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On the generalized absolute convergence of Fourier series

L\’aszl\’o LEINDLER
(Received March 15, 2000)

Abstract. Sufficient conditions are given by means of the best trigonometric approxi-
mation in L^{p}(1<p\leq 2) and structural properties of f\in L^{p} for the convergence of the
series

\sum_{n=1}^{\infty}\omega_{n}(\varphi(|a_{n}|)+\varphi(|b_{n}|)) ,

where a_{n} and b_{n} are the Fourier coefficients of f, \{\omega_{n}\} is a certain sequence of positive
numbers, \varphi(u)(u\geq 0) denotes an increasing concave function.

Key words: absolute convergence, best approximation, structural condition, Fourier
coefficients.

1. Introduction

Let f(x) be a 2\pi-periodic Lebesgue integrable to the pth power (p\geq 1)

function and let

\sum_{n=1}^{\infty} ( a_{n} cos nx+b_{n} sin nx)

be its Fourier series. Furthermore let E_{n}(p) denote the best approximation
of f by trigonometric polynomials of order at most n in the space If.

In a recent paper [3], among others, we showed that

\sum_{n=1}^{\infty}n^{\delta}\varphi(n^{1/p-1}E_{n}(p))<\infty

is a sufficient condition for the convergence of the series

\sum_{n=1}^{\infty}n^{\delta}(\varphi(|a_{n}|)+\varphi(|b_{n}|) ,
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where \delta\geq 0 and \varphi(u)(u\geq 0, \varphi(0)=0) is an increasing and concave
function.

In the special case \varphi(x)=x^{\beta}(0<\beta\leq 1) in an erstwhile paper [2],
instead of the factors n^{\delta} with arbitrary nonnegative factors \omega_{n} , that is, for
the convergence of the series

\sum_{n=1}^{\infty}\omega_{n}(|a_{n}|^{\beta}+|b_{n}|^{\beta}) (1.1)

we established such a sufficient condition which generalized a well-known
result of Konjuskov [1] pertaining to the convergence of the series (1.1) in
the special case \omega_{n}=n^{\delta} .

Already in the paper [3] we raised the problem to find a sharp sufficient
condition for the convergence of the series

\sum_{n=1}^{\infty}\omega_{n}(\varphi(|a_{n}|)+\varphi(|b_{n}|)) , (1.2)

however, up to now, unfortunately, we are not able to give such a sufficient
condition for an arbitrary sequence \omega :=\{\omega_{n}\} .

Consequently the aim of the present work is more moderate, we shall
establish sufficient conditions for the convergence of the series (1.2) setting
certain additional monotonicity assumptions on the sequence \omega . Naturally
the sequence \omega_{n}=n^{\delta}(\delta\geq 0) plentifully satisfies our assumptions on \omega .

In order to make easy the presentation of our results we recall some
definitions and introduce certain notations.

In the sequel we shall assume that p\geq 1 , K, K_{i} denote positive con-
stants, and may vary from occurance to occurance, K_{i}(\cdot) denotes such con-
stant which depends only those parameters as indicated in the bracket.

We say that a sequence \gamma:=\{\gamma_{n}\} of positive terms is quasi \beta -power-
monotone increasing (decreasing) if there exists a constant K:=K(\beta, \gamma)\geq

1 such that

Kn^{\beta}\gamma_{n}\geq m^{\beta}\gamma_{m} (n^{\beta}\gamma_{n}\leq Km^{\beta}\gamma_{m}) (1.3)

holds for any n\geq m , m=1,2 , . . \tau If the terms \gamma_{n} of a sequence \gamma satisfy
the inequalities

K(\gamma)\gamma_{n}\geq\gamma n+1 (\gamma_{n}\leq K(\gamma)\gamma_{n+1}) (1.4)
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(1.5)

for all n\geq n_{0}(\gamma)\geq 1 , then it will be called slowly quasi increasing (decreas-
ing).

Finally denote

\rho_{n}:=(a_{n}^{2}+b_{n}^{2})^{1/2} , and p’:= \frac{p}{p-1} .

Now we can formulate the first two theorems.

