there exists a subgroup T^{\prime} of $T(G)$ such that $G=H \oplus T^{\prime}$ for every pure hull H of A in G. An abelian group G is said to be a strongly ADE decomposable group if there exists a purifiable $T(G)$-high subgroup of G. We present an example G such that not all $T(G)$ high subgroups of a strongly ADE decomposable group G are purifiable in G. Moreover, we characterize the strongly ADE decomposable groups of torsion-free rank 1. Finally, we use previous results to give a necessary and sufficient condition for an abelian group of torsion-free rank 1 to be splitting.

Key words: purifiable subgroup, strongly ADE decomposable group, height-matrix, pure hull, splitting mixed group.

A subgroup A of an arbitrary abelian group G is said to be purifiable in G if there exists a pure subgroup H of G containing A which is minimal among the pure subgroups of G that contain A. Such a subgroup H is said to be a pure hull of A in G.

Hill and Megibben [7] established properties of pure hulls of p-groups and characterized the p-groups for which all subgroups are purifiable.

Next, Benabdallah and Irwin [2] introduced the concept of almost-dense subgroups of p-groups and used it to give the structure of pure hulls of purifiable subgroups of p-groups.

Furthermore, Benabdallah and Okuyama [3] introduced a new invariant, the so-called n-th overhangs of a subgroup of a p-group, which are related to the n-th relative Ulm-Kaplansky invariant. Using it, they obtained a necessary condition for subgroups to be purifiable.

Benabdallah, Charles, and Mader [1] introduced the concept of maximal vertical subgroups supported by a given subsocle of a p-group and characterized the p-groups for which the necessary condition given in [3] is

1991 Mathematics Subject Classification : 20K21, 20K27.
This work is supported by Grant-in-Aid for Science Research (c).
also sufficient.
As for isomorphism of pure hulls, we obtained several results in [10] and [11]. Other results about purifiable subgroups of p-groups are contained in [4], [5], [8], [9], [10], and [11].

Recently, in [13], we extended the concept of almost-dense subgroups from p-groups to arbitrary abelian groups and began to study purifiable subgroups of arbitrary abelian groups. Though we characterized the groups for which all subgroups are purifiable, we have not yet given a necessary and sufficient condition to be purifiable even for torsion-free subgroups of arbitrary abelian groups.

In this note, in Section 2, we determine the structure of pure hulls of purifiable torsion-free rank-one subgroups A of arbitrary abelian groups G. Such pure subgroups H are ADE groups. We also began to study ADE groups in [12].

Let G be an arbitrary abelian group, $g \in G$, and $p_{n}(n \geqq 1)$ a listing of all primes in increasing order. Then we associate the height-matrix $\mathbb{H}(g)$, an infinite matrix with ordinal numbers for entries, as follows;

$$
\mathbb{H}(g)=\left(\begin{array}{ccccc}
h_{p_{1}}^{*}(g) & h_{p_{1}}^{*}\left(p_{1} g\right) & \ldots & h_{p_{1}}^{*}\left(p_{1}^{k} g\right) & \ldots \\
\cdots & & & & \\
h_{p_{n}}^{*}(g) & h_{p_{n}}^{*}\left(p_{n} g\right) & \ldots & h_{p_{n}}^{*}\left(p_{n}^{k} g\right) & \ldots \\
\cdots & & & &
\end{array}\right)
$$

The element in the (n, k)-position of $\mathbb{H}(g)$ is the generalized p_{n}-height of $p_{n}^{k} g$, for all $n \geqq 1$ and $k \geqq 0$. The element in the (n, k)-position of $\mathbb{H}(g)$ is denoted by $\mathbb{H}_{n, k}(g)$. The nth row of $\mathbb{H}(g)$ is called the p_{n}-indicator of g. $\mathbb{H}_{n, k}(g)=\infty$ means that $p_{n}^{k} g$ is an element of the maximal p-divisible subgroup of G.

In Section 3, we give a necessary and sufficient condition for a torsionfree rank-one subgroup A of an arbitrary abelian group G to be purifiable in G. In fact, A is purifiable in G if and only if, for every $a \in A$ and all $n \geqq 1$, the p_{n}-indicator of a is one of the following two types:
(1) there exists a nonnegative integer r_{n} such that $\mathbb{H}_{n, r_{n}}(a)<\omega$ and $\mathbb{H}_{n, r_{n}+i}(a)=\mathbb{H}_{n, r_{n}}(a)+i$ for all $i \geqq 0 ;$
(2) there exists a nonnegative integer r_{n} such that $\mathbb{H}_{n, r_{n}}(a)=\infty$ and if $r_{n}>0$, then $\mathbb{H}_{n, r_{n}-1}(a)<\omega$.
Moreover, we show that all pure hulls of A are isomorphic.
In Section 4, we study purifiable $T(G)$-high subgroups of arbitrary
abelian groups G. We prove that if a $T(G)$-high subgroup N of G is purifiable in G, then there exists a subgroup T^{\prime} of $T(G)$ such that $G=H \oplus T^{\prime}$ for every pure hull H of N in G and all pure hulls of N in G are isomorphic.

An arbitrary abelian group G is said to be a strongly $A D E$ decomposable group if there exists a $T(G)$-high subgroup of G to be purifiable in G. We know an ADE group that is not splitting. (See [6, Vol. 2, Example 2, p.186]). Though splitting groups are strongly ADE decomposable groups, the converse is not true.

In Section 5, we present a strongly ADE decomposable group G of torsion-free rank 1 for which not all $T(G)$-high subgroups are purifiable in G. We also characterize the groups G of torsion-free rank 1 for which all T-high subgroups of G are purifiable in G. Moreover, we give a characterization of strongly ADE decomposable groups of torsion-free rank 1. In fact, an arbitrary abelian group G of torsion-free rank 1 is ADE decomposable if and only if there exists an element $a \in G \backslash T(G)$ such that, for all $n \geqq 1$, the p_{n}-indicator of a is one of the following two types:
(1) there exists a nonnegative integer r_{n} such that $\mathbb{H}_{n, r_{n}}(a)<\omega$ and $\mathbb{H}_{n, r_{n}+i}(a)=\mathbb{H}_{n, r_{n}}(a)+i$ for all $i \geqq 0 ;$
(2) there exists a nonnegative integer r_{n} such that $\mathbb{H}_{n, r_{n}}(a)=\infty$ and if $r_{n}>0$, then $\mathbb{H}_{n, r_{n}-1}(a)<\omega$.
In [14], Stratton established a necessary and sufficient condition for arbitrary abelian groups of torsion-free rank 1 to be splitting. We use the previous results to obtain the same result. In fact, an arbitrary abelian group G of torsion-free rank 1 is splitting if and only if there exists an element $a \in G \backslash T(G)$ such that, for all $n \geqq 1$, the p_{n}-indicator of a is one of the following two types:
(1) $\mathbb{H}_{n, 0}(a)<\omega$ and $\mathbb{H}_{n, k}(a)=\mathbb{H}_{n, 0}(a)+k$ for all $k \geqq 0$;
(2) $\mathbb{H}_{n, 0}(a)=\infty$.

From the previous two characterizations, we can see that ADE decompositions are weaker than splitting.

All groups considered are arbitrary abelian groups. The terminologies and notations not expressly introduced follow the usage of [6]. Throughout this note, let p be a prime. The p-part and the torsion part $T(G)$ of any arbitrary abelian group G is denoted by G_{p} and T, respectively. The p height of an element g of G means the generalized p-height, denoted by $h_{p}(g)$ instead of $h_{p}^{*}(g)$.

1. Notation and Basics

We recall definitions and properties mentioned in [13]. We frequently use them in this note. Throughout this section, let G be an arbitrary abelian group and A a subgroup of G.

Definition 1.1 A is said to be p-almost-dense in G if, for every p-pure subgroup K of G containing A, the torsion part of G / K is p-divisible. Moreover, A is said to be almost-dense in G if A is p-almost-dense in G for every prime p.

Proposition 1.2 [13, Proposition 1.3] A is p-almost-dense in G if and only if, for all integers $n \geqq 0, A+p^{n+1} G \supseteq p^{n} G[p]$.

Proposition 1.3 [13, Proposition 1.4] The following properties are equivalent:
(1) A is almost-dense in G;
(2) for all integers $n \geqq 0$ and all primes $p, A+p^{n+1} G \supseteq p^{n} G[p]$;

Definition $1.4 A$ is said to be p-purifiable[purifiable] in G if, among the p-pure[pure] subgroups of G containing A, there exists a minimal one. Such a minimal p-pure[pure] subgroup is called a p-pure [pure] hull of A.

Proposition 1.5 [13, Theorem 1.8] There exists no proper p-pure subgroup of G containing A if and only if the following conditions hold:
(1) A is p-almost-dense in G;
(2) G / A is a p-group;
(3) there exists a nonnegative integer m such that $p^{m} G[p] \subseteq A$.

Proposition 1.6 [13, Theorem 1.11] There exists no proper pure subgroup of G containing A if and only if the following three conditions hold:
(1) A is almost-dense in G;
(2) G / A is torsion;
(3) for every prime p, there exists a nonnegative integer m_{p} such that

$$
p^{m_{p}} G[p] \subseteq A
$$

Proposition 1.7 [13, Theorem 1.12] A is purifiable in G if and only if, for every prime p, A is p-purifiable in G.

Definition 1.8 For every nonnegative integer n, we define the n-th p overhang of A in G to be the verctor space

$$
V_{p, n}(G, A)=\frac{\left(A+p^{n+1} G\right) \cap p^{n} G[p]}{\left(A \cap p^{n} G\right)[p]+p^{n+1} G[p]} .
$$

Moreover, A is said to be p-vertical in G if $V_{p, n}(G, A)=0$ for all $n \geqq 0$.
It is convenient to use the following notations for the numerator and the denominator of $V_{p, n}(G, A)$:

$$
A_{G}^{n}(p)=\left(A+p^{n+1} G\right) \cap p^{n} G[p]=\left(\left(A \cap p^{n} G\right)+p^{n+1} G\right)[p]
$$

and

$$
A_{n}^{G}(p)=\left(A \cap p^{n} G\right)[p]+p^{n+1} G[p] .
$$

If A is torsion-free, then $A_{n}^{G}(p)=p^{n+1} G[p]$. Moreover, if A is torsionfree and p-almost-dense in G, then

$$
V_{p, n}(G, A)=\frac{p^{n} G[p]}{p^{n+1} G[p]} .
$$

Hence $V_{p, n}(G, A)$ is nth Ulm-Kaplansky invariant of G_{p}.
Proposition 1.9 [13, Lemma $4.2(1)] \quad V_{p, m+n}(G, A)=V_{p, n}\left(p^{m} G, A \cap p^{m} G\right)$ for all $n, m \geqq 0$.

Proposition 1.10 [13, Proposition 2.2] For every p-pure subgroup K of G containing A,

$$
V_{p, n}(G, A) \cong V_{p, n}(K, A)
$$

for all $n \geqq 0$.
Proposition 1.10 leads to the following intrinsic necessary condition for p-purifiability of subgroups.

Proposition 1.11 [13, Theorem 2.3] If A is p-purifiable in G, then there exists a nonnegative integer m such that $V_{p, n}(G, A)=0$ for all $n \geqq m$.

For convenience, we call a subgroup A an eventually p-vertical subgroup if there exists a nonnegative integer m such that $V_{p, n}(G, A)=0$ for all $n \geqq$ m, and A is said to be p-neat in G if $A \cap p G=p A$.

Proposition 1.12 [13, Proposition 2.6] Let A be p-neat in G. Then A is p-pure in G if and only if A is p-vertical in G.

Proposition 1.13 [13, Theorem 2.8] If $A p=0$, then following properties are equivalent:
(1) A is p-vertical in G;
(2) $\left(A+p^{n} G\right)[p]=A[p]+p^{n} G[p]$ for all $n \geqq 1$;
(3) if $a \in A$ such that $h_{p}(a)<\omega$, then $h_{p}(p a)=h_{p}(a)+1$.

Proposition 1.14 [13, Theorem 4.1(2)] If $A \cap p^{m} G$ is p-purifiable in $p^{m} G$ for some $m \geqq 0$, then A is p-purifiable in G.

2. The Structure of Pure Hulls

In this section, we consider the structure of pure hulls of purifiable torsion-free rank-one subgroups of arbitrary abelian groups. Before doing it, we give a useful lemma.

Lemma 2.1 Let G be an abelian group and A a torsion-free rank-one subgroup of G. Then we have:
(1) for all $n \geqq 1, \operatorname{dim}\left(V_{p, n}(G, A)\right) \leqq 1$;
(2) $p^{\omega}(G / A)[p] \cap \frac{G[p]+A}{A} \subseteq \frac{p^{\omega} G+A}{A}[p]$;
(3) if A is p-neat in G, then $p^{\omega}(G / A)[p]=\frac{p^{\omega} G+A}{A}[p]$ and

$$
\operatorname{dim}\left(\frac{p^{\omega}(G / A)[p]}{\left(p^{\omega} G[p]+A\right) / A}\right) \leqq 1 .
$$

Proof. (1) Suppose that $\operatorname{dim}\left(V_{p, n}(G, A)\right)>1$. There exist $x_{i} \in A_{G}^{n}(p) \backslash$ $A_{n}^{G}(p)$ for $i=1,2$ and a subgroup S of $V_{p, n}(G, A)$ such that

$$
V_{p, n}(G, A)=\left\langle x_{1}+A_{n}^{G}(p)\right\rangle \oplus\left\langle x_{2}+A_{n}^{G}(p)\right\rangle \oplus S .
$$

For $i=1,2$, there exist $a_{i} \in A$ and $g_{i} \in G$ such that $x_{i}=a_{i}+p^{n+1} g_{i}$. Since $r(A)=1$, there exist integers α_{i} for $i=1,2$ such that $\left(\alpha_{1}, \alpha_{2}\right)=1$ and $\alpha_{1} a_{1}+\alpha_{2} a_{2}=0$. Then $\alpha_{1} x_{1}+\alpha_{2} x_{2}=p^{n+1}\left(\alpha_{1} g_{1}+\alpha_{2} g_{2}\right) \in p^{n+1} G[p] \subseteq$ $A_{n}^{G}(p)$. This is a contradiction. Hence $\operatorname{dim}\left(V_{p, n}(G, A)\right) \leqq 1$ for all $n \geqq 1$.
(2) Let $x+A \in p^{\omega}(G / A)$ with $x \in G[p]$. Without loss of generality, we may assume that $h_{p}(x)<\omega$. Let $r=h_{p}(x)$. For all $n \geqq 0$, there exist $b_{n} \in A$ and $h_{n} \in G$ such that $x=b_{n}+p^{r+n+1} h_{n}$. Since $r(A)=1$, there exist integers β_{n} and γ_{n} such that $\left(\beta_{n}, \gamma_{n}\right)=1$ and $\beta_{n} b_{0}+\gamma_{n} b_{n}=0$. Then

$$
\left(\beta_{n}+\gamma_{n}\right) x=p^{r+1}\left(\beta_{n} h_{0}+\gamma_{n} p^{n} h_{n}\right) .
$$

By a similar argument, $\left(\beta_{n}, p\right)=\left(\gamma_{n}, p\right)=1$ and p divides $\beta_{n}+\gamma_{n}$. Hence $p^{r+1}\left(\beta_{n} h_{0}+\gamma_{n} p^{n} h_{n}\right)=0$ and $p^{r+1} h_{0} \in p^{\omega} G$.
(3) If A is p-neat in G, then $(G / A)[p]=\frac{G[p]+A}{A}$. By (2), it is immediate that $p^{\omega}(G / A)[p]=\frac{p^{\omega} G+A}{A}[p]$. Suppose that $\operatorname{dim}\left(\frac{p^{\omega}(G / A)[p]}{\left[p^{\omega} G[p]+A\right) / A}\right)>1$. We can write

$$
p^{\omega}(G / A)[p]=\left\langle y_{1}+A\right\rangle \oplus\left\langle y_{2}+A\right\rangle \oplus S^{\prime} \oplus \frac{p^{\omega} G[p]+A}{A}
$$

for some $y_{i} \in G[p]$ for $i=1,2$ and some subsocle S^{\prime} of G / A. Then $h_{p}\left(y_{i}\right)<$ ω for $i=1,2$. Let $r_{i}=h_{p}\left(y_{i}\right)$ for $i=1,2$. For $i=1,2$, there exist $c_{i} \in A$ and $k_{i} \in p^{\omega} G$ such that

$$
y_{i}=c_{i}+k_{i} .
$$

Since $r(A)=1$, there exist integers δ_{i} for $i=1,2$ such that $\left(\delta_{1}, \delta_{2}\right)=1$ and $\delta_{1} c_{1}+\delta_{2} c_{2}=0$. Then

$$
\delta_{1} y_{1}+\delta_{2} y_{2} \in p^{\omega} G[p] .
$$

This is a contradiction.
By Proposition 1.6 and [12, Proposition 2.2], we have:
Proposition 2.2 Let G be an abelian group and A a subgroup of G. If A is purifiable in G and H is a pure hull of A in G, then we have:
(1) A is almost-dense in H;
(2) H / A is torsion;
(3) for every prime p, there exists a nonnegative integer t_{p} such that

$$
p^{t_{p}} H[p] \subset A
$$

(4) if p is a prime such that $p A=A$, then $H_{p}=0$.

