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Abstract. We study the Grassmann geometry of surfaces in the special real linear

group SL(2,R).
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1. Introduction and the outline of Part I

This is a continuation of our previous paper [3] named Part I. Let G

be a 3-dimensional unimodular Lie group with its Lie algebra g and g a
left invariant metric on G. Then the Riemannian metric g induces an in-
ner product on g, where g is identified with the tangent space TeG at the
unit element e of G. By J. Milnor [5], it is known that such a Lie group
G is locally isomorphic to either of the unitary group SU(2), the special
linear group SL(2,R), the group E(2) of rigid motions of the Euclidean
2-plane, the group E(1, 1) of rigid motions of the Minkowski 2-plane, the 3-
dimensional Heisenberg group H3, and the 3-dimensional real vector group
R3, and moreover known that there exist an orthonormal basis {E1, E2, E3}
of g and real numbers λ1, λ2, λ3 such that

[E2, E3] = λ1E1, [E3, E1] = λ2E2, [E1, E2] = λ3E3, (1.1)

where the signatures of λ1, λ2, λ3 determine the type of G locally. The
constants λ1, λ2, λ3 are in this paper called the Milnor constants of (G, g).

In this article we study the Grassmann geometry on such a Riemannian
homogeneous manifold (G, g). Generally, the Grassmann geometry on a Rie-
mannian homogeneous manifold (M, g) is defined as follows. Let Io(M, g)
be the identity component of the isometry group of (M, g) and for an in-
teger r, consider the Grassmann bundle Grr(TM) over M which consists
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of all r-dimensional linear subspaces of the tangent spaces of M . Then the
Lie group Io(M, g) acts naturally on Grr(TM) by the differential of map-
pings. For an Io(M, g)-orbit O, a connected submanifold S of M is called
an O-submanifold if all tangent spaces of S belong to O and the geometry of
O-submanifolds is called the O-geometry on (M, g). Grassmann geometry
is a collective name for such a geometry, and its fundamental problem is
to classify all the O-geometries such that O-submanifolds exist and more-
over for each nonempty O-geometry, to find typical O-submanifolds such
as minimal submanifolds, submanifolds with constant mean curvature, and
so on. On this point of view, we consider the Grassmann geometry on a
3-dimensional unimodular Lie group (G, g) with a left invariant metric g,
and in the previous Part I, we solve this problem for the almost cases of G

where r = 2, except one of the cases when G = SL(2,R). (See Section 3
through Section 5 in Part I.) In this part II, we will study the exceptional
case, for which the O-geometry is nonempty, and will give an example of
O-surfaces with nonzero constant mean curvature.

We now retain the notations in Part I and recall the exceptional case.
Let G = SL(2,R) and take a left invariant metric g on G. Then it holds
that dim Io(G, g) = 3 or 4 and we can assume that the Milnor constants
satisfy λ1 < 0 < λ2 < λ3 or λ1 < 0 < λ2 = λ3 according as dim Io(G, g) = 3
or 4. Since the Grassmann geometry for the first case was solved in Part I
(Section 5, 5.1), we consider the second case, which we called the Grassmann
geometry of isotropy type SO(2) in Part I. Put λ2 = λ3 = λ and let Ko =
{ϕ ∈ Io(G, g); ϕ(e) = e}. Then if we identify g (= TeG) with R3 by fixing
the orthonomal basis {E1, E2, E3} of g, the Ko-action on g is equal to the
natural SO(2)-action on R3 which fixes the E1-axis and acts on the (E2E3)-
plane as rotations. Let Gr2(g), RP 2(g), S2(g) be the Grassmann manifold
of 2-planes in g, the real projective 2-space over g, and the unit sphere in g

centered at the origin, respectively, and identify Gr2(g) with RP 2(g) by the
correspondence of a plane in g to its orthogonal line in g. Moreover regard
RP 2(g) as the quotient space S2(g)/∼ where the equivalence relation p ∼ q

implies that p and q are anti-podal each other. Then the space of Io(G, g)-
orbits in Gr2(TG) is identified with the space of Ko-orbits in RP 2(g), and
moreover such a Ko-orbit is represented by a small circle in S2(g) which
is parallel to the (E2E3)-plane and which has the height h from the plane
where 0 ≤ h ≤ 1. Hence the orbit space of Io(G, g)-orbits in Gr2(TG)
is parametrized by the height h where 0 ≤ h ≤ 1. Denote by O(h) the
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Io(G, g)-orbit with height h.
In Part I we solved the fundamental problem for the O(h)-geometries

except the case that 0 < h <
√

λ
λ−λ1

. In fact, if h = 1, the O(1)-geometry
is empty, and if 0 ≤ h < 1, the O(h)-geometry is non-empty. Moreover, if
h = 0, there exists an O(0)-surface with any constant mean curvature; if h =√

λ
λ−λ1

, any O(√
λ

λ−λ1

)
-surface with constant mean curvature is minimal

and there exists such a minimal O(√
λ

λ−λ1

)
-surface; if

√
λ

λ−λ1
< h < 1,

there exists no O(h)-surface with constant mean curvature. (See Theorem
5.19 in Part I.)