Theorem 1 Let 1<p\leq 2 , f\in L^{p}(0,2\pi) , and let \omega:=\{\omega_{n}\} be a quasi \eta
-

power-monotone decreasing sequence of positive numbers with some negative
\eta . If \varphi(u)(u\geq 0, \varphi(0)=0) is an increasing and concave function and

\sum_{n=1}^{\infty}\omega_{n}\varphi(\{\frac{1}{n}\sum_{k=n}^{\infty}d_{k}^{J’}\}^{1/p’})<\infty ,

then

\sum_{n=1}^{\infty}\omega_{n}\varphi(\rho_{n})<\infty . (1.6)

Utilizing the following known result (see [5])

\sum_{k=n}^{\infty}\rho_{k}^{p’}\leq KE_{n}^{p’}(p) , 1<p\leq 2 ,

Theorem 1 yields immediately the following result.

Theorem 2 If p, f, \omega and \varphi have the same meaning and properties as
in Theorem 1 then the condition

\sum_{n=1}^{\infty}\omega_{n}\varphi(n^{-1/p’}E_{n}(p))<\infty

implies (1.6).

Since the sequence \omega:=\{n^{\delta}\} is clearly quasi (-\delta)-power-monotone
decreasing, thus Theorem 2 is an extension of Theorem 2 given in [3] from
positive \delta to arbitrary \delta , but the enlargement visibly has sense only if \delta\geq

-1 .
We also mention that Theorem 2 in the special case \varphi(x)=x^{\beta} and
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\omega_{n}=n^{\delta} was proved by Konjuskov [1], that is, that

\sum_{n=1}^{\infty}n^{\delta-\beta/p’}E_{n}^{\beta}(p)<\infty

implies

\sum_{n=1}^{\infty}n^{\delta}f_{n}<\infty .

In our old-time paper [2] we can also find a result (see Hilfssatz III)
which gives a structural condition. Namely it is proved that

\int_{0}^{1}t^{-2-\delta}(\int_{0}^{2\pi}|f(x+2t)+f(x-2t)-2f(x)|^{p}dx)^{\beta/p}dt<\infty

(1.7)

implies

\sum_{n=1}^{\infty}n^{\delta}\{\sum_{k=n}^{\infty}\rho_{k}^{p’}\}^{\beta/p’}<\infty . (1.8)

Now we raise the following problem: Can we replace in (1.7) the func-
tion x^{\beta} with an arbitrary increasing and concave function \varphi(x) such that
the new condition should imply (1.8) also with \varphi(x) in place of x^{\beta} ? The
answer is yes.

The next problem: Can we also substitute the function x^{\delta} in (1.7) and
(1.8) by a suitable function \omega(x) such that the new structural condition
with \varphi(x) and \omega(x) should be sufficient for (1.8) naturally with \varphi(x) and
\omega(x) in place of x^{\beta} and x^{\delta} ? The answer is incompletely yes, namely we
have to restrict the assumption presented in Theorem 1 on the sequence
\omega:=\{\omega_{n}\} .

The above statements follow from the following result, where we shall
use the function defined as follows:

\omega(x):=\{
\omega_{n} , if x=n, n\geq 1 ,
linear between n and n+1 .

Theorem 3 Let 1<p\leq 2 , f\in L^{p}(0,2\pi) , and let \omega:=\{\omega_{n}\} be a quasi
\eta -power-monotone decreasing sequence of positive numbers with some neg-
ative \eta , and simultaneously quasi \rho-power-monotone increasing with some
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(1.9)

\rho<1 . If \varphi(u)(u\geq 0, \varphi(0)=0) is an increasing and concave function,
furthermore

\int_{0}^{1}t^{-2}\omega(\frac{1}{t})\varphi(\{\int_{0}^{2\pi}|f(x+2t)+f(x-2t)-2f(x)|^{p}dx\}^{1/p})dt<\infty ,

(1.9)

then

\sum_{n=1}^{\infty}\omega_{n}\varphi(\{\sum_{k=n}^{\infty}\rho_{k}^{p’}\}^{1/p’})<\infty .

2. Lemmas

We require the following lemmas.