Standing Assumption 2.3 Let G be an abelian group and A a torsionfree rank-one subgroup of G. Suppose that A is purifiable in G. Let H be a pure hull of A in G and N a $T(H)$-high subgroup of H containing A.

We recall the definition of an ADE group.
Definition 2.4 Let A be a torsion-free group. An abelian group G is said to be an almost dense extension group ($A D E$ group) of A if A is almostdense and T-high in G. Such a subgroup A is called a moho subgroup of G.

It is immediate that H as in Proposition 2.2 is an ADE group with A as a moho subgroup. By Lemma 2.1 and Proposition 2.2, we have:

Lemma 2.5 Assume 2.3. For every prime p such that $H_{p} \neq 0$, there exist a positive integer n_{p} and $y_{p i}^{\prime} \in H_{p}$ for $1 \leqq i \leqq n_{p}$ such that

$$
H_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle y_{p i}^{\prime}\right\rangle .
$$

Setting $p^{t_{p i}}=o\left(y_{p i}^{\prime}\right)$ for $1 \leqq i \leqq n_{p}, t_{p i}<t_{p i+1}$ for $1 \leqq i \leqq n_{p}-1$.
Lemma 2.6 Assume 2.3. For every prime p such that $H_{p} \neq 0$, let H_{p} be a p-group as in Lemma 2.5. Then $h_{p}^{H / N}\left(p^{t_{p i}-1} y_{p i}^{\prime}+N\right)=h_{p}^{H / A}\left(p^{t_{p i}-1} y_{p i}^{\prime}+\right.$ A) for $1 \leqq i \leqq n_{p}$.

Proof. Since A is almost-dense in $H, t_{p i} \leqq h_{p}^{H / A}\left(p^{t_{p i}-1} y_{p i}^{\prime}+A\right) \leqq$ $h_{p}^{H / N}\left(p^{t_{p i}-1} y_{p i}^{\prime}+N\right)$. Let $d_{p i}$ and $e_{p i}$ be ordinals such that $d_{p i} \geqq t_{p i}$ and $e_{p i} \geqq t_{p i}$. Suppose that there exist $a_{p i} \in A, b_{p i} \in N, g_{p i} \in p^{d_{p i}} H$, and $h_{p i} \in p^{e_{p i}} H$ such that $p^{t_{p i}-1} y_{p i}^{\prime}=a_{p i}+g_{p i}=b_{p i}+h_{p i}$. Since $r(N)=1$, there exist integers $\alpha_{p i}, \beta_{p i}$ such that $\left(\alpha_{p i}, \beta_{p i}\right)=1$ and $\alpha_{p i} a_{p i}+\beta_{p i} b_{p i}=0$. Then

$$
\left(\alpha_{p i}+\beta_{p i}\right) p^{t_{p i}-1} y_{p i}^{\prime}=\alpha_{p i} g_{p i}+\beta_{p i} h_{p i} .
$$

By a similar argument of Lemma 2.1, $\left(\alpha_{p i}, p\right)=\left(\beta_{p i}, p\right)=1, p$ divides $\alpha_{p i}+$ $\beta_{p i}$, and $\alpha_{p i} g_{p i}+\beta_{p i} h_{p i}=0$. Hence $h_{p}^{H / N}\left(p^{t_{p i}-1} y_{p i}^{\prime}+N\right)=h_{p}^{H / A}\left(p^{t_{p i}-1} y_{p i}^{\prime}+\right.$ $A)$.

Lemma 2.7 Assume 2.3. For every prime p such that $H_{p} \neq 0$, let H_{p} be as in Lemma 2.5. If $h_{p}^{G / A}\left(p^{t_{p n_{p}}-1} y_{p n_{p}}^{\prime}+A\right)<\omega$, then there exist integers $c_{p i}, a_{p i} \in A$, and $k_{p i}^{\prime} \in H$ for $1 \leqq i \leqq n_{p}$ such that

$$
p^{t_{p i}-1} y_{p i}^{\prime}=a_{p i}+p^{c_{p i}-1} k_{p i}^{\prime} \quad \text { and } \quad(H / N)_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle k_{p i}^{\prime}+N\right\rangle,
$$

where o $\left(k_{p i}^{\prime}+N\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}$ and $t_{p 1}<c_{p 1}<t_{p 2}<c_{p 2}<\cdots<$ $t_{p n_{p}}<c_{p n_{p}}$.

Proof. For $1 \leqq i \leqq n_{p}$, let $d_{p i}=h_{p}^{H / N}\left(p^{t_{p i}-1} y_{p i}^{\prime}+N\right)$. By Lemma 2.6, there exist $a_{p i} \in A$ and $k_{p i}^{\prime \prime} \in p^{d_{p i}^{\prime}} H$ such that

$$
p^{t_{p i}-1} y_{p i}^{\prime}=a_{p i}+k_{p i}^{\prime \prime} .
$$

By Proposition 2.2, we have $t_{p i}<d_{p i}+1$. Suppose that $t_{p i+1} \leqq d_{p i}+1$. Since $r(A)=1$, there exist integers $\alpha_{p i}, \alpha_{p i+1}$ such that $\left(\alpha_{p i}, \alpha_{p i+1}\right)=1$ and $\alpha_{p i} a_{p i}+\alpha_{p i+1} a_{p i+1}=0$. Hence

$$
\alpha_{p i} p^{t_{p i}-1} y_{p i}^{\prime}+\alpha_{p i+1} p^{t_{p i+1}-1} y_{p i+1}^{\prime}=\alpha_{p i} k_{p i}^{\prime \prime}+\alpha_{p i+1} k_{p i+1}^{\prime \prime}
$$

Since $\left(\alpha_{p i}, \alpha_{p i+1}\right)=1, p$ divides $\alpha_{p i}$ and $\left(\alpha_{p i+1}, p\right)=1$. Then $\alpha_{p i+1} p^{t_{p i+1}-1} y_{p i+1}^{\prime} \in p^{t_{p i+1}} H$. This is a contradiction. Hence $d_{p i}+1<t_{p i+1}$ for $1 \leqq i \leqq n_{p}-1$ and $h_{p}^{H / N}\left(p^{t_{p i}-1} y_{p i}^{\prime}+N\right)=h_{p}^{G / A}\left(p^{t_{p i}-1} y_{p i}^{\prime}+A\right)=d_{p i}$ for $1 \leqq i \leqq n_{p}$. Then, for $1 \leqq i \leqq n_{p}$, there exists $k_{p i}^{\prime} \in H$ such that $k_{p i}^{\prime \prime}=p^{d_{p i}} k_{p i}^{\prime}$. Moreover, for $1 \leqq i \leqq n_{p}$, we have $o\left(k_{p i}^{\prime}+N\right)=p^{d_{p i}+1}$. Let $c_{p i}=d_{p i}+1$. Since N is $T(H)$-high in H, we have $(H / N)[p]=\frac{H[p]+N}{N} \cong$ $H[p]$. Therefore $(H / N)_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle k_{p i}^{\prime}+N\right\rangle$.

Lemma 2.8 Assume 2.3. For every prime p such that $H_{p} \neq 0$, let H_{p} be as in Lemma 2.5. If $p^{t_{p n_{p}-1}} y_{p n_{p}}^{\prime}+A \in p^{\omega}(G / A)[p]$, then there exist integers $c_{p i}, a_{p i} \in A$, and $k_{p i}^{\prime} \in H$ for $1 \leqq i \leqq n_{p}-1$ and a subgroup $D^{(p)}$ of H such that

$$
\begin{aligned}
p^{t_{p i}-1} y_{p i}^{\prime} & =a_{p i}+p^{c_{p i}-1} k_{p i}^{\prime} \quad \text { and } \\
(H / N)_{p} & =\bigoplus_{i=1}^{n_{p}-1}\left\langle k_{p i}+N\right\rangle \oplus D^{(p)} / N
\end{aligned}
$$

where $o\left(k_{p i}^{\prime}+N\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}-1, t_{p 1}<c_{p 1}<t_{p 2}<c_{p 2}<\cdots<$ $t_{p n_{p}}, D^{(p)} / N \cong \mathbf{Z}\left[p^{\infty}\right]$, and $\left(D^{(p)} / N\right)[p]=\left\langle p^{t_{p n_{p}}-1} y_{p n_{p}}^{\prime}+N\right\rangle$.

Proof. By Lemma 2.7, for $1 \leqq i \leqq n_{p}-1, h_{p}^{G / A}\left(p^{t_{p i}-1} y_{p i}^{\prime}+A\right)<\omega$. Let $c_{p i}-1=h_{p}\left(p^{t_{p i}-1} y_{p i}^{\prime}+A\right)$. Then there exist $a_{p i} \in A$ and $k_{p i}^{\prime} \in H$ such that

$$
p^{t_{p i}-1} y_{p i}^{\prime}=a_{p i}+p^{c_{p i}-1} k_{p i}^{\prime}
$$

By a similar proof of Lemma 2.7, we have $o\left(k_{p i}^{\prime}+N\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}-1$ and $t_{p 1}<c_{p 1}<t_{p 2}<c_{p 2}<\cdots<t_{p n_{p}}$. Since $(H / N)[p]=\frac{H[p]+N}{N} \cong H[p]$, there exists a subgroup $D^{(p)}$ of H such that

$$
(H / N)_{p}=\bigoplus_{i=1}^{n_{p}-1}\left\langle k_{p i}^{\prime}+N\right\rangle \oplus D^{(p)} / N
$$

where $D^{(p)} / N \cong \mathbf{Z}\left[p^{\infty}\right]$. By Lemma 2.1(3), it is immediate that $\left(D^{(p)} / N\right)[p]=\left\langle p^{t_{p n_{p}}-1} y_{p n_{p}}^{\prime}+N\right\rangle$.

Let N be a neat subgroup of $G, b \in N$, and $m_{p}=h_{p}^{N}(b)$ for every prime p. If $m_{p}<\infty$, then there exists $b_{p} \in N$ such that $h_{p}^{N}\left(b_{p}\right)=0$. Since N is neat in $G, h_{p}\left(b_{p}\right)=0$.

Theorem 2.9 Assume 2.3. For every prime p such that $H_{p} \neq 0$, let H_{p} be as in Lemma 2.5.
(1) If $h_{p}^{G / A}\left(p^{t p n_{p}-1} y_{p n_{p}}^{\prime}+A\right)<\omega$, then there exist $b_{p} \in N, h_{p i} \in H$ and $y_{p i} \in H_{p}$ for $1 \leqq i \leqq n_{p}$ such that
(1) $(H / N)_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle h_{p i}+N\right\rangle$;
(2) $H_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle y_{p i}\right\rangle$, where o $\left(y_{p i}\right)=p^{t_{p i}}$ for $1 \leqq i \leqq n_{p}$;
(3) setting o $\left(h_{p i}+N\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}, t_{p 1}<c_{p 1}<t_{p 2}<c_{p 2}<$ $\cdots<t_{p n_{p}}<c_{p n_{p}} ;$
(4) $y_{p 1}=b_{p}+p^{c_{p 1}-t_{p 1}} h_{p 1}, p^{t_{p 1}-1} b_{p} \in A, y_{p i}=h_{p i-1}+p^{c_{p i}-t_{p i}} h_{p i}$, $p^{t_{p i}-1} h_{p i-1} \in A$ for $2 \leqq i \leqq n_{p}$;
(5) for $1 \leqq i<n_{p}, h_{p}\left(p^{s} h_{p i}\right)=s$ for $0 \leqq s<t_{p i+1}$ and $h_{p}\left(p^{s} h_{p n_{p}}\right)=$ s for all $s \geqq 0$.
(2) If $p^{t_{p n_{p}-1}} y_{p n_{p}}^{\prime}+A \in p^{\omega}(G / A)[p]$, then there exist $b_{p} \in N, h_{p i} \in H_{p}$ for $i \geqq 1, y_{p i} \in H[p]$ for $1 \leqq i \leqq n_{p}$, and a subgroup $D^{(p)}$ of H such that
(1) $(H / N)_{p}=\bigoplus_{i=1}^{n_{p}-1}\left\langle h_{p i}+N\right\rangle \oplus D^{(p)} / N$, where $o\left(h_{p i}+N\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}-1$ and $D^{(p)} / N \cong \mathbf{Z}\left[p^{\infty}\right]$ such that

$$
D^{(p)} / N=\left\langle h_{p i}+N \mid i \geqq n_{p}, p h_{p i+1}=h_{p i}, p^{t_{p n_{p}}+1} h_{p n_{p}} \in A\right\rangle ;
$$

(2) $H_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle y_{p i}\right\rangle$, where $o\left(y_{p i}\right)=p^{t_{p i}}$ for $1 \leqq i \leqq n_{p}$;
(3) $t_{p 1}<c_{p 1}<t_{p 2}<c_{p 2}<\cdots<t_{p n_{p}}$;
(4) $y_{p 1}=b_{p}+p^{c_{p 1}-t_{p 1}} h_{p 1}, p^{t_{p 1}-1} b_{p} \in A, y_{p i}=h_{p i-1}+p^{c_{p i}-t_{p i}} h_{p i}$, $p^{t_{p i-1-1}} h_{p i-1} \in A$ for $1 \leqq i \leqq n_{p}-1$ and $y_{p n_{p}}=h_{p n_{p}-1}+p h_{p n_{p}}$;
(5) for $1 \leqq i \leqq n_{p}-1, h_{p}\left(p^{s} h_{p i}\right)=s$ for $0 \leqq s<t_{p i+1}$ and $h_{p}\left(h_{p n_{p}}\right)=\infty$.
Moreover, for every prime p such that $H_{p} \neq 0$ and $1 \leqq i \leqq n_{p}$, let

$$
e_{p i}= \begin{cases}t_{p 1} & \text { if } i=1, \\ t_{p 1}+\sum_{j=2}^{i}\left(t_{p j}-c_{p j-1}\right) & \text { if } i>1 .\end{cases}
$$

Then

$$
p^{t_{p i}-1} y_{p i}=(-1)^{i-1} p^{e_{p i}-1} b_{p}+p^{c_{p i}-1} h_{p i} .
$$

Let $c_{p n_{p}}=\infty$ if $p^{\omega}(G / A)[p] \neq 0$. Then

$$
h_{p}\left(p^{i} b_{p}\right)= \begin{cases}i & \text { for } 0 \leqq i<e_{p 1}, \\ i+c_{p k}-e_{p k} & \text { for } e_{p k} \leqq i<e_{p k+1} \quad \text { and } 2 \leqq k<n_{p}-1, \\ i+c_{p n_{p}}-e_{p n_{p}} & \text { for } i \geqq e_{p n_{p}}\end{cases}
$$

Proof. (1) Let p be a prime such that $h_{p}\left(p^{t_{p n_{p}-1}} y_{p n_{p}}^{\prime}+A\right)<\omega$. By Proposition 2.2, $p N \neq N$. By hypothesis and Lemma 2.7, there exist integers $c_{p i}, a_{p i} \in A$, and $k_{p i}^{\prime} \in H$ for $1 \leqq i \leqq n_{p}$ such that

$$
p^{t_{p i}-1} y_{p i}^{\prime}=a_{p i}+p^{c_{p i}-1} k_{p i}^{\prime} \quad \text { and } \quad(H / N)_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle k_{p i}^{\prime}+N\right\rangle,
$$

where $o\left(k_{p i}+N\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}$ and $t_{p 1}<c_{p 1}<t_{p 2}<c_{p 2}<\cdots<$ $t_{p n_{p}}<c_{p n_{p}}$. For convenience, we replace $k_{p i}^{\prime}, y_{p i}^{\prime}, c_{p i}, a_{p i}$ and $t_{p i}$ with $k_{i}^{\prime}, y_{i}^{\prime}$, c_{i}, a_{i} and t_{i}, respectively. Let $b_{p}^{\prime} \in N$ such that $h_{p}\left(b_{p}^{\prime}\right)=0$.