From now on we consider the exceptional case of O(h)-geometries where

0 < h <
√

λ
λ−λ1

. This case was called the Grassmann geometry of Case (III)
in Part I. We first analyse the constant mean curvature surface equation,
shortly the CMC surface equation, of this case, by using the same way as the
one for the other O(h)-geometries which were solved in Part I. As a result
we can see that the CMC surface equation has no constant solution for the
case though it has any constant solution for the case that h =

√
λ

λ−λ1
.

Moreover, by using a different method, we give an example of O(h)-surfaces

with nonzero constant mean curvature for all the cases that 0 < h <
√

λ
λ−λ1

.

2. CMC surface equation for Grassmann geometry of Case (III)

We first recall the CMC surface equation of general case. The solvability
of this equation implies the existence of O(h)-surface with constant mean
curvature, under the condition that among solutions of this equation there
exists one which satisfies a certain regularity condition. This condition is
weak and it may be satisfied for almost cases. The general CMC surface
equation is now given in the following form:

(z cos θ + x sin θ)
(

θt
∂(z, w)
∂(a, b)

+ θa
∂(z, w)
∂(b, t)

+ θb
∂(z, w)
∂(t, a)

)

+ (y cos θ − w sin θ)
(

θt
∂(w, y)
∂(a, b)

+ θa
∂(w, y)
∂(b, t)

+ θb
∂(w, y)
∂(t, a)

)

+ (x cos θ − z sin θ)
(

θt
∂(y, z)
∂(a, b)

+ θa
∂(y, z)
∂(b, t)

+ θb
∂(y, z)
∂(t, a)

)
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+ K

(
yt

∂(z, w)
∂(a, b)

+ zt
∂(w, y)
∂(a, b)

+ wt
∂(y, z)
∂(a, b)

)
= 0 (2.2)

where θ = γt + ϕ, γ = −2
{
(1 − h2) + λ1

λ h2
}
, K is an arbitrary constant,

and t, a, b and ϕ = ϕ(a, b) are respectively the variables and the unknown
function of this equation. Moreover for our Case (III), functions x, y, z, w

are given in the following form:

x(t) = A1(t, a, b)eσt + A2(t, a, b)e−σt,

y(t) = B1(t, a, b)eσt + B2(t, a, b)e−σt,

z(t) = C1(t, a, b)eσt + C2(t, a, b)e−σt,

w(t) = D1(t, a, b)eσt + D2(t, a, b)e−σt

(2.3)

where

A1(t, a, b) =
µ

2σ


cos

„
γ

2
t− τ

«p
1− a2 + b2 + sin

„
γ

2
t− τ

«
a + sin

„
γ

2
t + ϕ

«
b

ff
,

A2(t, a, b) =
µ

2σ


cos

„
γ

2
t + τ

«p
1− a2 + b2 + sin

„
γ

2
t + τ

«
a− sin

„
γ

2
t + ϕ

«
b

ff
,

B1(t, a, b) =
µ

2σ


− cos

„
γ

2
t + ϕ

«p
1−a2+b2 + sin

„
γ

2
t + ϕ

«
a + sin

„
γ

2
t− τ

«
b

ff
,

B2(t, a, b) =
µ

2σ


cos

„
γ

2
t + ϕ

«p
1− a2 + b2 − sin

„
γ

2
t + ϕ

«
a + sin

„
γ

2
t + τ

«
b

ff
,

C1(t, a, b) =
µ

2σ


− sin

„
γ

2
t− τ

«p
1−a2+b2 + cos

„
γ

2
t− τ

«
a + cos

„
γ

2
t + ϕ

«
b

ff
,

C2(t, a, b) =
µ

2σ


− sin

„
γ

2
t + τ

«p
1−a2+b2 + cos

„
γ

2
t + τ

«
a− cos

„
γ

2
t + ϕ

«
b

ff
,

D1(t, a, b) =
µ

2σ


sin

„
γ

2
t + ϕ

«p
1− a2 + b2 + cos

„
γ

2
t + ϕ

«
a + cos

„
γ

2
t− τ

«
b

ff
,

D2(t, a, b) =
µ

2σ


− sin

„
γ

2
t + ϕ

«p
1−a2+b2 − cos

„
γ

2
t + ϕ

«
a + cos

„
γ

2
t + τ

«
b

ff
.