Lemma 1 ([4], or see [3]) Let k and m be natural numbers. Then the
following inequalities

m2^{1-m} \leq\sum_{j=k^{m}}^{(k+1)^{m}-1}j^{\frac{1}{m}-1}\leq m2^{m-1} (2.1)

hold.

In the sequel [\alpha] will denote the integer part of \alpha .

Lemma 2 Let 1<p\leq 2 , \omega:=\{\omega_{n}\} be a sequence of positive numbers,
and let m be an arbitrary natural number. Furthermore let \{\alpha_{n}\} be a monO-

tone nonincreasing sequence of nonnegative numbers and let \varphi(u)(u\geq 0 ,
\varphi(0)=0) be an increasing concave function. Then the conditions

\sigma(\omega, m):=\sum_{k=1}^{\infty}k^{\frac{1}{m}-1}\omega_{[]}k^{1/m}\varphi(k^{\frac{1}{p}}m\alpha_{[k^{1/m}}])-A<\infty (2.2)

and

\sigma(\omega):=\sum_{k=1}^{\infty}\omega_{k}\varphi(k^{\underline{1}-A}p\alpha_{k})<\infty (2.3)

are equivalent.

Proof First we show that (2.2) implies (2.3). Considering the first inequal-
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ity in (2.1), the monotonicity of \varphi(x)/x and that p>1 , an easy calculation
gives that

\sigma(\omega, m)=\sum_{k=1}^{\infty}\sum_{j=k^{m}}^{-1}j^{\frac{1}{m}-1}\omega_{b^{1/m}]}.\varphi(j^{\frac{1-p}{pm}}\alpha_{b^{1/m}])}(k+1)^{m}.

\geq\sum_{k=1}^{\infty}\omega_{k}\varphi((k+1)^{\frac{1-}{p}R}\alpha_{k})\sum_{j=k^{m}}^{(k+1)^{m}-1}j^{\frac{1}{m}-1}

\geq K(m,p)\sum_{k=1}^{\infty}\omega_{k}\varphi(k^{\frac{1-}{p}l}\alpha_{k})=K(m,p)\sigma(\omega) . (2.4)

This verifies the implication (2.2)\Rightarrow (2.3).

The proof of (2.3)\Rightarrow (2.2) runs likewise. Using the first equality in (2.4),
and the second inequality in (2.1), we obtain immediately that

\sigma(\omega, m)\leq K(m)\sum_{k=1}^{\infty}\omega_{k}\varphi(k^{\underline{1}-A}p\alpha_{k})=K(m)\sigma(\omega) .

The proof is complete. \square

Lemma 3 (Jensen’s inequality) Let \varphi(u)(u\geq 0, \varphi(0)=0) be an in-
creasing concave function. Then, for any infinite sequence of nonnegative
numbers x_{1} , x_{2} , \ldots , x_{n} , \ldots and any infinite sequence of positive numbers
p_{1},p_{2} , \ldots , p_{n} , \ldots , the following inequality

\frac{\sum_{k_{-}^{-}1}^{\infty}p_{k}\varphi(x_{k})}{\sum_{k=1}^{\infty}p_{k}}\leq\varphi(\frac{\sum_{k_{-}^{-}1}^{\infty}p_{k}x_{k}}{\sum_{k=1}^{\infty}p_{k}}) (2.5)

holds, assuming that each series in (2.5) converges.

3. Proofs of the theorems

Proof of Theorem 1. In order to simplify writing we shall write only k^{1/m}

instead of [k^{1/m}] .
Let m>-\eta+1 . An elementary calculation, using an Abel rearrange-

ment and the Jensen inequality, gives that

\sum_{n=1}^{\infty}\omega_{n}\varphi(\rho_{n})=\sum_{n=1}^{\infty}\sum_{k=1}^{n^{m}}\omega_{n}n^{-m}\varphi(\rho_{n})
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\leq\sum_{k=1}^{\infty}\sum_{n=k^{1/m}}^{\infty}\omega_{n}n^{-m}\varphi(\rho_{n})

\leq\sum_{k=1}^{\infty}(\sum_{n=k^{1/m}}^{\infty}\omega_{n}n^{-m})\varphi(\{\sum_{n=k^{1/m}}^{\infty}\omega_{n}n^{-m}\}^{-1}\sum_{n=k^{1/m}}^{\infty}\omega_{n}n^{-m}\rho_{n})