By the structure of H / N, we also write

$$
y_{1}^{\prime}=\alpha_{1} k_{1}^{\prime}+\sum_{i=2}^{n_{p}} \alpha_{i} k_{i}^{\prime}+\frac{v_{p}}{u_{p}} b_{p}^{\prime}
$$

where every α_{i}, u_{p}, and v_{p} are integers for $1 \leqq i \leqq n_{p}$ such that $\left(u_{p}, v_{p}\right)=$ $\left(u_{p}, p\right)=1$. Since

$$
\begin{aligned}
p^{t_{1}-1} u_{p} y_{1}^{\prime} & =u_{p} a_{1}+p^{c_{1}-1} u_{p} k_{1}^{\prime} \\
& =p^{t_{1}-1} \alpha_{1} u_{p} k_{1}^{\prime}+\sum_{i=2}^{n_{p}} p^{t_{1}-1} \alpha_{i} u_{p} k_{i}^{\prime}+p^{t_{1}-1} v_{p} b_{p}^{\prime}
\end{aligned}
$$

we have $p^{t_{1}-1} \alpha_{1}-p^{c_{1}-1}=p^{c_{1}} \beta_{1}$ and $p^{t_{1}-1} \alpha_{i}=p^{c_{i}} \beta_{i}$ for some integers β_{i} and $1 \leqq j \leqq n_{p}$. Then

$$
\begin{aligned}
p^{t_{1}-1} u_{p} y_{1}^{\prime} & =p^{c_{1}-1}\left(1+\beta_{1} p\right) u_{p} k_{1}^{\prime}+\sum_{i=2}^{n_{p}} p^{c_{i}} \beta_{i} u_{p} k_{i}^{\prime}+p^{t_{1}-1} v_{p} b_{p}^{\prime} \\
& =p^{t_{1}-1} v_{p} b_{p}^{\prime}+p^{c_{1}-1} u_{p}\left\{\left(1+\beta_{1} p\right) k_{1}^{\prime}+\sum_{i=2}^{n_{p}} p^{c_{i}-c_{1}+1} \beta_{i} k_{i}^{\prime}\right\}
\end{aligned}
$$

Hence $\left(v_{p}, p\right)=1$. Let $h_{1}^{\prime}=\left(1+\beta_{1} p\right) u_{p} k_{1}^{\prime}+\sum_{i=2}^{n_{p}} p^{c_{i}-c_{1}+1} \beta_{i} u_{p} k_{i}^{\prime}$. Then we have

$$
(H / N)_{p}=\left\langle h_{1}^{\prime}+N\right\rangle \oplus\left(\bigoplus_{i=2}^{n_{p}}\left\langle k_{i}^{\prime}+N\right\rangle\right)
$$

and

$$
p^{t_{1}-1} u_{p} y_{1}^{\prime}=u_{p} a_{1}+u_{p} p^{c_{1}-1} k_{1}^{\prime}=p^{t_{1}-1} v_{p} b_{p}^{\prime}+p^{c_{1}-1} h_{1}^{\prime}
$$

Since $r(N)=1$, there exist integers γ_{1} and δ_{1} such that $\left(\gamma_{1}, \delta_{1}\right)=1$ and $\gamma_{1} u_{p} a_{1}=\delta_{1} p^{t_{1}-1} v_{p} b_{p}^{\prime}$. Then $\left(\gamma_{1}-\delta_{1}\right) p^{t_{1}-1} u_{p} y_{1}^{\prime}=p^{c_{1}-1}\left(\gamma_{1} u_{p} k_{1}^{\prime}-\delta_{1} h_{1}^{\prime}\right)=0$ and hence $\left(\gamma_{1}, p\right)=\left(\delta_{1}, p\right)=1$.

Let $z_{1}=-\delta_{1} u_{p} y_{1}^{\prime}+\delta_{1} v_{p} b_{p}^{\prime}+p^{c_{1}-t_{1}} \delta_{1} h_{1}^{\prime}$. Then $z_{1} \in H\left[p^{t_{1}-1}\right]$. Let $y_{1}=$ $\delta_{1} u_{p} y_{1}^{\prime}+z_{1}, b_{p}=\delta_{1} v_{p} b_{p}^{\prime}$, and $h_{1}=\delta_{1} h_{1}^{\prime}$. Then $y_{1}=b_{p}+p^{c_{1}-t_{1}} h_{1}, H_{p}=$ $\left\langle y_{1}\right\rangle \oplus\left(\bigoplus_{i=2}^{n_{p}}\left\langle y_{i}^{\prime}\right\rangle\right), p^{t_{1}-1} b_{p} \in A$, and $(H / N)_{p}=\left\langle h_{1}+N\right\rangle \oplus\left(\bigoplus_{i=2}^{n_{p}}\left\langle k_{i}^{\prime}+N\right\rangle\right)$.

It is immediate that $h_{p}\left(p^{s} h_{1}\right)=s$ for $0 \leqq s<t_{1}$. If $p^{c_{1}} h_{1} \in p^{c_{1}+1} H$, then there exist $g_{p} \in H$ and $x_{p} \in H[p]$ such that $x_{p}=p^{c_{1}-1} h_{1}-p^{c_{1}} g_{p}$. Since $h_{p}\left(x_{p}\right)=c_{1}-1$ and $t_{1}<c_{1}<t_{2}$, this is a contradiction. Hence $h_{p}\left(p^{c_{1}} h_{1}\right)=c_{1}$. By induction and a similar proof, we have $h_{p}\left(p^{s} h_{1}\right)=s$ for $0 \leqq s<t_{2}$.

There exist integers μ_{2} and ν_{2} such that $\mu_{2} p^{t_{1}-1} b_{p}+\nu_{2} a_{2}=0$ and $\left(\mu_{2}, \nu_{2}\right)=1$. Since $\mu_{2} p^{t_{1}-1} y_{1}+\nu_{2} p^{t_{2}-1} y_{2}^{\prime}=\mu_{2} p^{c_{1}-1} h_{1}+\nu_{2} p^{c_{2}-1} k_{2}^{\prime}$ and $t_{1}<$ $c_{1}<t_{2}<c_{2}$, we have $\mu_{2}=p \mu_{2}^{\prime}$ for some integer μ_{2}^{\prime}. Then $\left(\nu_{2}, p\right)=1$ and $\nu_{2} p^{t_{2}-1} y_{2}^{\prime}=\mu_{2}^{\prime} p^{c_{1}} h_{1}+\nu_{2} p^{c_{2}-1} k_{2}^{\prime}$. Hence $h_{p}\left(\mu_{2} p^{c_{1}} h_{1}\right)=t_{2}-1$. Since $h_{p}\left(p^{s} h_{1}\right)=s$ for $s<t_{2}$, there exists an integer $\mu_{2}^{\prime \prime}$ such that $\mu_{2}=p^{t_{2}-c_{1}} \mu_{2}^{\prime \prime}$ and $\left(\mu_{2}^{\prime \prime}, p\right)=1$. Then we can write

$$
\nu_{2} p^{t_{2}-1} y_{2}^{\prime}=\mu_{2}^{\prime \prime} p^{t_{2}-1} h_{1}+\nu_{2} p^{c_{2}-1} k_{2}^{\prime}
$$

Since $\left(\mu_{2}^{\prime \prime}, p\right)=1$, there exist integers γ_{2} and δ_{2} such that $h_{1}=\gamma_{2} \mu_{2}^{\prime \prime} h_{1}+$ $\delta_{2} p^{c_{2}-1} h_{1}$. Since $\left(\gamma_{2}, p\right)=1$, we have

$$
0 \neq \nu_{2} \gamma_{2} p^{t_{2}-1} y_{2}^{\prime}=p^{t_{2}-1} h_{1}+p^{c_{2}-1}\left(\nu_{2} \gamma_{2} k_{2}^{\prime}-\delta_{2} p^{t_{2}-1} h_{1}\right)
$$

Let $h_{2}=\nu_{2} \gamma_{2} k_{2}^{\prime}-\delta_{2} p^{t_{2}-1} h_{1}$. Then we have

$$
(H / N)_{p}=\left\langle h_{1}+N\right\rangle \oplus\left\langle h_{2}+N\right\rangle \oplus\left(\bigoplus_{i=3}^{n_{p}}\left\langle k_{i}^{\prime}+N\right\rangle\right)
$$

Let $z_{2}=-\nu_{2} \gamma_{2} y_{2}^{\prime}+h_{1}+p^{c_{2}-t_{2}} h_{2}$. Then $z_{2} \in G\left[p^{t_{2}-1}\right]$. Let $y_{2}=\nu_{2} \gamma_{2} y_{2}^{\prime}+z_{2}$. Then $H_{p}=\left\langle y_{1}\right\rangle \oplus\left\langle y_{2}\right\rangle \oplus\left(\bigoplus_{i=3}^{n_{p}}\left\langle y_{i}^{\prime}\right\rangle\right)$. Hence $y_{2}=h_{1}+p^{c_{2}-t_{2}} h_{2}$. Moreover, since $p^{t_{1}} b_{p}=-p^{c_{1}} h_{1}$, we have $p^{t_{2}-1} h_{1} \in A$. By a similar proof, $h_{p}\left(p^{s} h_{2}\right)=s$ for $0 \leqq s<t_{3}$.

Suppose by induction that there exist $y_{i} \in H_{p}$ and $k_{i} \in H$ for $1 \leqq i \leqq$ r and $b_{p} \in N$ such that $H_{p}=\oplus\left(\bigoplus_{i=1}^{r}\left\langle y_{i}\right\rangle\right) \oplus\left(\bigoplus_{i=r+1}^{n_{p}}\left\langle y_{i}^{\prime}\right\rangle\right),(H / N)_{p}=$ $\left(\bigoplus_{i=1}^{r}\left\langle k_{i}+N\right\rangle\right) \oplus\left(\bigoplus_{i=r+1}^{n_{p}}\left\langle k_{i}^{\prime}+N\right\rangle\right), y_{1}=b_{p}+p^{c_{1}-t_{1}} h_{1}, p^{t_{1}-1} b_{p} \in A$,
$y_{i}=h_{i-1}+p^{c_{i}-t_{i}} h_{i}$, and $p^{t_{i}-1} h_{i-1} \in A$ for $2 \leqq i \leqq r$. Then, by a similar proof, there exist $y_{r+1} \in H_{p}$ and $h_{r+1} \in H$ such that $H_{p}=\left(\bigoplus_{i=1}^{r+1}\left\langle y_{i}\right\rangle\right) \oplus$ $\left(\bigoplus_{i=r+2}^{n_{p}}\left\langle y_{i}^{\prime}\right\rangle\right),(H / N)_{p}=\left(\bigoplus_{i=1}^{r+1}\left\langle k_{i}+N\right\rangle\right) \oplus\left(\bigoplus_{i=r+2}^{n_{p}}\left\langle k_{i}^{\prime}+N\right\rangle\right), y_{r+1}=h_{r}+$ $p^{c_{r+1}-t_{r+1}} h_{r+1}$, and $p^{t_{r+1}-1} h_{r} \in A$.

It is immediate that $p^{t_{r}-1} h_{r} \in A$. By a same argument, for $1 \leqq i \leqq n_{p}$, we have $h_{p}\left(p^{s} h_{i}\right)=s$ for $0 \leqq s<t_{i+1}$ and $h_{p}\left(p^{s} h_{n_{p}}\right)=s$ for all $s \geqq 0$.
(2) Let p be a prime such that $p^{t_{p n_{p}-1}} y_{p n_{p}}^{\prime}+A \in p^{\omega}(G / A)[p]$. By Lemma 2.8 and a similar proof, there exist $b_{p} \in N, h_{i} \in H, y_{i} \in H_{p}$ for $1 \leqq i \leqq n_{p}-1$, and a subgroup $D^{(p)}$ of H such that
(1) $(H / N)_{p}=\bigoplus_{i=1}^{n_{p}-1} \oplus\left\langle h_{i}+N\right\rangle \oplus D^{(p)} / N$, where $o\left(h_{i}+N\right)=p^{c_{i}}$ for $1 \leqq i \leqq n_{p}-1, D^{(p)} / N \cong \mathbf{Z}\left[p^{\infty}\right]$ and $\left(D^{(p)} / N\right)[p]=$ $\left\langle p^{t_{n_{p}}-1} y_{n_{p}}^{\prime}+N\right\rangle ;$
(2) $H_{p}=\bigoplus_{i=1}^{n_{p}-1}\left\langle y_{i}\right\rangle \oplus\left\langle y_{n_{p}}^{\prime}\right\rangle$, where $o\left(y_{i}\right)=p^{t_{i}}$ for $1 \leqq i \leqq n_{p}-1$;
(3) $t_{1}<c_{1}<t_{2}<c_{2}<\cdots<t_{n_{p}}$;
(4) $y_{1}=b_{p}+p^{c_{p i}-t_{p i}} h_{1}, p^{t_{1}-1} b_{p} \in A, y_{i}=h_{i-1}+p^{c_{i}-t_{i}} h_{i}$ for $2 \leqq i \leqq$ $n_{p}-1, p^{t_{i}-1} h_{i-1} \in A$ for $2 \leqq i \leqq n_{p} ;$
(5) for $1 \leqq i \leqq n_{p}-1, h_{p}\left(p^{s} h_{i}\right)=s$ for all $s<t_{i+1}$.