(2.4)

Moreover µ, σ, τ are the constants given in the following way:
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µ =

√
|λ1|
λ

h
√

1− h2, σ =
√

µ2 − υ2, υ = ν + γ/2, ν = 1− h2,

cos τ =
σ√

σ2 + υ2
=

σ

µ
, sin τ =

υ√
σ2 + υ2

=
υ

µ
. (2.5)

See Part I for the details. If ϕ is constant, the equation (2.2) is reduced to
the following equation:

γ

[
(z cos θ + x sin θ)

∂(z, w)
∂(a, b)

+ (y cos θ − w sin θ)
∂(w, y)
∂(a, b)

+ (x cos θ − z sin θ)
∂(y, z)
∂(a, b)

]
+ K

(
yt

∂(z, w)
∂(a, b)

+ zt
∂(w, y)
∂(a, b)

+ wt
∂(y, z)
∂(a, b)

)

= 0. (2.6)

Now we consider the equation (2.6). If we take notice of the variable
t, the CMC surface equation (2.2) of Case (III) is formed by using trigono-
metric functions and exponential functions. Hence we can rearrange the
equation (2.6) to the following form:

P+(t, a, b)e3σt +P−(t, a, b)e−3σt +Q+(t, a, b)eσt +Q−(t, a, b)e−σt = 0 (2.7)

where P±, Q± are the trigonometric functions with respect to the parameter
t given in the following way.

P+ = γ

»
T 1 ∂(C1, D1)

∂(a, b)
+ T 2 ∂(D1, B1)

∂(a, b)
+ T 3 ∂(B1, C1)

∂(a, b)

–

+ K

»`
B1

t + σB1´∂(C1, D1)

∂(a, b)
+
`
C1

t + σC1´∂(D1, B1)

∂(a, b)

+
`
D1

t + σD1´∂(B1, C1)

∂(a, b)

–
, (2.8)

P− = γ

»
S1 ∂(C2, D2)

∂(a, b)
+ S2 ∂(D2, B2)

∂(a, b)
+ S3 ∂(B2, C2)

∂(a, b)

–

+ K

»`
B2

t − σB2´∂(C2, D2)

∂(a, b)
+
`
C2

t − σC2´∂(D2, B2)

∂(a, b)

+
`
D2

t − σD2´∂(B2, C2)

∂(a, b)

–
, (2.9)
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Q+ = γ

»
T 1

„
∂(C1, D2)

∂(a, b)
+

∂(C2, D1)

∂(a, b)

«
+ S1 ∂(C1, D1)

∂(a, b)

+ T 2

„
∂(D1, B2)

∂(a, b)
+

∂(D2, B1)

∂(a, b)

«
+ S2 ∂(D1, B1)

∂(a, b)

+ T 3

„
∂(B1, C2)

∂(a, b)
+

∂(B2, C1)

∂(a, b)

«
+ S3 ∂(B1, C1)

∂(a, b)

–

+ K

»`
B1

t + σB1´
„

∂(C1, D2)

∂(a, b)
+

∂(C2, D1)

∂(a, b)

«
+
`
B2

t − σB2´∂(C1, D1)

∂(a, b)

+
`
C1

t + σC1´
„

∂(D1, B2)

∂(a, b)
+

∂(D2, B1)

∂(a, b)

«
+
`
C2

t − σC2´∂(D1, B1)

∂(a, b)

+
`
D1

t + σD1´
„

∂(B1, C2)

∂(a, b)
+

∂(B2, C1)

∂(a, b)

«
+
`
D2

t − σD2´∂(B1, C1)

∂(a, b)

–
,

(2.10)

Q− = γ

»
S1

„
∂(C1, D2)

∂(a, b)
+

∂(C2, D1)

∂(a, b)

«
+ T 1 ∂(C2, D2)

∂(a, b)

+ S2

„
∂(D1, B2)

∂(a, b)
+

∂(D2, B1)

∂(a, b)

«
+ T 2 ∂(D2, B2)

∂(a, b)