=:S_{1} . (3.1)

Since -m-\eta<-1 and the sequence \omega is quasi \eta-power-monotone
decreasing, we get that

\sum_{n=\mu}^{\infty}\omega_{n}n^{-m}=\sum_{n=\mu}^{\infty}\omega_{n}n^{\eta}n^{-m-\eta}\leq K\omega_{\mu}\mu^{\eta}\sum_{n=\mu}^{\infty}n^{-m-\eta}

\leq K_{1}\omega_{\mu}\mu^{1-m} . (3.2)

Thus

S_{1} \leq K_{1}\sum_{k=1}^{\infty}\omega_{k^{1/m}}k^{\frac{1}{m}-1}\varphi(\omega_{k^{1/m}}^{-1}k^{1-\frac{1}{m}}‘\sum_{n=k^{1/m}}^{\infty}\omega_{n}n^{-m}\rho_{n}) .

Now we use the H\"older inequality and an analogous estimate as in (3.2) and
then we obtain that

S_{1} \leq K_{1}\sum_{k=1}^{\infty}\omega_{k^{1/m}}k^{\frac{1}{m}-1}

\varphi(\omega_{k^{1/m}}^{-1}k^{1-\frac{1}{m}}(\sum_{n=k^{1/m}}^{\infty}\rho_{n}^{p’})^{1/p’}(\sum_{n=k^{1/m}}^{\infty}\omega_{n}^{p}n^{-pm)^{1/p})}

(3.3)\leq K_{2}\sum_{k=1}^{\infty}\omega_{k^{1/m}}k^{\frac{1}{m}-1}\varphi(k^{\frac{1-p}{pm}}(\sum_{n=k^{1/m}}^{\infty}\rho_{n}^{p’})^{1/p’})=:S_{2} .

To estimate the sum S_{2} we use Lemma 2 with \alpha_{k}:=(\sum_{n=k}^{\infty}\rho_{n}^{p’})^{1/p’} ,
whence we get that S_{2}<\infty if and only if the inequality (1.5) holds, namely
\underline{1}-Ap=-\frac{1}{p}, .

Since the inequality (1.5) is assumed to be true, thus, by (3.1) and (3.3),
the statement (1.6) is proved.

The proof is complete. \square

Proof of Theorem 3. The monotonicity assumptions on the sequence \omega im-
ply that it is slowly quasi monotone increasing, thus there exists a constant
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K:=K(\omega)\geq 1 such that

K\omega_{n}\geq\omega_{n+1} , for all n\geq 1 , (3.4)

n^{\eta}\omega_{n}\leq Km^{\eta}\omega_{m} , \eta<0 , for all n\geq m\geq 1 , (3.5)

and

Kn^{\rho}\omega_{n}\geq m^{\rho}\omega_{m} , \rho<1 , for all n\geq m\geq 1 (3.6)

hold.
Now let A:= \max(K+1, \omega_{1}) . Taking into account (3.4) an easy con-

sideration shows that we can define an increasing sequence \{p_{m}\} of integers
such that p_{0}=0 and for all m\geq 0 the inequalities

A^{m} \leq\sum_{n=p_{m}+1}^{p_{m}+1}\omega_{n}\leq A^{m+1} (3.7)

hold.
Taking into account this estimations and using the monotonicity prop-

erties of the sequence \omega we shall show that the terms of the sequence \{p_{m}\}

satisfy the inequality

p_{m+1}\leq K(\omega)p_{m} for m\geq 1 . (3.8)

Let

\Omega_{n}:=\sum_{k=1}^{n}\omega_{k} .

Using the property (3.5) of \omega we get that

\Omega_{n}\geq K_{1}(\omega)n\omega_{n} , (3.9)

namely

\Omega_{n}=\sum_{k=1}^{n}\omega_{k}k^{\eta}k^{-\eta}\geq\frac{1}{K}n^{\eta}\omega_{n}\sum_{k=1}^{n}k^{-\eta} ,

and (3.6) implies similarly that

\Omega_{n}\leq K_{2}(\omega)n\omega_{n} . (3.10)
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By (3.7) we know that

\Omega_{p_{m}}\geq A^{m-1}

and

\Omega_{p_{m}+1}-\Omega_{p_{m}}\leq A^{m+1} .