By Lemma 2.1 (2), Lemma 2.6 and Lemma 2.8, there exist $a_{n_{p}} \in A$ and $d_{p} \in$ $p^{\omega} H$ such that $p^{t_{n_{p}}-1} y_{n_{p}}^{\prime}=a_{n_{p}}+d_{p}$. Since $r(A)=1$ and $p^{t_{n_{p}-1}-1} h_{n_{p}-2} \in$ A, there exist integers $\mu_{n_{p}}$ and $\nu_{n_{p}}$ such that $\left(\mu_{n_{p}}, \nu_{n_{p}}\right)=1$ and $\mu_{n_{p}} p^{t_{n_{p}-1}-1} h_{n_{p}-2}+\nu_{n_{p}} a_{n_{p}}=0$. Then

$$
\mu_{n_{p}} p^{t_{n_{p}-1}-1} y_{n_{p}-1}+\nu_{n_{p}} p^{t_{n_{p}}-1} y_{n_{p}}^{\prime}=\mu_{n_{p}} p^{c_{n_{p}-1}-1} h_{n_{p}-1}+\nu_{n_{p}} d_{p}
$$

Since $t_{n_{p}-1}<c_{n_{p}-1}<t_{n_{p}}$, we have $\mu_{n_{p}}=p \mu_{n_{p}}^{\prime}$ for some integer $\mu_{n_{p}}^{\prime}$. Then $\left(\nu_{n_{p}}, p\right)=1$ and $\nu_{n_{p}} p^{t_{n_{p}}-1} y_{n_{p}}^{\prime}=\mu_{n_{p}}^{\prime} p^{c_{n_{p}-1}} h_{n_{p}-1}+\nu_{n_{p}} d_{p}$ and hence $h_{p}\left(\mu_{n_{p}}^{\prime} p^{c_{n_{p}-1}} h_{n_{p}-1}\right)=t_{n_{p}}-1$. Since $h_{p}\left(p^{s} h_{n_{p}-1}\right)=s$ for $0 \leqq s<t_{n_{p}}$, there exists an integer $\mu_{n_{p}}^{\prime \prime}$ such that $\mu_{n_{p}}=p^{t_{n_{p}}-c_{n_{p}-1}} \mu_{n_{p}}^{\prime \prime}$ and $\left(\mu_{n_{p}}^{\prime \prime}, p\right)=1$. Hence we can write

$$
\nu_{n_{p}} p^{t_{n_{p}}-1} y_{n_{p}}^{\prime}=\mu_{n_{p}}^{\prime \prime} p^{t_{n_{p}}-1} h_{n_{p}-1}+\nu_{n_{p}} d_{p}
$$

Since $d_{p} \in p^{\omega} H$, there exists $d_{p}^{\prime} \in H$ such that $d_{p}=p^{2 t_{n_{p}}} d_{p}^{\prime}$. Since $\left(\mu_{n_{p}}^{\prime \prime}, p\right)=$ 1 , there exist integers $\gamma_{n_{p}}$ and $\delta_{n_{p}}$ such that $h_{n_{p}-1}=\gamma_{n_{p}} \mu_{n_{p}}^{\prime \prime} h_{n_{p}-1}+$ $\delta_{n_{p}} p^{2 t_{n_{p}}} h_{n_{p}-1}$. Note that $p^{t_{n_{p}}-1} h_{n_{p}-1} \in A$. Since $\left(\gamma_{n_{p}}, p\right)=1$, we have

$$
\begin{aligned}
0 \neq \nu_{n_{p}} \gamma_{n_{p}} p^{t_{n_{p}}-1} y_{n_{p}}^{\prime}= & p^{t_{n_{p}}-1} h_{n_{p}-1} \\
& +p^{2 t_{n_{p}}}\left(\nu_{n_{p}} \gamma_{n_{p}} d_{p}^{\prime}-\delta_{n_{p}} p^{t_{n_{p}}-1} h_{n_{p}-1}\right)
\end{aligned}
$$

Let $h_{n_{p}}^{\prime}=\nu_{n_{p}} \gamma_{n_{p}} d_{p}^{\prime}-\delta_{n_{p}} p^{t_{n_{p}-1}} h_{n_{p}-1}$. By the proof of Lemma 2.1(2), $h_{p}\left(p^{2 t_{n_{p}}} h_{n_{p}}^{\prime}\right) \geqq \omega$. For every $i \geqq 0$, there exists $h_{n_{p}+i}^{\prime} \in H$ such that $p^{2 t_{n_{p}}} h_{n_{p}}^{\prime}=p^{t_{n_{p}}}\left(p^{t_{n_{p}}} h_{n_{p}}^{\prime}\right)=p^{t_{n_{p}}}\left(p^{t_{n_{p}}+i} h_{n_{p}+i}^{\prime}\right)$. Let $h_{n_{p}+i}=p^{t_{n_{p}}} h_{n_{p}+i}^{\prime}$ for every $i \geqq 0$. Then $p^{2 t_{n_{p}}} h_{n_{p}}^{\prime}=p^{t_{n_{p}}} h_{n_{p}}=p^{t_{n_{p}}+i} h_{n_{p}+i}$ for all $i \geqq 1$. Since $p h_{n_{p}+i+1}-h_{n_{p}+i} \in p^{t_{n_{p}}} H_{p}=0, p h_{n_{p}+i+1}=h_{n_{p}+i}$ for $i \geqq 0$. Note that $\nu_{n_{p}} \gamma_{n_{p}} p^{t_{n_{p}}-1} y_{n_{p}}^{\prime}=p^{t_{n_{p}}-1} h_{n_{p}-1}+p^{t_{n_{p}}} h_{n_{p}}$.

Let $z_{n_{p}}=-\nu_{n_{p}} \gamma_{n_{p}} y_{n_{p}}^{\prime}+h_{n_{p}-1}+p h_{t_{n_{p}}}$. Then $z_{n_{p}} \in G\left[p^{t_{n_{p}}-1}\right]$. Let $y_{n_{p}}=\nu_{n_{p}} \gamma_{n_{p}} y_{n_{p}}^{\prime}+z_{n_{p}}$. Then $y_{n_{p}}=h_{n_{p}-1}+p h_{n_{p}}, H_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle y_{i}\right\rangle$, and $p^{t_{n_{p}}-1} h_{n_{p}-1} \in A$. Let $H^{(p)}=\left\langle h_{n_{p}+i} \mid i \geqq 0\right\rangle$. Then it is easy to see that $H^{(p)}$ is p-divisible. Then $h_{p}\left(h_{n_{p}}\right)=\infty$. Let $D^{(p)} / N=\left\langle h_{n_{p}+i}+N \mid i \geqq 0\right\rangle$. Hence the assertion holds.

For $1 \leqq i \leqq n_{p}$, let

$$
e_{p i}= \begin{cases}t_{p 1} & \text { if } i=1 \\ t_{p 1}+\sum_{j=2}^{i}\left(t_{p j}-c_{p j-1}\right) & \text { if } i>1\end{cases}
$$

By an easy induction, we have

$$
p^{t_{p i}-1} y_{p i}=(-1)^{i-1} p^{e_{p i}-1} b_{p}+p^{c_{p i}-1} h_{p i}
$$

and

$$
h_{p}\left(p^{i} b_{p}\right)= \begin{cases}i & \text { for } 0 \leqq i<e_{p 1} \\ i+c_{p k}-e_{p k} & \text { for } e_{p k} \leqq i<e_{p k+1} \text { and } 2 \leqq k<n_{p}-1 \\ i+c_{p n_{p}}-e_{p n_{p}} & \text { for } i \leqq e_{p n_{p}}\end{cases}
$$

Proposition 2.10 Let G be an abelian group and A a torsion-free rankone subgroup of G. Suppose that A is purifiable in G. Let H and K be pure hulls of A in G. Then, for every prime $p, H_{p} \neq 0$ if and only if $K_{p} \neq 0$. For every prime p such that $H_{p} \neq 0$, let $H_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle x_{p i}\right\rangle$, where $x_{p i} \in H_{p}$ and $o\left(x_{p i}\right)=p^{t_{p i}}, K_{p}=\bigoplus_{i=1}^{n_{p}^{\prime}}\left\langle y_{p i}\right\rangle$, where $y_{p i} \in K_{p}$ and $o\left(y_{p i}\right)=p^{t_{p i}^{\prime}}, c_{p i}=$ $h_{p}^{G / A}\left(p^{t_{p i}-1} x_{p i}+A\right)+1$ for $1 \leqq i \leqq n_{p}$, and $c_{p i}^{\prime}=h_{p}^{G / A}\left(p^{t_{p i}^{\prime}-1} y_{p i}+A\right)+1$ for $1 \leqq i \leqq n_{p}^{\prime}$. Then $n_{p}=n_{p}^{\prime}, t_{p i}=t_{p i}^{\prime}$, and $c_{p i}=c_{p i}^{\prime}$ for $1 \leqq i \leqq n_{p}$.
Proof. By Proposition 1.10, for all $n \geqq 0$,

$$
V_{p, n}(H, A) \cong V_{p, n}(G, A) \cong V_{p, n}(K, A)
$$

Hence, by Lemma 2.1 (1), $n_{p}=n_{p}^{\prime}$ and $t_{p i}=t_{p i}^{\prime}$ for $1 \leqq i \leqq n_{p}$. By Theorem 2.9, for $1 \leqq i \leqq n_{p}$, if $c_{p i}<\infty$ and $c_{p i}^{\prime}<\infty$, then there exist $a_{p i}^{\prime}, a_{p i}^{\prime \prime} \in A, h_{p i} \in H$, and $k_{p i} \in K$ such that $p^{t_{p i}-1} x_{p i}=a_{p i}^{\prime}+p^{c_{p i}-1} h_{p i}$, $p^{t_{p i}-1} y_{p i}=a_{p i}^{\prime \prime}+p^{c_{p i}^{\prime-1}} k_{p i}, h_{p}\left(p a_{p i}^{\prime}\right)=c_{p i}$, and $h_{p}\left(p a_{p i}^{\prime \prime}\right)=c_{p i}^{\prime}$. Since $r(A)=$ 1 , there exist integers $\alpha_{p i}$ and $\beta_{p i}$ such that $\left(\alpha_{p i}, \beta_{p i}\right)=1$ and $\alpha_{p i} a_{p i}^{\prime}=$ $\beta_{p i} a_{p i}^{\prime \prime}$. Since $h_{p}\left(a_{p i}^{\prime}\right)=h_{p}\left(a_{p i}^{\prime \prime}\right)$, we have $\left(\alpha_{p i}, p\right)=\left(\beta_{p i}, p\right)=1$. Since $\alpha_{p i} p a_{p}^{\prime}=\beta_{p i} p a_{p i}^{\prime \prime}$, we have $c_{p i}=c_{p i}^{\prime}$. If $c_{p n_{p}}<\infty$ and $c_{p n_{p}}^{\prime}=\infty$, then, by Lemma 2.1 (2), there exist $b_{p}, b_{p}^{\prime} \in A, h_{p n_{p}} \in H$, and $k_{p n_{p}} \in p^{\omega} K$ such that $p^{t p n_{p}-1} x_{p n_{p}}=b_{p}+p^{c{ }_{p n_{p}}-1} h_{p n_{p}}, p^{t_{p n_{p}}-1} y_{p n_{p}}=b_{p}^{\prime}+k_{p n_{p}}, h_{p}\left(p b_{p}\right)=c_{p n_{p}}$, and $h_{p}\left(p b_{p}^{\prime}\right)=\infty$. By a similar proof, this is a contradiction. Hence $c_{p i}=c_{p i}^{\prime}$ for $1 \leqq i \leqq n_{p}$.

Assume 2.3. By Proposition 2.10, we define the p-coordinate of the torsion system of A as the following sequence:

$$
\mathbf{T}_{p}^{A}(G)= \begin{cases}\left(t_{p 1}, t_{p 2}, \ldots, t_{p n_{p}}\right) & \text { if } A \text { is not } p \text {-vertical in } G \\ (0) & \text { if } A \text { is } p \text {-vertical in } G\end{cases}
$$

and the p-coordinate of the quotient system of A as the following sequence:

$$
\mathbf{Q}_{p}^{A}(G)= \begin{cases}\left(c_{p 1}, c_{p 2}, \ldots, c_{p n_{p}}\right) & \text { if } A \text { is not } p \text {-vertical in } G, \\ (0) & \text { if } A \text { is } p \text {-vertical in } G\end{cases}
$$

where $c_{p n_{p}}=h_{p}^{G / A}\left(p^{t p n_{p}-1} y_{p n_{p}}+A\right)$. By the structure of $H, c_{p n_{p}}<\omega$ or $c_{p n_{p}}=\infty$.

Since we can make the matrix from the quotient system and the torsion system, we define the p-coordinate of the $Q T$-matrices of A, denoted by $\mathbf{Q T}_{p}^{A}(G)$, as follows: if A is not p-vertical in G, then let

$$
\mathbf{Q T}_{p}^{A}(G)=\binom{c_{p 1}, c_{p 2}, \ldots, c_{p n_{p}}}{t_{p 1}, t_{p 2}, \ldots, t_{p n_{p}}}
$$

and if A is p-vertical in G, then let

$$
\mathbf{Q T}_{p}^{A}(G)=\binom{0}{0}
$$

In view of Theorem 2.9, to have the property that $p^{t_{p 1}-1} b_{p} \in A$ and $p^{t_{p i}-1} h_{p i-1} \in A$ for $2 \leqq i \leqq n_{p}$, we need to choose a special element $b_{p} \in N$. To prove that all pure hulls of A in G are isomorphic, we do not need to do it. Hence, by similar calculations, we establish the following corollary:

Corollary 2.11 Assume 2.3. For every prime p such that $H_{p} \neq 0$, let H_{p} be as in Lemma 2.5, $b \in N$, and for every prime p, let $m_{p}=h_{p}^{N}(b)$. If p is a prime such that $H_{p} \neq 0$, then there exists $b_{p}^{\prime} \in N$ such that $b=p^{m_{p}} b_{p}^{\prime}$ and $H_{p}\left(b_{p}^{\prime}\right)=0$.
(1) If $h_{p}\left(p^{t_{p n_{p}}-1} y_{p n_{p}}^{\prime}+N\right)<\omega$, then there exist $g_{p i} \in H$ and $x_{p i} \in H_{p}$ for $1 \leqq i \leqq n_{p}$ such that
(1) $(H / N)_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle g_{p i}+N\right\rangle$;
(2) $H_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle x_{p i}\right\rangle$, where $o\left(x_{p i}\right)=p^{t_{p i}}$ for $1 \leqq i \leqq n_{p}$;
(3) setting o $\left(h_{p i}+N\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}, t_{p 1}<c_{p 1}<t_{p 2}<c_{p 2}<$ $\cdots<t_{p n_{p}}<c_{p n_{p}} ;$
(4) $x_{p 1}=b_{p}^{\prime}+p^{c_{p 1}-t_{p 1}} g_{p 1}$ and $x_{p i}=h_{p i-1}+p^{c_{p i}-t_{p i}} g_{p i}$ for $2 \leqq i \leqq n_{p}$;
(5) for $1 \leqq i \leqq n_{p}-1, h_{p}\left(p^{s} g_{p i}\right)=s$ for $0 \leqq s<t_{p i+1}$ and $h_{p}\left(p^{s} g_{p n_{p}}\right)=s$ for all $s \geqq 0$.
(2) If $h_{p}\left(p^{t p n_{p}-1} y_{p n_{p}}^{\prime}+N\right) \in p^{\omega}(G / N)[p]$, then there exist $g_{p i} \in H$ for $1 \leqq i \leqq n_{p}-1, x_{p i} \in H[p]$ for $1 \leqq i \leqq n_{p}$, and a subgroup $D^{(p)}$ of H such that
(1) $(H / N)_{p}=\bigoplus_{i=1}^{n_{p}-1}\left\langle g_{p i}+N\right\rangle \oplus D^{(p)} / N$, where $o\left(g_{p i}+N\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}-1$ and $D^{(p)} / N \cong \mathbf{Z}\left[p^{\infty}\right]$ such that

$$
D^{(p)} / N=\left\langle g_{p i}+N \mid i \geqq n_{p}, p g_{p i+1}=h_{p i}, p^{t_{p n_{p}}+1} g_{p n_{p}} \in N\right\rangle ;
$$