+ S3

„
∂(B1, C2)

∂(a, b)
+

∂(B2, C1)

∂(a, b)

«
+ T 3 ∂(B2, C2)

∂(a, b)

–

+ K

»`
B2

t − σB2´
„

∂(C1, D2)

∂(a, b)
+

∂(C2, D1)

∂(a, b)

«
+
`
B1

t + σB1´∂(C2, D2)

∂(a, b)

+
`
C2

t − σC2´
„

∂(D1, B2)

∂(a, b)
+

∂(D2, B1)

∂(a, b)

«
+
`
C1

t + σC1´∂(D2, B2)

∂(a, b)

+
`
D2

t − σD2´
„

∂(B1, C2)

∂(a, b)
+

∂(B2, C1)

∂(a, b)

«
+
`
D1

t + σD1´∂(B2, C2)

∂(a, b)

–

(2.11)

where we put

T 1 = C1 cos θ + A1 sin θ, S1 = C2 cos θ + A2 sin θ,

T 2 = B1 cos θ −D1 sin θ, S2 = B2 cos θ −D2 sin θ,

T 3 = A1 cos θ − C1 sin θ, S3 = A2 cos θ − C2 sin θ,

and moreover put
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T 4 = D1 cos θ + B1 sin θ, S4 = D2 cos θ + B2 sin θ.

The functions T i, Si, 1 ≤ i ≤ 4, are trigonometric with respect to the
variable t, and particularly when i = 1, 2, 3, they are defined as the following
relations hold:

z cos θ + x sin θ = T 1eσt + S1e−σt,

y cos θ − w sin θ = T 2eσt + S2e−σt,

x cos θ − z sin θ = T 3eσt + S3e−σt

where the terms (z cos θ+x sin θ), (y cos θ−w sin θ), (x cos θ−z sin θ) appear
in the equation (2.6).

Note that σ > 0, γ < 0, and υ > 0 since 0 < h <
√

λ
λ−λ1

and λ1 < 0.

Moreover note that, with respect to the variable t, functions T i, Si, 1 ≤ i ≤
4, and Aj , Bj , Cj , Dj , j = 1, 2, have the period γ/2. In fact, it holds that

T 1
t =

γ

2
T 3, T 3

t = −γ

2
T 1, T 2

t = −γ

2
T 4, T 4

t =
γ

2
T 2,

S1
t =

γ

2
S3, S3

t = −γ

2
S1, S2

t = −γ

2
S4, S4

t =
γ

2
S2, (2.12)

Aj
t =

γ

2
Cj , Cj

t = −γ

2
Aj , Bj

t =
γ

2
Dj , Dj

t = −γ

2
Bj , (j = 1, 2).

Then the functions P±, Q± also have the period γ/2 with respect to the
variable t, and since the terms P+e3σt, P−e−3σt, Q+eσt, Q−e−σt in the
equlity (2.7) are independent as real functions with respect to the variable
t, it follows that P± = 0 and Q± = 0. Moreover since P± and Q± are
trigonometric functions with respect to t, these are determined by the values
of the functions and their differentials at any fixed real number t0. Hence
P± = 0 (resp. Q± = 0) if and only if P±(t0, a, b) = (P±)t(t0, a, b) = 0
(Q±(t0, a, b) = (Q±)t(t0, a, b) = 0).

We first consider the equalities P± = 0. Set

P± = [γ(P±)]γ + [K(P±)]K = 0

where



418 J. Inoguchi and H. Naitoh

[γ(P+)] = T 1 ∂(C1, D1)
∂(a, b)

+ T 2 ∂(D1, B1)
∂(a, b)

+ T 3 ∂(B1, C1)
∂(a, b)

,

[K(P+)] =
(
B1

t + σB1
)∂(C1, D1)

∂(a, b)
+

(
C1

t + σC1
)∂(D1, B1)

∂(a, b)

+
(
D1

t + σD1
)∂(B1, C1)

∂(a, b)

and

[γ(P−)] = S1 ∂(C2, D2)
∂(a, b)

+ S2 ∂(D2, B2)
∂(a, b)

+ S3 ∂(B2, C2)
∂(a, b)

,

[K(P−)] =
(
B2

t − σB2
)∂(C2, D2)

∂(a, b)
+

(
C2

t − σC2
)∂(D2, B2)

∂(a, b)

+
(
D2

t − σD2
)∂(B2, C2)

∂(a, b)
.