Hence it follows that

\frac{\Omega_{p_{m}+1}}{\Omega_{p_{m}}}\leq 1+\frac{A^{m+1}}{\Omega_{p_{m}}}\leq 1+A^{2} , (3.11)

furthermore, by (3.9) and (3.10),

\frac{\Omega_{p_{m}+1}}{\Omega_{p_{m}}}\geq K_{3}(\omega)\frac{p_{m+1}\omega_{p_{m}+1}}{p_{m}\omega_{p_{m}}}

=K_{3} \frac{(p_{m+1})^{\rho}\omega_{p_{m}+1}(p_{m+1})^{1-\rho}}{(p_{m})^{\rho}\omega_{p_{m}}(p_{m})^{1-\rho}}

\geq K_{3}K^{-1}(\frac{p_{m+1}}{p_{m}})^{1-\rho}

Since \rho<1 the last estimation and (3.11) imply (3.8).

Since the functions \varphi(u) and u^{1/p’} are concave, and (3.7) holds, we
obtain that

\sum_{n=1}^{\infty}\omega_{n}\varphi(\{\sum_{k=n}^{\infty}\rho_{k}^{p’}\}^{1/p’})\leq\sum_{m=0}^{\infty}\sum_{n=p_{m}+1}^{p_{m}+1}\omega_{n}\varphi( \sum_{\nu=m}^{\infty}\{\sum_{k=p_{\nu}+1}^{p_{\nu}+1}d_{k}^{J’}\}^{1/p’})

\leq A\sum_{m=0}^{\infty}A^{m}\sum_{\nu=m}^{\infty}\varphi(\{\sum_{k=p_{\nu}+1}^{p_{\nu}+1}\rho_{k}^{p’}\}^{1/p’})

\leq A^{2}\sum_{\nu=0}^{\infty}A^{\nu}\varphi(\{\sum_{k=p_{\nu}+1}^{p_{\nu}+1}\rho_{k}^{p’}\}^{1/p’}) .

(3.12)

Next we set

F(t):= \{\int_{0}^{2\pi}|f(x+2t)+2f(x-t)-2f(x)|^{p}dx\}^{1/p}
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(3.14)

Then the HausdorfF-Young theorem (see [6], p. 101) gives that

F(t) \geq(\sum_{k=1}^{\infty}\rho_{k}^{p’}| sin kt|^{2p’})^{1/p’} (3.13)

Hence, (1.9) and (3.13) imply that

I:= \int_{0}^{1}t^{-2}\omega(\frac{1}{t})\varphi(\{\sum_{k=1}^{\infty}\rho_{k}^{p’}| sin kt|^{2p’}\}^{1/p’})dt<\infty .

On the other hand, it is obvious that

I \geq\sum_{m=1}^{\infty}\int_{1/p_{m+}}^{1/p_{m_{1}}}t^{-2}\omega(\frac{1}{t})\varphi(\{\sum_{k=p_{m-1}+1}^{p_{m}}\rho_{k}^{p’}| sin kt|^{2p’}\}^{1/p’})dt .

(3.15)

Since by (3.8)

0<c \leq\frac{p_{m-1}}{p_{m+1}}\leq kt\leq\frac{p_{m}}{p_{m}}=1

holds, thus (3.14) and (3.15) yield that

\sum_{m=1}^{\infty}\varphi(\{\sum_{k=p_{m-1}+1}^{p_{m}}\rho_{k}^{p’}\}^{1/p’})\int_{1/p_{m+}}^{1/p_{m_{1}}}t^{-2}\omega(\frac{1}{t})dt<\infty . (3.16)

Because, by (3.7),

\int_{1/p_{m}+1}^{1/p_{m}}t^{-2}\omega(\frac{1}{t})dt\geq A^{m}

maintains, thus (3.12) and (3.16) verify the implication (1.9)\Rightarrow (1.10), and
this ends the proof. \square
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