(2) $H_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle x_{p i}\right\rangle$, where $o\left(x_{p i}\right)=p^{t_{p i}}$ for $1 \leqq i \leqq n_{p}$;
(3) $t_{p 1}<c_{p 1}<t_{p 2}<c_{p 2}<\cdots<t_{p n_{p}}$;
(4) $x_{p 1}=b_{p}^{\prime}+p^{c_{p 1}-t_{p 1}} g_{p 1}$ and $x_{p i}=g_{p i-1}+p^{c_{p i}-t_{p i}} g_{p i}$ for $1 \leqq i \leqq$ $n_{p}-1$ and $x_{p n_{p}}=g_{p n_{p}-1}+p g_{p n_{p}}$;
(5) for $1 \leqq i \leqq n_{p}-1, h_{p}\left(p^{s} g_{p i}\right)=s$ for $0 \leqq s<t_{p i+1}$ and $h_{p}\left(g_{p n_{p}}\right)=$ ∞.
Moreover, for every prime p such that $H_{p} \neq 0$ and $1 \leqq i \leqq n_{p}$, let

$$
e_{p i}= \begin{cases}t_{p 1} & \text { if } i=1, \\ t_{p 1}+\sum_{j=2}^{i}\left(t_{p j}-c_{p j-1}\right) & \text { if } i>1\end{cases}
$$

Then

$$
\begin{equation*}
p^{t_{p i}-1} y_{p i}=(-1)^{i-1} p^{e_{p i}-1} b_{p}^{\prime}+p^{c_{p i}-1} h_{p i} . \tag{2.11.1.}
\end{equation*}
$$

Let $c_{p n_{p}}=\infty$ if $p^{\omega}(G / A)[p] \neq 0$. Then

$$
h_{p}\left(p^{i} b_{p}^{\prime}\right)= \begin{cases}i & \text { for } 0 \leqq i<e_{p 1} \\ i+c_{p k}-e_{p k} & \text { for } e_{p k} \leqq i<e_{p k+1} \text { and } 2 \leqq k<n_{p}-1 \\ i+c_{p n_{p}}-e_{p n_{p}} & \text { for } i \leqq e_{p n_{p}}\end{cases}
$$

3. Torsion-Free Rank-one Subgroups

Our major goals of this section are to give a necessary and sufficient condition for torsion-free rank-one subgroups of arbitrary abelian groups to be purifiable in a given group and to show that if A is a purifiable torsionfree rank-one subgroup of an arbitrary abelian group, then all pure hulls of A are isomorphic.

Lemma 3.1 Let G be an arbitrary abelian group and A a torsion-free rank-one subgroup of G. Let p be a prime such that $A \neq p A$ and $a_{p} \in A$ such that $h_{p}^{A}\left(a_{p}\right)=0$. Then the following hold.
(1) If there exists an integer r such that $h_{p}\left(p^{r} a_{p}\right)=d<\omega$, then $A \cap p^{d} G$ is p-vertical in $p^{d} G$ if and only if $h_{p}\left(p^{r+n} a_{p}\right)=d+n$ for $n \geqq 0$.
(2) If there exists a nonnegative integer r such that $h_{p}\left(p^{r} a_{p}\right)=d<\omega$ and $h_{p}\left(p^{r+n} a_{p}\right)=h_{p}\left(p^{r} a_{p}\right)+n$ for $n \geqq 0$, then A is p-purifiable in G.
(3) If there exists a nonnegative integer r such that $h_{p}\left(p^{r} a_{p}\right)=d<\omega$ and $h_{p}\left(p^{r+1} a_{p}\right)=\infty$, then $A \cap p^{d+1} G$ is p-vertical in $p^{d+1} G$.

Proof. (1) (\Rightarrow) Suppose by induction that $h_{p}\left(p^{r+i} a_{p}\right)=d+i$ for all $0 \leqq i \leqq k$. If $h_{p}\left(p^{r+k+1} a_{p}\right) \geqq d+k+2$, then there exists $g \in G$ such that $p^{r+k+1} a_{p}=p^{d+k+2} g$. Since $A \cap p^{d} G$ is p-vertical in $p^{d} G$, by Proposition $1.13(2)$, we have $p^{r+k} a_{p}-p^{d+k+1} g \in\left(\left(A \cap p^{d} G\right)+p^{d+k+1} G\right)[p]=$ $p^{d+k+1} G[p]$. This is a contradiction. Hence $h_{p}\left(p^{r+i} a_{p}\right)=d+i$ for all $i \geqq 0$.
$(\Leftarrow) \quad$ Note that if $b_{p} \in A$ such that $h_{p}^{A}\left(b_{p}\right)=0$, then $h_{p}\left(p^{r+n} b_{p}\right)=d+n$ for $n \geqq 0$. It suffices to prove that $\left(\left(A \cap p^{d} G\right)+p^{d+n} G\right)[p]=p^{d+n} G[p]$ for all $n \geqq 1$. Let $a+p^{d+n} g \in\left(\left(A \cap p^{d} G\right)+p^{d+n} G\right)[p]$ such that $a \in A \cap p^{d} G$ and $g \in G$. If $h_{p}(a)<d+n$, then there exists $a_{p}^{\prime} \in A$ such that $h_{p}^{A}\left(a_{p}^{\prime}\right)=0$ and $a=p^{t} a_{p}^{\prime}$ for some integer t. Then $t \geqq r$ and hence $h_{p}(p a)<d+n+1$. But $p a=-p^{d+n+1} g$. This is a contradiction. Hence $h_{p}(a) \geqq d+n$ and $A \cap p^{d} G$ is p-vertical in $p^{d} G$.
(2) We prove that $A \cap p^{d} G$ is p-neat in $p^{d} G$. Let $p x \in A \cap p^{d} G$ with $x \in p^{d} G$. Since $r(A)=1$, there exist integers α and β such that $(\alpha, \beta)=1$ and $\alpha a_{p}=\beta p x$. Then $(\beta, p)=1$. Let $\alpha=p^{s} \alpha^{\prime}$ for some integer α^{\prime} such that $\left(\alpha^{\prime}, p\right)=1$. Note that $h_{p}\left(p^{s} a_{p}\right)=h_{p}(p x) \geqq d+1$. If $s<r$, then
$d+1 \leqq h_{p}\left(p^{s} a_{p}\right)<h_{p}\left(p^{r} a_{p}\right)=d$. This is a contradiction. Hence $r \leqq s$. Since $h_{p}\left(p^{s-r} p^{r} a_{p}\right)=d+s-r \geqq d+1$, we have $s \geqq r+1$. Hence $p^{s} a_{p}=$ $p^{s-r-1} p p^{r} a_{p} \in p\left(A \cap p^{d} G\right)$. Since $\alpha^{\prime} p^{s} a_{p}=\beta p x$ and $\left(\alpha^{\prime}, p\right)=(\beta, p)=1$, $p x \in p\left(A \cap p^{d} G\right)$. Hence $A \cap p^{d} G$ is p-neat in $p^{d} G$. By Proposition 1.12, $A \cap p^{d} G$ is p-pure in $p^{d} G$. By Proposition 1.14, A is p-purifiable in G.
(3) We show that $\left(\left(A \cap p^{d+1} G\right)+p^{d+n+1} G\right)[p]=p^{d+n+1} G[p]$ for all $n \geqq$ 1. Let $a+p^{d+n+1} g \in\left(\left(A \cap p^{d+1} G\right)+p^{d+n+1} G\right)[p]$ such that $a \in A \cap p^{d+1} \bar{G}$ and $g \in G$. Since $r(A)=1$, there exist integers γ and δ such that $(\gamma, \delta)=1$ and $\gamma a_{p}=\delta a$. Then $(\delta, p)=1$. Let $\gamma=p^{s^{\prime}} \gamma^{\prime}$ for some integer γ^{\prime} such that $\left(\gamma^{\prime}, p\right)=1$. By a similar argument, we have $s^{\prime} \geqq r+1$. Hence $h_{p}(a)=\infty$ and $\left(\left(A \cap p^{d+1} G\right)+p^{d+n+1} G\right)[p]=p^{d+n+1} G[p]$ for all $n \geqq 1$.

Now we give a necessary and sufficient condition for a torsion-free rankone subgroup of an arbitrary abelian group to be purifiable in a given group.

Theorem 3.2 Let G be an abelian group and A a torsion-free rank-one subgroup of G. Then the following properties are equivalent:
(1) A is purifiable in G;
(2) for every prime p such that $A \neq p A$, there exists $a_{p} \in A$ such that $h_{p}^{A}\left(a_{p}\right)=0$ and one of the following two conditions holds:
(i) there exists a nonnegative integer r_{p} such that $h_{p}\left(p^{r_{p}} a_{p}\right)<\omega$ and $h_{p}\left(p^{r_{p}+n} a_{p}\right)=h_{p}\left(p^{r_{p}} a_{p}\right)+n$ for $n \geqq 0 ;$
(ii) there exists a nonnegative integer r_{p} such that $h_{p}\left(p^{r_{p}} a_{p}\right)=\infty$ and if $r_{p}>0$, then $h_{p}\left(p^{r_{p}-1} a_{p}\right)<\omega$.
(3) for every prime p and every $a \in A$, one of the following two conditions holds:
(i) there exists a nonnegative integer $k_{p}(a)$ such that $h_{p}\left(p^{k_{p}(a)} a\right)<\omega$ and $h_{p}\left(p^{k_{p}(a)+n} a\right)=h_{p}\left(p^{k_{p}(a)} a\right)+n$ for $n \geqq 0 ;$
(ii) there exists a nonnegative integer $k_{p}(a)$ such that $h_{p}\left(p^{k_{p}(a)} a\right)=$ ∞ and if $k_{p}(a)>0$, then $h_{p}\left(p^{k_{p}(a)-1} a\right)<\omega$.
(4) for every prime p,
(i) A is eventually p-vertical in G and
(ii) for every $a \in A$, if $h_{p}(a) \geqq \omega$, then $h_{p}(a)=\infty$.

Proof. $\quad(1)(\Rightarrow)(2) \quad$ Let H be a pure hull of A in G and N a $T(H)$-high subgroup of H containing A. Suppose that $A \neq p A$. Then there exists $a_{p} \in A$ such that $h_{p}^{A}\left(a_{p}\right)=0$.

Suppose that $H_{p}=0$. By Proposition 1.10, both of A and N are p vertical in G. By Proposition 1.12, N is p-pure in G. Since N is torsion-free, the assertion holds.

Suppose that $H_{p} \neq 0$. Let

$$
\mathbf{Q T}_{p}^{A}(G)=\binom{c_{p 1}, c_{p 2}, \ldots, c_{p n_{p}}}{t_{p 1}, t_{p 2}, \ldots, t_{p n_{p}}} .
$$

For convenience, let

$$
e_{p}= \begin{cases}t_{p 1} & \text { if } n_{p}=1, \\ t_{p 1}+\sum_{j=2}^{n_{p}}\left(t_{p j}-c_{p j-1}\right) & \text { if } n_{p}>1\end{cases}
$$

If $c_{p n_{p}}<\omega$, then, by Theorem 2.9, there exist $b_{p} \in N$ and $h_{p n_{p}} \in H$ such that $(-1)^{n_{p}} p^{e_{p}} b_{p}=p^{c_{p n_{p}}} h_{p n_{p}}$ and $h_{p}\left(p^{c_{p n_{p}}+n} h_{p n_{p}}\right)=c_{p n_{p}}+n$ for all $n \geqq 0$. Since $(-1)^{n_{p}} p^{e_{p}-1} b_{p} \in A$ and $A \neq p A$, there exist $a_{p}^{\prime} \in A$ and an integer r_{p} such that $h_{p}^{A}\left(a_{p}^{\prime}\right)=0$ and $(-1)^{n_{p}} p^{e_{p}-1} b_{p}=p^{r_{p}} a_{p}^{\prime}$. Since $r(A)=1$, there exist integers α_{p} and β_{p} such that $\left(\alpha_{p}, \beta_{p}\right)=\left(\alpha_{p}, p\right)=\left(\beta_{p}, p\right)=1$ and $\alpha_{p} a_{p}^{\prime}=\beta_{p} a_{p}$. Then $h_{p}\left(p^{r_{p}+1} a_{p}\right)=c_{p n_{p}}$ and $h_{p}\left(p^{r_{p}+n+1} a_{p}\right)=c_{p n}+n$ for all $n \geqq 0$.

If $c_{p n_{p}}=\infty$, then, by Theorem 2.9, there exist $b_{p} \in N$ and $h_{p n_{p}} \in H$ such that $h_{p}\left(p^{e_{p}-1} b_{p}\right)=t_{p n_{p}}-1,(-1)^{n_{p}} p^{e_{p}} b_{p}=p^{t_{p n_{p}}+1} h_{p n_{p}}$, and $h_{p}\left(h_{p n_{p}}\right)=$ ∞. By a same argument, the assertion holds.
(2) $(\Rightarrow)(3)$ If $A=p A$, then, for every $a \in A, h_{p}^{A}(a)=\infty$. Without loss of generality, we may assume that $A \neq p A$. By hypothesis (2), there exists $a_{p} \in A$ such that $h_{p}^{A}\left(a_{p}\right)=0$ and one of (i) and (ii) holds. Let $a \in A$. Since $r(A)=1$, there exist integers γ_{p} and δ_{p} such that $\left(\gamma_{p}, \delta_{p}\right)=\left(\gamma_{p}, p\right)=1$ and $\gamma_{p} a=\delta_{p} a_{p}$. Hence the assertion holds.
(3) $(\Rightarrow)(2) \quad$ Trivial.
$(2)(\Rightarrow)(4)$ It is sufficient to show that, for every prime p, A is eventually p-vertical in G. If $A=p A$, then A is p-vertical in G. Without loss of generality, we may assume that $A \neq p A$. By hypothesis (2), there exists $a_{p} \in A$ such that $h_{p}^{A}\left(a_{p}\right)=0$ and one of (i) and (ii) holds. If the condition (i) holds, then, by Lemma 3.1 (1), A is eventually p-vertical in G. Suppose that the condition (ii) holds. If $r_{p}=0$, then, for all $a \in A, h_{p}(a)=\infty$. Hence A is p-vertical in G. If $r_{p}>0$, then, by Lemma 3.1(3), A is eventually p-vertical in G.
$(4)(\Rightarrow)(2)$ For every prime p such that $A \neq p A$, let $a_{p} \in A$ such that $h_{p}^{A}\left(a_{p}\right)=0$. By (ii), without loss of generality, we may assume that
$h_{p}\left(p^{n} a_{p}\right)<\omega$ for all $n \geqq 0$. Since A is eventually p-vertical in G, then, by Proposition 1.9, there exists integers r_{p} and d_{p} such that $h_{p}\left(p^{r_{p}} a_{p}\right)=d_{p}<\omega$ and $A \cap p^{d_{p}} G$ is p-vertical in $p^{d_{p}} G$. By Lemma 3.1 (1), the assertion holds.
$(2)(\Rightarrow)(1)$ If $A=p A$, then A is p-vertical and p-neat in G. By Proposition 1.12, A is p-pure in G. Hence, without loss of generality, we may assume that $A \neq p A$. By hypothesis (2), there exists $a_{p} \in A$ such that $h_{p}^{A}\left(a_{p}\right)=0$ and one of (i) and (ii) holds.