Now, taking t0 such that (γ/2)t0+ϕ = 0, thus, θ = 0, we calculate the terms
[γ(P±)](t0, a, b), [γ(P±)]t(t0, a, b) and [K(P±)](t0, a, b), [K(P±)]t(t0, a, b) by
using the explicit data (2.4) and the properties (2.12), and consequently we
have the following lemma.

Lemma 2.1 (1) It holds that

[γ(P+)](t0, a, b)

=
(

µ

2σ

)3[
cos(ϕ + τ)

a√
1− a2 + b2

+
b√

1− a2 + b2
+ sin(ϕ + τ)

]

× [2 cos(ϕ + τ)]
[
cos(ϕ + τ)

√
1− a2 + b2 − sin(ϕ + τ)a

]

and

[K(P+)](t0, a, b)

=
(

µ

2σ

)3

γ

[
cos(ϕ + τ)

a√
1− a2 + b2

+
b√

1− a2 + b2
+ sin(ϕ + τ)

]

× [
cos(ϕ + τ)

√
1− a2 + b2 − sin(ϕ + τ)a

]
,
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and thus it holds that

2 cos(ϕ + τ) + K = 0. (2.13)

Also, the equality (P+)t(t0, a, b) = 0 induces the same equality (2.13).
(2) Moreover it holds that

[γ(P−)](t0, a, b)

=
(

µ

2σ

)3[
cos(ϕ− τ)

a√
1− a2 + b2

− b√
1− a2 + b2

+ sin(ϕ− τ)
]

× [2 cos(ϕ− τ)]
[
cos(ϕ− τ)

√
1− a2 + b2 − sin(ϕ− τ)a

]

and

[K(P−)](t0, a, b)

=
(

µ

2σ

)3

γ

[
cos(ϕ− τ)

a√
1− a2 + b2

− b√
1− a2 + b2

+ sin(ϕ− τ)
]

× [− cos(ϕ− τ)
√

1− a2 + b2 + sin(ϕ− τ)a
]
,

and thus it holds that

2 cos(ϕ− τ)−K = 0. (2.14)

Also, the equality (P−)t(t0, a, b) = 0 induces the same equality (2.14).

The equalities (2.13) and (2.14) induce that cosϕ = 0 and sinϕ = ±1.
We next consider the equality Q+ = 0. In the same way as the case of

P± we put

Q+ = [γ(Q+)]γ + [K(Q+)]K = 0

and calculate [γ(Q+)](t0, a, b) and [K(Q+)](t0, a, b) by using the explicit data
(2.4), the properties (2.12), and the result that cosϕ = 0 and sinϕ = ±1.

We first assume that cos ϕ = 0 and sinϕ = −1. Then it follows that
K = −2 sin τ and we have the following lemma.
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Lemma 2.2 It holds that

[γ(Q+)](t0, a, b)

=
(

µ

2σ

)3( 2√
1− a2 + b2

)[
(cos τ)(cos2 τ + 1) + (cos3 τ)b2 − (cos τ)b

− (sin τ cos τ)ab + (sin τ)a
√

1− a2 + b2 − (sin2 τ)b
√

1− a2 + b2
]

and

[K(Q+)](t0, a, b)

=
(

µ

2σ

)3{(
γ

2

)(
2√

1− a2 + b2

)
× [

(sin 2τ)− 2(sin 2τ)a2 + (sin 2τ)b2

− 2(cos τ cos 2τ)ab− (1 + 2 sin2 τ)a
√

1− a2 + b2

− 3(sin τ)b
√

1− a2 + b2
]

− (σ)
(

2√
1− a2 + b2

)
× (2 cos τ)

[
1
2
(sin 2τ)ab + (cos τ)a2

+ (sin τ)a
√

1− a2 + b2 + (sin2 τ)b
√

1− a2 + b2

]}
,

and then it does not hold that Q+(t0, a, b) = 0 for any a, b.

Proof. We check the last statement. To do so, we assume that
Q+(t0, a, b) = 0 for any a and b and take notice of the coefficients of the
term (2a2/

√
1− a2 + b2) in the equality. Since the term does not appear in

[γ(Q+)](t0, a, b), we may take out it from [K(Q+)](t0, a, b). Then it holds
that

γ

2
× 2 sin 2τ + 2σ cos2 τ = 0, thus, γ sin τ cos τ + σ cos2 τ = 0.