Suppose that (i) is satisfied. Let $d_{p}=h_{p}\left(p^{r_{p}} a_{p}\right)$. By Lemma 3.1 (2), $A \cap$ $p^{d_{p}} G$ is p-purifiable in $p^{d_{p}} G$. Hence, by Proposition 1.14, A is p-purifiable in G.

Suppose that (ii) is satisfied. Let

$$
d_{p}= \begin{cases}0 & \text { if } r_{p}=0 \\ h_{p}\left(p^{r_{p}-1} a_{p}\right)+1 & \text { if } r_{p}>0\end{cases}
$$

Note that $h_{p}(g)=\infty$ means that g is an element of the maximal p-divisible subgroup of G. Since $h_{p}\left(p^{r_{p}} a_{p}\right)=\infty$, there exist an element $g_{p i} \in G$ for $i \geqq 1$ such that $p^{r_{p}} a_{p}=p^{i} g_{p i}$ and $p g_{p i+1}=g_{p i}$ for all $i \geqq 1$. Let

$$
L=\left\langle g_{p i}, A \cap p^{d_{p}} G \mid i \geqq 1\right\rangle .
$$

We prove that L is p-pure in $p^{d_{p}} G$. Let $p^{n} g \in L$ such that $g \in p^{d_{p}} G$ and n is an integer. Then we can write

$$
p^{n} g=\lambda_{p} g_{p m}+a^{\prime}
$$

for some integers m, λ_{p} and $a^{\prime} \in A \cap p^{d_{p}} G$. Since $r(A)=1$, there exist integers $\gamma_{p}^{\prime \prime}$ and $\delta_{p}^{\prime \prime}$ such that $\left(\gamma_{p}^{\prime \prime}, \delta_{p}^{\prime \prime}\right)=1$ and $\gamma_{p}^{\prime \prime} a^{\prime}=\delta_{p}^{\prime \prime} a_{p}$. Then $\left(\gamma_{p}^{\prime \prime}, p\right)=$ 1. Let $\delta_{p}^{\prime \prime}=p^{u_{p}} \tau_{p}$ for some integer τ_{p} such that $\left(\tau_{p}, p\right)=1$. Then $u_{p} \geqq r_{p}$ and

$$
\begin{aligned}
\gamma_{p}^{\prime \prime} p^{n} g & =\gamma_{p}^{\prime \prime} \lambda_{p} g_{p m}+\gamma_{p}^{\prime \prime} a^{\prime}=\gamma_{p}^{\prime \prime} \lambda_{p} p^{n} g_{p m+n}+\tau_{p} p^{u_{p}-r_{p}} p^{r_{p}} a_{p} \\
& =\gamma_{p}^{\prime \prime} \lambda_{p} p^{n} g_{p m+n}+\tau_{p} p^{u_{p}-r_{p}} p^{n} g_{p n} \in p^{n} L .
\end{aligned}
$$

Hence L is a p-pure subgroup of $p^{d_{p}} G$ containing $A \cap p^{d_{p}} G$. Since $A \cap p^{d_{p}} G$ is p-vertical in $p^{d_{p}} G$ by Lemma 3.1 (3) and $\frac{L}{A \cap p^{d_{p}} G}$ is a divisible p-group, we have $L[p]=0$. By Proposition 1.5, L is a p-pure hull of $A \cap p^{d_{p}} G$ in $p^{d_{p}} G$. Hence A is p-purifiable in G. Since A is p-purifiable in G for every prime p, by Proposition 1.7, A is purifiable in G.

We recall the height-matrix introduced in [6, Vol. 2, p.198]. Let G be an arbitray abelian group, $p_{n}(n \geqq 1)$ a listing of all primes in increasing order, and $g \in G$. Then we associate with g the height-matrix $\mathbb{H}(g)$, an infinite matrix with ordinal numbers for entries, as follows;

$$
\mathbb{H}(g)=\left(\begin{array}{ccccc}
h_{p_{1}}(g) & h_{p_{1}}\left(p_{1} g\right) & \ldots & h_{p_{1}}\left(p_{1}^{k} g\right) & \ldots \\
\ldots & & & & \\
h_{p_{n}}(g) & h_{p_{n}}\left(p_{n} g\right) & \ldots & h_{p_{n}}\left(p_{n}^{k} g\right) & \ldots \\
\ldots & & & &
\end{array}\right) .
$$

The element in the (n, k)-position of $\mathbb{H}(g)$ is the generalized p_{n}-height of $p_{n}^{k} g$, for all $n \geqq 1$ and $k \geqq 0$. The element in the (n, k)-position of $\mathbb{H}(g)$ is denoted by $\mathbb{H}_{n, k}(g)$. The nth row of $\mathbb{H}(g)$ is called the p_{n}-indicator of a. $\mathbb{H}_{n, k}(g)=\infty$ means that $p^{k} g$ is an element of the maximal p-divisible subgroup of G.

We can rephrase Theorem 3.2 in terms of height matrices as follows. A is purifiable in G if and only if, for every $a \in A$ and all $n \geqq 1$, the $p_{n^{-}}$ indicator of a in the height matrix $\mathbb{H}(a)$ is one of the following two types:
(1) there exists a nonnegative integer r_{n} such that $\mathbb{H}_{n, r_{n}+i}(a)<\omega$ and $\mathbb{H}_{n, r_{n}+i}(a)=\mathbb{H}_{n, r_{n}}(a)+i$ for all $i \geqq 0$;
(2) there exists a nonnegative integer r_{n} such that $\mathbb{H}_{n, r_{n}}(a)=\infty$ and if $r_{n}>0$, then $\mathbb{H}_{n, r_{n}-1}(a)<\omega$.
In the latter half of this section, we show that all pure hulls of a torsionfree rank-one subgroup of an arbitrary abelian group are isomorphic. To do this, we need the following lemma.
Lemma 3.3 Let G be an abelian group and A a torsion-free rank-one subgroup of G. Suppose that A is purifiable in G. Let H and K be pure hulls of A in G, M a $T(H)$-high subgroup of H containing A, and $N a$ $T(K)$-high subgroup of K containing A. Then $M \cong N$.
Proof. Let $u \in M$ and $v \in N$. For every prime p, let $m_{p}=h_{p}^{M}(u)$ and $n_{p}=h_{p}^{N}(v)$. By hypothesis, there exist integers r, s such that $r u=s v \in A$.

Suppose that $m_{p}=\infty$ and $n_{p}<\infty$. Then, by Proposition 2.2 (4) and Proposition 2.10, $H_{p}=K_{p}=0$. Hence A is p-vertical in K and there exists $v_{p}^{\prime} \in N$ such that $h_{p}\left(v_{p}^{\prime}\right)=0$ and $v=p^{n_{p}} v_{p}^{\prime}$. Then $h_{p}(r u)=\infty$. On the other hand, by Proposition 1.13(3), $h_{p}\left(s p^{n_{p}} v_{p}^{\prime}\right)<\infty$. This is a contradiction. Hence $m_{p}=\infty$ if and only if $n_{p}=\infty$.

Without loss of generality, we may assume that $m_{p}<\infty$ and $n_{p}<\infty$. There exists $u_{p} \in M$ and $v_{p} \in N$ such that $h_{p}\left(u_{p}\right)=h_{p}\left(v_{p}\right)=0, u=p^{m_{p}} u_{p}$, and $v=p^{n_{p}} v_{p}$. Note that $r u=r p^{m_{p}} u_{p}=s p^{n_{p}} v_{p}=s v \in A$ and $h_{p}(r u)=$ $h_{p}(s v)$.

If p is a prime such that $H_{p}=0$ and $(r, p)=(s, p)=1$, then $K_{p}=0$ and hence $m_{p}=n_{p}$.

Let p be a prime such that $H_{p} \neq 0$. By Proposition 2.10, $K_{p} \neq 0$. For every prime p such that $H_{p} \neq 0$, let

$$
\mathbf{Q T}_{p}^{A}(G)=\binom{c_{p 1}, c_{p 2}, \ldots, c_{p n_{p}}}{t_{p 1}, t_{p 2}, \ldots, t_{p n_{p}}}
$$

and

$$
e_{p}= \begin{cases}t_{p 1} & \text { if } n_{p}=1 \\ t_{p 1}+\sum_{j=2}^{n_{p}}\left(t_{p j}-c_{p j-1}\right) & \text { if } n_{p}>1\end{cases}
$$

By Theorem 2.9, there exist $b_{p} \in M$ and $b_{p}^{\prime} \in N$ such that $h_{p}\left(b_{p}\right)=h_{p}\left(b_{p}^{\prime}\right)=$ $0, h_{p}\left(p^{i} b_{p}\right)=h_{p}\left(p^{i} b_{p}^{\prime}\right)<\infty$ for $0 \leqq i<e_{p}$ and $p^{e_{p}-1} b_{p}, p^{e_{p}-1} b_{p}^{\prime} \in A$. Since $r(A)=1$, there exist integers α_{p} and β_{p} such that $\left(\alpha_{p}, \beta_{p}\right)=1$ and $\alpha_{p} p^{e_{p}-1} b_{p}=\beta_{p} p^{e_{p}-1} b_{p}^{\prime}$. Then $\left(\alpha_{p}, p\right)=\left(\beta_{p}, p\right)=1$. Without loss of generality, we may assume that $b_{p}=u_{p}, b_{p}^{\prime}=v_{p}$, and $\alpha_{p} p^{e_{p}-1} u_{p}=$ $\beta_{p} p^{e_{p}-1} v_{p} \in A$.

Suppose that p is a prime such that $(r, p)=(s . p)=1$ and $m_{p}<e_{p}$. Since $h_{p}\left(r p^{m_{p}} u_{p}\right)=h_{p}\left(s p^{n_{p}} v_{p}\right)$ and $h_{p}\left(p^{i} u_{p}\right)=h_{p}\left(p^{i} v_{p}\right)<\infty$ for $0 \leqq i<e_{p}$, we have $m_{p}=n_{p}$. Suppose that p is a prime such that $(r, p)=(s, p)=1$ and $m_{p} \geqq e_{p}$. Then $n_{p} \geqq e_{p}$ and $\beta_{p} r p^{m_{p}-e_{p}} \alpha_{p} p^{e_{p}} u_{p}=\alpha_{p} s p^{n_{p}-e_{p}} \beta_{p} p^{e_{p}} v_{p}$. Since $\alpha_{p} p^{e_{p}} u_{p}=\beta_{p} p^{e_{p}} v_{p} \in A$, we have $m_{p}=n_{p}$. Hence $M \cong N$.

Theorem 3.4 Let G be an abelian group and A a torsion-free rank-one subgroup of G. If A is purifiable in G, then all pure hulls of A are isomorphic.

Proof. Let H and K be pure hulls of A in G, M a $T(H)$-high subgroup of H containing A, and N a $T(K)$-high subgroup of K containing A. By Lemma 3.3, $M \cong N$. We have an isomorphism $\phi: M \rightarrow N$, choose $u \in$ M, and let $v=\phi(u)$. Then, for every prime $p, h_{p}^{M}(u)=h_{p}^{N}(v)=m_{p}$. By Proposition 2.2 (4), if p is a prime such that $H_{p} \neq 0$, then $m_{p}<\infty$. Therefore there exists $u_{p} \in M$ and $v_{p} \in N$ such that $h_{p}\left(u_{p}\right)=h_{p}\left(v_{p}\right)=0$, $u=p^{m_{p}} u_{p}, v=p^{m_{p}} v_{p}$, and $\phi\left(u_{p}\right)=v_{p}$.

For a prime p such that $H_{p} \neq 0$, let

$$
\mathbf{Q T}_{p}^{A}(G)=\binom{c_{p 1}, c_{p 2}, \ldots, c_{p n_{p}}}{t_{p 1}, t_{p 2}, \ldots, t_{p n_{p}}} .
$$

By Corollary 2.11, we have the following.
(1) If $c_{p n_{p}}<\infty$, then, for $1 \leqq i \leqq n_{p}$, there exist $x_{p i} \in H_{p}, x_{p i}^{\prime} \in K_{p}$, $g_{p i} \in H$, and $g_{p i}^{\prime} \in K$ such that
(1) $(H / M)_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle g_{p i}+M\right\rangle$, where $o\left(g_{p i}+M\right)=p^{c_{p i}}$ for $1 \leqq i \leqq$ n_{p};
(2) $H_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle x_{p i}\right\rangle$, where $o\left(x_{p i}\right)=p^{t_{p i}}$ for $1 \leqq i \leqq n_{p}$;
(3) $x_{p 1}=u_{p}+p^{c_{p 1}-t_{p 1}} g_{p 1}, x_{p i}=g_{p i-1}+p^{c_{p i}-t_{p i}} g_{p i}$ for $2 \leqq i \leqq n_{p}$,
and
(1) $(K / N)_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle g_{p i}^{\prime}+N\right\rangle$, where $o\left(g_{p i}^{\prime}+N\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}$;
(2) $K_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle x_{p i}^{\prime}\right\rangle$, where $o\left(x_{p i}^{\prime}\right)=p^{t_{p i}}$ for $1 \leqq i \leqq n_{p}$;
(3) $x_{p 1}^{\prime}=v_{p}+p^{c_{p 1}-t_{p 1}} g_{p 1}^{\prime}, x_{p i}^{\prime}=g_{p i-1}^{\prime}+p^{c_{p i}-t_{p i}} g_{p i}^{\prime}$ for $2 \leqq i \leqq n_{p}$.
(2) If $c_{p n_{p}}=\infty$, then there exist $x_{p i} \in H_{p}$ and $x_{p i}^{\prime} \in K_{p}$ for $1 \leqq i \leqq n_{p}$, and $g_{p i} \in H$ and $g_{p i}^{\prime} \in K$ for $i \geqq 1$ such that
(1) $(H / M)_{p}=\bigoplus_{i=1}^{n_{p}-1}\left\langle g_{p i}+M\right\rangle \oplus D^{(p)} / N$, where $o\left(g_{p i}+M\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}-1$ and $D^{(p)} / M \cong \mathbf{Z}\left[p^{\infty}\right]$ such that

$$
D^{(p)} / M=\left\langle g_{p i}+M \mid i \geqq n_{p}, p g_{p i+1}=g_{p i}, p^{t_{p n_{p}}+1} g_{p n_{p}} \in M\right\rangle ;
$$

(2) $H_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle x_{p i}\right\rangle$, where $o\left(x_{p i}\right)=p^{t_{p i}}$ for $1 \leqq i \leqq n_{p}$;
(3) $x_{p 1}=u_{p}+p^{c_{p 1}-t_{p 1}} g_{p 1}, x_{p i}=g_{p i-1}+p^{c_{p i}-t_{p i}} g_{p i}$ for $1 \leqq i \leqq n_{p}-1$ and $x_{p n_{p}}=g_{p n_{p}-1}+p g_{p n_{p}}$,
and
(1) $(K / N)_{p}=\bigoplus_{i=1}^{n_{p}-1}\left\langle g_{p i}^{\prime}+M\right\rangle \oplus D^{(p)} / N$, where $o\left(g_{p i}^{\prime}+M\right)=p^{c_{p i}}$ for $1 \leqq i \leqq n_{p}-1$ and $D^{(p)} / M \cong \mathbf{Z}\left[p^{\infty}\right]$ such that

$$
D^{(p)} / M=\left\langle g_{p i}^{\prime}+M \mid i \geqq n_{p}, p g_{p i+1}^{\prime}=g_{p i}^{\prime}, p^{t_{p n_{p}}+1} g_{p n_{p}}^{\prime} \in M\right\rangle ;
$$

(2) $K_{p}=\bigoplus_{i=1}^{n_{p}}\left\langle x_{p i}^{\prime}\right\rangle$, where $o\left(x_{p i}^{\prime}\right)=p^{t_{p i}}$ for $1 \leqq i \leqq n_{p}$;
(3) $x_{p 1}^{\prime}=v_{p}+p^{c_{p 1}-t_{p 1}} g_{p 1}^{\prime}, x_{p i}^{\prime}=g_{p i-1}^{\prime}+p^{c_{p i}-t_{p i}} g_{p i}^{\prime}$ for $1 \leqq i \leqq n_{p}-1$ and $x_{p n_{p}}^{\prime}=g_{p n_{p}-1}^{\prime}+p g_{p n_{p}}^{\prime}$.
To extend this isomorphism to H, define $\phi\left(g_{p i}\right)=g_{p i}^{\prime}$ for all $1 \leqq i \leqq n_{p}$ if $c_{p n_{p}}<\infty, \phi\left(g_{p i}\right)=g_{p i}^{\prime}$ for all $i \geqq 1$ if $c_{p n_{p}}=\infty$, and

$$
\begin{aligned}
& \phi\left(\sum_{r=1}^{n}\left(\sum_{i=1}^{n_{p_{r}}} \alpha_{p_{r} i} g_{p_{r} i}\right)+\sum_{s=1}^{m} \beta_{q_{s} s} g_{q_{s} n_{q_{s}}+l_{s}}+u^{\prime}\right) \\
& \quad=\sum_{k=1}^{n}\left(\sum_{i=1}^{n_{p_{r}}} \alpha_{p_{r} i} g_{p_{k} i}^{\prime}\right)+\sum_{s=1}^{m} \beta_{q_{s} s} g_{q_{s} n_{q_{s}}+l_{s}}^{\prime}+\phi\left(u^{\prime}\right)
\end{aligned}
$$

where every $\alpha_{p_{r} i}$ and every $\beta_{q_{s} s}$ is integer for $1 \leqq r \leqq n, 1 \leqq i \leqq n_{p_{r}}$ and $1 \leqq s \leqq m$ and $u^{\prime} \in M$.

Let $h \in H$ such that

$$
h=\sum_{r=1}^{n}\left(\sum_{i=1}^{n_{p_{r}}} \alpha_{p_{r} i} g_{p_{r} i}\right)+\sum_{s=1}^{m} \beta_{q_{s} s} g_{q_{s} n_{q_{s}}+l_{s}}+\delta u
$$

where every $\alpha_{p_{r} i}$ and every $\beta_{q_{s} s}$ is integer for $1 \leqq r \leqq n, 1 \leqq i \leqq n_{p_{r}}$ and $1 \leqq s \leqq m$ and $\delta \in \mathbf{Q}$. Suppose that $h=0$. Since $\left\{g_{p_{r} i}^{\prime}+N, g_{q_{s} n_{q_{s}}+l_{s}}^{\prime}+\right.$ $\left.N \mid 1 \leqq r \leqq n, 1 \leqq i \leqq n_{p_{r}}, 1 \leqq s \leqq m\right\}$ is independent in $K / N, p_{r}^{c_{p_{r} i}}$ divides $\alpha_{p_{r} i}$ and $q_{s}^{t_{q_{s} n_{q_{s}}}+l_{s}+1}$ divides $\beta_{q_{s} s}$. Hence we write $\alpha_{p_{r} i}=p_{r}^{c_{p_{r} i}} \alpha_{p_{r} i}^{\prime}$ and $\beta_{q_{s} s}=q_{s}^{t_{q_{s} n_{q_{s}}}+l_{s}+1} \beta_{q_{s} s}^{\prime}$ for some integers $\alpha_{p_{r} i}^{\prime}$ and $\beta_{q_{s}}^{\prime}$. Let

$$
e_{p}= \begin{cases}t_{p 1} & \text { if } n_{p}=1, \\ t_{p 1}+\sum_{j=2}^{n_{p}}\left(t_{p j}-c_{p j-1}\right) & \text { if } n_{p}>1 .\end{cases}
$$

By (2.11.1),

$$
\begin{aligned}
& h=\left(\sum_{r=1}^{n}\left(\sum_{i=1}^{n_{p_{r}}} \alpha_{p_{r} i}^{\prime}(-1)^{n_{p_{r}}} p_{r}^{e_{p_{r} n_{p_{r}}}-m_{p_{r}}}\right)\right. \\
&\left.+\sum_{s=1}^{m} \beta_{q_{s} s}^{\prime}(-1)^{n_{q_{s}}} q_{s}^{e_{q_{s} n_{q_{s}}}-m_{q_{s}}}+\delta\right) u=0
\end{aligned}
$$

Let
$\lambda=\sum_{r=1}^{n}\left(\sum_{i=1}^{n_{p_{r}}} \alpha_{p_{r} i}^{\prime}(-1)^{n_{p_{r}}} p_{r}^{e_{p_{r} n_{p_{r}}}-m_{p_{r}}}\right)+\sum_{s=1}^{m} \beta_{q_{s} s}^{\prime}(-1)^{n_{q_{s}}} q_{s}^{e_{q_{s} n_{q_{s}}}-m_{q_{s}}}+$ δ. Then $\lambda=0$. It is immediate that if $\lambda=0$, then $h=0$. Therefore we proved that

$$
h=\sum_{r=1}^{n}\left(\sum_{i=1}^{n_{p_{r}}} \alpha_{p_{r} i} g_{p_{r} i}\right)+\sum_{s=1}^{m} \beta_{q_{s} s} g_{q_{s} n_{q_{s}}+l_{s}}+\delta u=0
$$

if and only if $\lambda=0$, where $\alpha_{p_{r} i}=p_{r}^{c_{p_{r} i}} \alpha_{p_{r} i}^{\prime}, \beta_{q_{s} s}=q_{s}^{t_{q_{s} n_{q_{s}}}+l_{s}+1} \beta_{q_{s} s}^{\prime}$ for some integers $\alpha_{p_{r} i}^{\prime}$ and $\beta_{q_{s} s}^{\prime}$ and

$$
\lambda=\sum_{r=1}^{n}\left(\sum_{i=1}^{n_{p_{r}}} \alpha_{p_{r} i}^{\prime}(-1)^{n_{p_{r}}} p_{r}^{e_{p_{r} n_{p_{r}}}-m_{p_{r}}}\right)+\sum_{s=1}^{m} \beta_{q_{s} s}^{\prime}(-1)^{n_{q_{s}}} q_{s}^{e_{q_{s} n_{q_{s}}}-m_{q_{s}}}+\delta
$$

Hence ϕ is well-defined and a monomorphism. It is immediate that ϕ is an epimorphism and $\left.\phi\right|_{T(H)}$ is an isomorphism onto $T(K)$. Therefore ϕ is an isomorphism.

4. Purifiability of \boldsymbol{T}-high subgroups

In this section, we consider T-high subgroups of arbitrary abelian groups that are purifiable in given groups.

Theorem 4.1 Let G be an abelian group and A a T-high subgroup of G. Suppose that A is purifiable in G. For every pure hull H of A in G, then H is an ADE-group H with A as a moho subgroup and there exists a subgroup T_{1} of T such that

$$
G=H \oplus T_{1}
$$

Moreover,
(1) if H and K are pure hulls of A in G, then $H \cong K$;
(2) there exists a subgroup T^{\prime} of T such that $G=H \oplus T^{\prime}$ for every pure hull H of A in G.

Proof. By Proposition $2.2(3), H_{p}$ is bounded pure in G_{p} for every prime p. Hence H_{p} is a direct summand of G_{p} and there exists a subgroup T_{1} of T such that $T=T(H) \oplus T_{1}$. We prove that $H \oplus T_{1}$ is pure in G. Let $n g \in H \oplus T_{1}$ with $g \in G$ and $n \in \mathbf{Z}$. Then there exist $h \in H$ and $t \in T_{1}$ such that $n g=h+t$. Moreover, we have $m n g \in H$ for some integer m. Since H is pure in $G, m n g \in H \cap m n G=m n H$. Hence there exists $h^{\prime} \in H$ such that $m n g=m n h^{\prime}$. Since $n g-n h^{\prime} \in T \cap n G=n T=n\left(T(H) \oplus T_{1}\right)$, there exist $h_{1} \in T(H)$ and $t_{1} \in T_{1}$ such that $n g-n h^{\prime}=n\left(h_{1}+t_{1}\right)$. Hence $n g=n\left(h^{\prime}+h_{1}+t_{1}\right) \in n\left(H \oplus T_{1}\right)$. Since $H \oplus T_{1}$ is essential in $G, G=H \oplus T_{1}$. By Proposition 2.2 (1), it follows that A is almost-dense in H. Hence H is an ADE-group with A as a moho subgroup.

Fix a prime p and recall notations as follows:

$$
A_{G}^{n}(p)=\left(A+p^{n+1} G\right) \cap p^{n} G[p]=\left(\left(A \cap p^{n} G\right)+p^{n+1} G\right)[p]
$$

and

$$
A_{n}^{G}(p)=\left(A \cap p^{n} G\right)[p]+p^{n+1} G[p]=p^{n+1} G[p]
$$

By Proposition 1.10 and Proposition 1.11, there exists the least integer m such that $A_{G}^{n}(p)=A_{n}^{G}(p)$ for all $n \geqq m$. Then $p^{m} G[p]=p^{m} T_{1}[p]$.

For integer $n \geqq 0$, let $p^{n} g+A \in p^{n}(G / A)[p]$. Since $p^{n+1} g \in H \cap$ $p^{n+1} G=p^{n+1} H$, there exists $h \in H$ such that $p^{n+1} g=p^{n+1} h$. Since $p^{n} g-$ $p^{n} h \in p^{n} G[p]$, we have $p^{n}(G / A)[p]=p^{n}(H / A)[p]+\frac{p^{n} G[p]+A}{A}$. Let $x \in A_{G}^{n}(p)$. Then we can write $x=a+p^{n+1} g^{\prime}$ for some $a \in A$ and $g^{\prime} \in G$. Since $x+$ $A \in p^{n+1}(G / A)[p]=p^{n+1}(H / A)[p]+\frac{p^{n+1} G[p]+A}{A}$, there exist $a^{\prime} \in A, h^{\prime} \in H$, and $p^{n+1} g_{0} \in p^{n+1} G[p]$ such that $x=a+p^{n+1} g^{\prime}=a^{\prime}+p^{n+1} h^{\prime}+p^{n+1} g_{0}$. Since $h_{p}(a) \geqq n$, also $h_{p}\left(a^{\prime}\right) \geqq n$. Hence $A_{G}^{n}(p)=A_{H}^{n}(p)+A_{n}^{G}(p)$. By Proposition $2.2(1), p^{n} H[p] \subseteq A+p^{n+1} H$ for all $n \geqq 0$. Hence, for all $n \geqq 0$, there exist subsocles S_{n} and H_{n} of G such that

$$
\begin{aligned}
p^{n} G[p] & =A_{G}^{n}(p) \oplus S_{n}=\left(p^{n} H[p]+p^{n+1} G[p]\right) \oplus S_{n} \\
& =H_{n} \oplus p^{n+1} G[p] \oplus S_{n}
\end{aligned}
$$

Similarly, since $A_{G}^{n}(p)=A_{K}^{n}(p)+A_{n}^{G}(p)$ and $p^{n} K[p] \subseteq A+p^{n+1} K$ for all $n \geqq 0$, for all $n \geqq 0$, there exist subsocles K_{n} of G such that

$$
\begin{aligned}
p^{n} G[p] & =A_{G}^{n}(p) \oplus S_{n}=\left(p^{n} K[p]+p^{n+1} G[p]\right) \oplus S_{n} \\
& =K_{n} \oplus p^{n+1} G[p] \oplus S_{n}
\end{aligned}
$$

Let $S=\bigoplus_{i=1}^{m-1} S_{i}$. Then

$$
G[p]=H[p] \oplus p^{m} T_{1}[p] \oplus S=K[p] \oplus p^{m} T_{1}[p] \oplus S
$$

Hence, for every prime p, there exist a nonnegative integer m_{p} and a subsocle S_{p} of G such that

$$
G[p]=H[p] \oplus p^{m_{p}} T_{1}[p] \oplus S_{p}=K[p] \oplus p^{m_{p}} T_{1}[p] \oplus S_{p}
$$

Since $\left(S_{p} \oplus p^{m_{p}} T_{1}[p]\right) \cap p^{m_{p}} G_{p}=\left(S_{p} \cap p^{m_{p}} G\right) \oplus p^{m_{p}} T_{1}[p]=p^{m_{p}} T_{1}[p]$, $\left(p^{m_{p}} T_{1}\right)_{p}$ is pure in $p^{m_{p}} G_{p}$ and so $p^{m_{p}} T_{1}[p]$ is purifiable in $p^{m_{p}} G_{p}$. By Proposition 1.13, $\left(S_{p} \oplus p^{m_{p}} T_{1}[p]\right)$ is purifiable in G_{p}. Then there exists a pure hull L_{p} of $\left(S_{p} \oplus p^{m_{p}} T_{1}[p]\right)$ in G_{p}.

Let $h \in H[p]$ and $x \in L_{p}[p]$. Then we have $h_{p}(h+x)=\min \left\{h_{p}(h), h_{p}(x)\right\}$. Hence, by [8, Theorem 2], $G_{p}=H_{p} \oplus L_{p}$. Similarly, $G_{p}=K_{p} \oplus L_{p}$. Let
$T^{\prime}=\bigoplus_{p} L_{p}$. By the above proof, we have

$$
G=H \oplus T^{\prime}=K \oplus T^{\prime}
$$

Definition 4.2 An abelian group G is said to be a strongly $A D E$ decomposable group if there exists a purifiable T-high subgroup of G.

Let G be an abelian group such that, for every prime p, G_{p} is the direct sum of a bounded and a divisible subgroup. By [13, Theorem 5.2], G is a strongly ADE decomposable group. Let G, H and A be groups as in Theorem 4.1. Then H is a minimal direct summand of G containing A.

Corollary 4.3 Let G be an abelian group of torsion-free rank 1 such that, for every prime p, G_{p} is the direct sum of a bounded and a divisible subgroup. Let A be a subgroup of G such that $A \nsubseteq T$. Then there exists a minimal direct summand of G containing A.

Proof. By [13, Theorem 5.2], A is purifiable in G. Let H be a pure hull of A in G. Then every $T(H)$-high subgroup of H is a T-high subgroup of G. By the proof of Theorem 4.1, there exists a subgroup T_{1} of G such that $G=H \oplus T_{1}$. Since H is a pure hull of A in G, H is a minimal direct summand of G containing A.

5. Strongly ADE Decomposable groups of torsion-free rank 1

In this section, we consider ADE decomposable groups of torsion-free rank 1. First we exhibit a strongly ADE decomposable group G of torsionfree rank 1 for which not all T-high subgroups are purifiable in G.