Since cos τ 6= 0, it follows that γ sin τ + σ cos τ = 0, and moreover by (2.5),
it follows that υγ + σ2 = 0. Also, again by (2.5) it follows that

σ2 = −
(

γ

2

)2

−
(

γ

2

)
(1− h2), υ = −λ1

λ
h2, γ = −2

{
(1− h2) +

λ1

λ
h2

}
.
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Substituting these into the equality υγ + σ2 = 0, we can see that h = 0.
This is not the case. Hence we have the last claim of the lemma. ¤

We next assume that cos ϕ = 0 and sinϕ = 1. Then it follows that
K = 2 sin τ and we have the following lemma.

Lemma 2.3 It holds that

[γ(Q+)](t0, a, b)

=
(

µ

2σ

)3[
− (sin τ sin 2τ)

√
1− a2 + b2 + 6(sin τ)a− 6(sin2 τ)b

+ 2 cos τ(1 + cos2 τ)
a2

√
1− a2 + b2

− (sin 2τ)
ab√

1− a2 + b2

]

and

[K(Q+)](t0, a, b)

=
(

µ

2σ

)3{(
γ

2

)[
− 2(1 + 2 sin2 τ)a + 2 sin τ(1 + 2 sin2 τ)b

+ 2 cos τ(2 sin2 τ − 1)
ab√

1− a2 + b2

− (sin 2τ)
a2

√
1− a2 + b2

+ (sin 2τ)
√

1− a2 + b2

]

+ (σ)
[
2(sin τ sin 2τ)b− 2(sin 2τ)a

− 4(cos2 τ)
a2

√
1− a2 + b2

+ 2(cos τ sin 2τ)
ab√

1− a2 + b2

]}
,

and then it does not hold that Q+(t0, a, b) = 0 for any a, b.

Proof. We check the last statement. To do so, we assume that
Q+(t0, a, b) = 0 for any a and b. Noting that K = 2 sin τ and substitut-
ing the above results for the terms [γ(Q+)](t0, a, b) and [K(Q+)](t0, a, b)
into the equality

Q+(t0, a, b) = [γ(Q+)](t0, a, b)γ + [K(Q+)](t0, a, b)K = 0,
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we have the following equality:

γ(4 cos2 τ)
[
(sin τ)a− (sin2 τ)b + (cos τ)

a2

√
1− a2 + b2

−
(

1
2

sin 2τ

)
ab√

1− a2 + b2

]

− σ(4 sin 2τ)
[
(sin τ)a− (sin2 τ)b + (cos τ)

a2

√
1− a2 + b2

−
(

1
2

sin 2τ

)
ab√

1− a2 + b2

]
= 0,

thus, γ cos τ − 2σ sin τ = 0. By (2.5) and the fact that σ 6= 0, it follows that
γ − 2υ = 0. Again by (2.5) we can see that h = 1. This is not the case.
Hence we have the last claim of the lemma. ¤

Summing up Lemma 2.1, Lemma 2.2 and Lemma 2.3, we have the fol-
lowing result.

Proposition 2.4 The CMC surface equation (2.2) for Grassmann geom-
etry of Case (III) has no constant solution.

Remark 2.5 Here a constant solution for the CMC surface equation (2.2)
means that the unknown function ϕ(a, b) is locally constant. For the Grass-

mann geometry when h =
√

λ
λ−λ1

, called that of Case (II) in Part I, its
corresponding CMC surface equation has constant solutions together with
the minimality condition of O(√

λ
λ−λ1

)
-surfaces, while Proposition 2.4 im-

plies that in our Case (III) that 0 < h <
√

λ
λ−λ1

the CMC surface equation
has no constant solution. This indicates that the state of Grassmann geom-
etry may change at the value h =

√
λ

λ−λ1
. In fact, in Grassmann geometry

of Case (II) there are no O(√
λ

λ−λ1

)
-surfaces with nonzero constant mean

curvature (Theorem 5.19 in Part I), and on the other hand in Grassmann
geometry of Case (III) there exists an O(h)-surface with nonzero constant
mean curvature for any h. The latter fact will be proved in the following
sections.
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3. Bianchi-Cartan-Vranceanu metrics on SL(2,R)

In the previous section we have studied the existence problem of O(h)-
surfaces with constant mean curvature by analysing the CMC surface equa-
tion (2.2). In this and next sections we will consider the problem by using a
Lie-theoretic method called invariant surface, and give an example of O(h)-
surfaces with nonzero constant mean curvature for the Grassmann geometry
of Case (III) on SL(2,R).