The existence of the following groups H and G_{p} are guaranteed by [12, Theorem 2.8] and [6, Vol. 1, Example, p.150], respectively.
Example 5.1. Let q be a fixed prime and for every prime $p \neq q$, let t_{p} and c_{p} be positive integers such that $t_{p}<c_{p}$. Let H be an ADE group with A as a moho subgroup A such that
(1) $r(A)=1$ and $A=q A$;
(2) for every prime $p \neq q, H_{p}=\left\langle y_{p}\right\rangle$, where $o\left(y_{p}\right)=p^{t_{p}}$ and $H_{q}=0$;
(3) $H / A=\bigoplus_{p \neq q}\left\langle h_{p}+A\right\rangle$, where $h_{p} \in H$ and $o\left(h_{p}+A\right)=c_{p}$.

Let $G_{q}=\left\langle x_{n} \mid n \geqq 0\right\rangle$ be defined by the defining relations

$$
q x_{0}=0 \quad \text { and } \quad q^{k} x_{k}=x_{0} \text { for } k \geqq 1 .
$$

Let $a \in A, b=a+x_{1}, G=H \oplus G_{q}$, and N a $T(G)$-high subgroup of G containing b. Then N is not purifiable in G.

Proof. Note that $h_{q}(b)=0$ and $h_{q}(q b)=\omega$. Hence the q-indicator of b in the height-matrix $\mathbb{H}(b)$ is

$$
(0, \omega, \infty, \ldots)
$$

By Theorem 3.2 (3), N is not purifiable in G.
Now we characterize the abelian groups G of torsion-free rank 1 for which all T-high subgroups are purifiable in G.

Theorem 5.2 Let G be an abelian group of torsion-free rank 1. Then all T-high subgroups of G are purifiable in G if and only if, for every prime p and every $g \in G \backslash T$, one of the following conditions holds:
(1) there exists an integer r_{p} such that $h_{p}\left(p^{r_{p}} g\right)<\omega$ and $h_{p}\left(p^{r_{p}+i} g\right)=$ $h_{p}\left(p^{r_{p}} g\right)+i$ for all $i \geqq 0$;
(2) there exists an integer r_{p} such that $h_{p}\left(p^{r_{p}} g\right)=\infty$ and if $r_{p}>0$, then $h_{p}\left(p^{r_{p}-1} g\right)<\omega$.

Proof. (\Rightarrow) Let $g \in G \backslash T$ and A a T-high subgroup of G containing g. By hypothesis, A is purifiable in G. Hence, by Theorem 3.2, (1) or (2) holds.
(\Leftrightarrow) Let A be any T-high subgroup of G. By hypothesis and Theorem 3.2 (3), A is purifiable in G.

We can rephrase Theorem 5.2 in terms of height matrices as follows. All T-high subgroups of an arbitrary abelian group G of torsion-free rank 1 are purifiable in G if and only if, for every $g \in G \backslash T$ and all $n \geqq 1$, the p_{n}-indicator of g in the height matrix $\mathbb{H}(g)$ is one of the following two types:
(1) there exists a nonnegative integer r_{n} such that $\mathbb{H}_{n, r_{n}+i}(g)<\omega$ and $\mathbb{H}_{n, r_{n}+i}(g)=\mathbb{H}_{n, r_{n}}(g)+i$ for all $i \geqq 0 ;$
(2) there exists a nonnegative integer r_{n} such that $\mathbb{H}_{n, r_{n}}(g)=\infty$ and if $r_{n}>0$, then $\mathbb{H}_{n, r_{n}-1}(g)<\omega$.
From Theorem 3.2 and Theorem 5.2, the following is immediate:
Corollary 5.3 Let G be an abelian group of torsion-free rank 1. Then all T-high subgroups of G are purifiable in G if and only if all torsion-free subgroups are purifiable in G.

Now we give a characterization of an arbitrary abelian group of torsionfree rank 1 that is a strongly ADE decomposable group. Before doing it,
we give a useful lemma.
Lemma 5.4 Let G be an abelian group of torsion-free rank 1 and A a torsion-free subgroup of G. If A is purifiable in G and K is a pure hull of A in G, then there exists a subgroup T^{\prime} of T such that $G=K \oplus T^{\prime}$. Hence G is a strongly $A D E$ decomposable group. Moreover, if A is p-vertical in G for every prime p, then G is splitting.

Proof. Let N be a $T(K)$-high subgroup of K containing A. Then N is a T-high subgroup of G and K is a pure hull of N in G. By Theorem 4.1, there exists a subgroup T^{\prime} of T such that $G=K \oplus T^{\prime}$. Hence G is a strongly ADE decomposable group. If A is p-vertical in G for every prime p, then, by Proposition 1.10 and The comment after Definition 1.8, K is torsion-free. Hence G is splitting.

Theorem 5.5 Let G be an abelian group of torsion-free rank 1. Then G is a strongly $A D E$ decomposable group if and only if there exists an element $g \in G \backslash T$ such that, for all $n \geqq 1$, the p_{n}-indicator of g in the height matrix $\mathbb{H}(g)$ is one of the following two types:
(1) there exists a nonnegative integer r_{n} such that $\mathbb{H}_{n, r_{n}+i}(g)<\omega$ and $\mathbb{H}_{n, r_{n}+i}(g)=\mathbb{H}_{n, r_{n}}(g)+i$ for all $i \geqq 0 ;$
(2) there exists a nonnegative integer r_{n} such that $\mathbb{H}_{n, r_{n}}(g)=\infty$ and if $r_{n}>0$, then $\mathbb{H}_{n, r_{n}-1}(g)<\omega$.

Proof. $\quad(\Rightarrow)$ There exists a purifiable T-high subgroup of G. By Theorem 3.2 (3), the assertion holds.
(\Leftarrow) Let $g \in G \backslash T$ satisfying one of the above two conditions. Let $B=\langle g\rangle$. Consider an element $n g \in B$ for some integer n and the height matrices $\mathbb{H}(g)$ and $\mathbb{H}(n g)$. By hypothesis, $\mathbb{H}(g)$ and $\mathbb{H}(n g)$ are equivalent. By Theorem 3.2 and Lemma 5.4, G is a strongly ADE decomposable group.

Lemma 5.4 and Theorem 5.5 combined lead to the splitting theorem of arbitrary abelian groups of torsion-free rank 1 established in [14] by Stratton.

Corollary 5.6 [14, Theorem] Let G be an abelian group of torsion-free rank 1. Then the following properties are equivalent:
(1) G is splitting;
(2) there exists $g \in G \backslash T$ such that $\langle g\rangle$ is p-vertical in G for every prime
p and if $h_{p}(g) \geqq \omega$, then $h_{p}(g)=\infty ;$
(3) G is a strongly $A D E$ decomposable group satisfying the following condition and let A be a purifiable T-high subgroup of G and for every prime p, let $t_{p n_{p}}$ be the least integer such that $V_{p, n}(G, A)=0$ for $n \geqq$ $t_{p n_{p}}$. Then, for almost all prime p and every $a \in A$,

$$
h_{p}(a) \geqq t_{p n_{p}}
$$

Proof. $\quad(1) \Rightarrow(2) \quad$ By hypothesis, we can write $G=F \oplus T$ for some torsionfree subgroup F of G. Let $g \in F$. Since F is torsion-free, the assertion immediately holds.
$(2) \Rightarrow(1) \quad$ Let $B=\langle g\rangle$. By Theorem $3.2(3)$, it is immediate that B is purifiable in G. By Lemma 5.4, G is splitting.
$(1) \Rightarrow(3) \quad$ By hypothesis, $G=F \oplus T$, where F be a torsion-free subgroup of G. Clearly, G is a strongly ADE decomposable group of torsion-free rank 1. Let A be a purifiable T-high subgroup of G and for every prime p, let $t_{p n_{p}}$ be the least integer such that $V_{p, n}(G, A)=0$ for $n \geqq t_{p n_{p}}$. Let $a \in A$ and r the least integer such that $r a \in F$. Suppose that there exists a prime q such that $(r, q)=1$ and $h_{q}(a)<t_{q n_{q}}$. Then $t_{q n_{q}} \geqq 1$ and hence A is not q-vertical in G. For every prime p, let $m_{p}=h_{p}^{A}(a)$. Let H be a pure hull of A in G. Then $H_{q} \neq 0$ and let

$$
\mathbf{Q T}_{q}^{A}(G)=\binom{c_{q 1}, c_{q 2}, \ldots, c_{q n_{q}}}{t_{q 1}, t_{q 2}, \ldots, t_{q n_{q}}}
$$

and

$$
e_{q}= \begin{cases}t_{q 1} & \text { if } n_{q}=1 \\ t_{q 1}+\sum_{j=2}^{n_{q}}\left(t_{q j}-c_{q j-1}\right) & \text { if } n_{q}>1\end{cases}
$$

Then there exists $a_{q} \in A$ such that $h_{q}\left(a_{q}\right)=0, a=q^{m_{q}} a_{q}, h_{q}\left(q^{e_{q}-1} a_{q}\right)=$ $t_{q n_{q}}-1$ and $m_{q}<e_{q}$. By Corollary 2.11, there exist $x_{q} \in A_{G}^{t_{q n_{q}-1}}(q) \backslash$ $A_{t_{q n_{q}-1}}^{G}(q)$ and $g_{q} \in G$ such that $x_{q}=q^{e_{q}-m_{q}-1} a+p^{t_{q n_{q}}} g_{q}$. Since $(r, q)=1$ and F is q-vertical in G, we have

$$
0 \neq r x_{q}=q^{e_{q}-m_{q}-1} r a+q^{t_{q n_{q}}} r g_{q} \in F_{G}^{t_{q n_{q}-1}}(q)=F_{t_{q n_{q}-1}}^{G}(q)=q^{t_{q n_{q}}} G[q]
$$

This is a contradiction. Hence (3) holds.
$(3) \Rightarrow(1)$ Let H be a pure hull of A in G. By Theorem 4.1, there exists a subgroup T^{\prime} of T such that $G=H \oplus T^{\prime}$. It suffices to prove that
H is splitting. By hypothesis, there exists $a \in A$ such that, for all prime $p, h_{p}(a) \geqq t_{p n_{p}}$. Let $B=\langle a\rangle$. We show that, for every prime p, B is p vertical in H. If $H_{p}=0$, then, by Proposition 1.13(2), B is p-vertical in H. Without loss of generality, we may assume that $H_{p} \neq 0$. Let

$$
\mathbf{Q T}_{p}^{A}(G)=\binom{c_{p 1}, c_{p 2}, \ldots, c_{p n_{p}}}{t_{p 1}, t_{p 2}, \ldots, t_{p n_{p}}}
$$

and

$$
e_{p}= \begin{cases}t_{p 1} & \text { if } n_{p}=1, \\ t_{p 1}+\sum_{j=2}^{n_{p}}\left(t_{p j}-c_{p j-1}\right) & \text { if } n_{p}>1 .\end{cases}
$$

By Corollary 2.11, there exists $a_{p} \in A$ such that $h_{p}\left(a_{p}\right)=0, a=p^{m_{p}} a_{p}$, and $h_{p}\left(p^{e_{p}-1} a_{p}\right)=t_{p n_{p}}-1$. Then $m_{p} \geqq e_{p}$.

If $c_{p n_{p}}<\infty$, then, by Corollary 2.11, there exists $h_{p n_{p}} \in H$ such that $p^{c_{p n_{p}}} h_{p n_{p}}=p^{e_{p}} a_{p}$ and $h_{p}\left(p^{c_{p n_{p}}+i} h_{p n_{p}}\right)=c_{p n_{p}}+i$ for all $i \geqq 0$. Since $p^{c_{p n_{p}}+m_{p}-e_{p}} h_{p n_{p}}=p^{m_{p}} a_{p}=a$, we have $h_{p}\left(p^{i} a\right)=c_{p n_{p}}+m_{p}-e_{p}+i$ for all $i \geqq 0$. By Proposition 1.13(3), B is p-vertical in H.

If $c_{p n_{p}}=\infty$, then, by Corollary 2.11, there exists $h_{p n_{p}} \in H$ such that $h_{p}\left(h_{p n_{p}}\right)=\infty$ and $p^{t_{p n_{p}}+1} h_{p n_{p}}=p^{e_{p}} a_{p}$. Since $m_{p} \geqq e_{p}, h_{p}(a)=\infty$. Hence, by Proposition 1.13(2), B is p-vertical in G for every prime p.

By [13, Theorem 5.2], B is purifiable in H. Let K be a pure hull of B in H. By Lemma 5.4, $H=K \oplus T(H)$.

We can rephrase Theorem 5.6 in terms of height matrices as follows.
Corollary 5.7 An abelian group G of torsion-free rank 1 is splitting if and only if there exists an element $g \in G \backslash T$ such that, for all $n \geqq 1$, the p_{n}-indicator of g in the height matrix $\mathbb{H}(g)$ is one of the following two types:
(1) $\mathbb{H}_{n, 0}(g)<\omega$ and $\mathbb{H}_{n, i}(g)=\mathbb{H}_{n, 0}(g)+i$ for all $i \geqq 0$;
(2) $\mathbb{H}_{n, 0}(g)=\infty$.

Acknowledgment Part of this work was completed during the author's visit at the University of Hawaii. The author thanks the Department of Mathematics at the University of Hawaii and Professor Adolf Mader for their hospitality.

References

[1] Benabdallah K., Charles B. and Mader A., Vertical suqbgroups of primary abelian groups. Can. J. Math. 43(1) (1991), 3-18.
[2] Benabdallah K. and Irwin J., On minimal pure subgroups. Publ. Math. Debrecen 23 (1976), 111-114.
[3] Benabdallah K. and Okuyama T., On purifiable subgroups of primary abelian groups. Comm. Algebra 19(1) (1991), 85-96.
[4] Benabdallah K. and Piché C., Sous-groupes purifiables des groupes abéliens primaries. Canad. Bull. Math. 32(4) (1989), 11-17.
[5] Charles B., Etudes sur les sous-groupes d'un groupe abélien. Bull. Soc. Math. France 88 (1960), 217-227.
[6] Fuchs L., Infinite Abelian Groups I, II. Academic Press, New York, 1970, 1973.
[7] Hill P. and Megibben C., Minimal pure subgroups in primary abelian groups. Bull. Soc. Math. France 92 (1964), 251-257.
[8] Irwin J. and Swanek J., On purifiable subsocles of a primary abelian groups. Can. J. Math. 23(1) (1971), 48-57.
[9] Okuyama T., On purifiable subgroups and the intersection problem. Pacific. J. Math. 157(2) (1993), 311-324.
[10] Okuyama T., On isomorphism of minimal direct summands. Hokkaido Math. J. 23(2) (1994), 229-240.
[11] Okuyama T., Note on purifiable subgroups of primary abelian groups. Hokkaido Math. J. 24(3) (1995), 445-451.
[12] Okuyama T., On Almost-Dense Extension Groups of Torsion-Free Groups. J. Algebra 202 (1998), 202-228.
[13] Okuyama T., On Purifiable Subgroups in Arbitrary Abelian Groups. Comm. Algebra 28(1) (2000), 121-139.
[14] Stratton A.E., On the Splitting of Rank One Abelian Groups. J. Algebra 19(2) (1971), 254-260.

Department of Mathematics
Toba National College of Maritime Technology
1-1, Ikegami-cho, Toba-shi
Mie-ken, 517-8501, Japan
E-mail: okuyamat@toba-cmt.ac.jp