We first consider details of the space (SL(2,R), g) whose Milnor con-
stants satisfy that λ1 < 0 < λ2 = λ3 (= λ), on which we have studied
the Grassmann geometry of Case (III). Such a metric g is called a Bianchi-
Cartan-Vranceanu metric [1] on SL(2,R).

Let us denote by H2(−4) the hyperbolic 2-space of constant curvature
−4 realized as the upper half plane equipped with the Poincaré metric:

H2(−4) =
(
{(x, y) ∈ R2 | y > 0}, dx2 + dy2

4y2

)
.

Then SL(2,R) acts isometrically and transtively on H2(−4) as linear frac-
tional transformation group. The isotropy subgroup of SL(2,R) at (0, 1) is
the special orthogonal group SO(2). The natural projection π : SL(2,R) →
H2(−4) is given explicitly by

π

((
a b
c d

))
=

1
c2 + d2

(ac + bd, 1).

Here we recall the Iwasawa decomposition of SL(2,R). It is given as
follows: SL(2,R) = NAK where

N =
{(

1 x
0 1

) ∣∣∣∣ x ∈ R
}
∼= (R,+),

A =
{(√

y 0
0 1/

√
y

) ∣∣∣∣ y > 0
}
∼= SO+(1, 1),

K =
{(

cos θ sin θ
− sin θ cos θ

) ∣∣∣∣ θ ∈ R
}

= SO(2).

We refer (x, y, θ) as a coordinate system of SL(2,R) and denote by ψ the
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mapping of coordinate system, i.e.,

ψ(x, y, θ) =
(

1 x
0 1

)(√
y 0

0 1/
√

y

)(
cos θ sin θ
− sin θ cos θ

)
,

where the coordinate point (0, 1, 0) corresponds to the identity I of SL(2,R).
Then, by a direct computaion we have the following formulas:

ψ−1 ∂ψ

∂x
=

1
y
(cos2 θE − sin2 θF − sin θ cos θH),

ψ−1 ∂ψ

∂y
=

1
2y

(sin 2θE + sin 2θF + cos 2θH), (3.15)

ψ−1 ∂ψ

∂θ
= E − F,

where

E =
(

0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

Evaluating these at the identity (0, 1, 0), we get

ψ−1 ∂ψ

∂x

∣∣∣∣
(0,1,0)

= E, ψ−1 ∂ψ

∂y

∣∣∣∣
(0,1,0)

=
1
2
H, ψ−1 ∂ψ

∂θ

∣∣∣∣
(0,1,0)

= E − F.

These vectors E, (1/2)H and E−F form the basis of the Lie algebra sl(2,R)
of SL(2,R) which corresponds to the basis {(∂/∂x)I , (∂/∂y)I , (∂/∂z)I} of
coordinate vectors at I.

On the other hand, in Part I, Section 5.2.1, we equiped a basis of sl(2,R)

e1 =
λ

2

(
0 1
−1 0

)
, e2 =

√
λ|λ1|
2

(
0 1
1 0

)
, e3 =

√
λ|λ1|
2

(
1 0
0 −1

)
,

so that they satisfy the relation (1.1) and the triple {e1, e2, e3} is an or-
thonormal basis of sl(2,R) with respect to the considered left invariant
metric g. Hereafter, for simplicity of computations we choose the Milnor
constants as λ = 2 and λ1 = −2. Namely,
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e1 =
(

0 1
−1 0

)
, e2 =

(
0 1
1 0

)
, e3 =

(
1 0
0 −1

)
.

In fact, we can choose such a basis by changing each original vector ei where
i = 1, 2, 3 with a suitable scalar multiple. Though this choice also change
the left invariant metric g, it has no effect on the following argument. The
inner product 〈 , 〉 on sl(2,R) induced by the changed metric g is given in
the following:

〈X, Y 〉 =
1
2
(tXY ), X, Y ∈ sl(2,R).

The metric on SL(2,R)/SO(2) induced from g coincides with the Poincaré
metric (dx2 +dy2)/(4y2) and the natural projection π is a Riemannian sub-
mersion with totally geodesic fibers. We here note that the left invariant
vector fields E1, E2, E3 satisfying (1.1) correspond to e1, e2 and e3, respec-
tively, i.e., (Ei)I = ei where i = 1, 2, 3.

4. Invariant surfaces

In this section we consider a surface S in SL(2,R) invariant under the
action of nilpotent group N . Such a surface is called an N -invariant surface.

The position vector field ϕ of S is parametrized as ϕ(u, v) = (v, y(u), u).
In matrix form,

ϕ(u, v) =
(

1 v
0 1

)(√
y(u) 0
0 1/

√
y(u)

)(
cos u sinu
− sinu cos u

)
.

The surface S is an orbit of a curve (y(u), u) in AK ⊂ SL(2,R) under the
action of N . Then the partial derivatives of ϕ are given by

ϕ∗
∂

∂u
=

y′

2y
ε2 + ε3, ϕ∗

∂

∂v
=

1
2y

(ε1 + ε3),

where

ε1 = 2y
∂

∂x
− ∂

∂θ
, ε2 = 2y

∂

∂y
, ε3 =

∂

∂θ
.

Hence, by (3.15) the induced metric ds2 on S is:
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{
1 +

(
y′

2y

)2}
du2 +

1
y
dudv +

1
2y2

dv2.

Take a unit normal vector field ~n as

~n =
1
α

(
y′

2y
ε1 + ε2 − y′

2y
ε3

)

where α is a function given by

α =

√
1 + 2

(
y′

2y

)2

.

Then the second fundamental form Π of S is given by

Π(∂u, ∂u) =
−2(y′)2 + y′′y

2αy2
, Π(∂u, ∂v) =

−(y′)2 + 2y2

4αy3
,

Π(∂v, ∂v) =
1

αy2
> 0.

These formulas imply that S has no geodesic points. The mean curvature
function H is given by

H =
1

2α3y2
(y′′y + 2y2).

For more informations on N -invariant surfaces, we refer to [2].
Let us consider the height function h = g(~n,E1). Direct computations

show that

h(u, v) =
1√

1 + 2
(

y′

2y

)2

y′

2y
. (4.16)

We now assume that h is a constant. Since E1 and ~n have unit length, we
have 0 ≤ h ≤ 1. Put τ = (log y)/2. Then we have

(τ ′)2 = h2(1 + 2(τ ′)2), equivalently, (1− 2h2)(τ ′)2 = h2.
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This equation implies that h 6= 1/
√

2. Now we solve the equation

(
dτ

du

)2

=
h2

1− 2h2
.

Since the left hand side is non-negative, we have 0 ≤ h < 1√
2
.

Remark 4.1 In Part I, we distingushed the cases h =
√

λ
λ−λ1

or h 6=√
λ

λ−λ1
. In our choice, these two cases correspond to the cases h = 1√

2
or

h 6= 1√
2
, respectively. Moreover the condition 0 < h < 1/

√
2 corresponds to

our case (III) 0 < h <
√

λ
λ−λ1

.

Under the condition that the height function h(u, v) is a constant h, the
ODE (4.16) has the general solution

y(u) = a exp
(

2hu√
1− 2h2

)
, a > 0.

Since the choice of the constant a has no effect on the following argument,
we assume that a = 1. Then we get an N -invarinat surface

ϕ(u, v) =
(

v, exp
(

2hu√
1− 2h2

)
, u

)
,

and it satisfies the following conditions:

ϕ(0, 0) = (0, 1, 0) = I, α(u, v) =
1√

1− 2h2
, H(u, v) =

√
1− 2h2,

and

~n(0, 0) =
{
h(ε1 − ε3) +

√
1− 2h2ε2

} ∣∣
(0,0,1)

= h(−e1 + e2) +
√

1− 2h2e3.

The last condition can be moreover rewritten as follows:

~n(0, 0) =
√

1− h2(sinϑe2 − cos ϑe3)− he1,

where cos ϑ = −
√

1− 2h2

√
1− h2

, sinϑ =
h√

1− h2
.
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Compare this with the expression (5.55) in Part I. By these consideration
we can see that this N -invariant surface is an O(h)-surface with constant
mean curvature

√
1− 2h2 < 1.

Remark 4.2 When h = 0, we have ϕ(u, v) = (v, 1, u). Thus the resulting
surface is the Hopf cylinder over the curve γ = {(x, 1) ∈ H2(−4)}. This
Hopf cylinder has non-zero constant mean curvature 1. Note that, a Hopf
cylinder is of constant mean curvature 1 if and only if its base curve is a
horocycle or a line y = constant. (See [2, Proposition 2.3], [4, Proposition
4.3]).

Summing up the argument in this section, we have the following exis-
tence theorem for the Grassmann geometry of type (III).

Theorem 4.3 Let h be a constant such that 0 < h <
√

λ
λ−λ1

. Then there
exists an O(h)-surface with nonzero constant mean curvature in the space
(SL(2,R), g) with Bianchi-Cartan-Vranceanu metric.
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