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Abstract. In the framework of a pre-inner product C∗-module over a unital C∗-
algebra, we show several reverse Cauchy–Schwarz type inequalities of additive and

multiplicative types, by using some ideas in N. Elezović et al. [Math. Inequal. Appl.,

8 (2005), no. 2, 223–231]. We apply our results to give Klamkin-Mclenaghan, Shisha-

Mond and Cassels type inequalities. We also present a Grüss type inequality.
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1. Introduction

A Hilbert C∗-module is a generalization of a Hilbert space in which
the inner product takes its values in a C∗-algebra instead of the complex
numbers. The theory of Hilbert C∗-modules is different from that of Hilbert
spaces, for example, not any bounded linear operator between Hilbert C∗-
modules is adjointable and not any closed submodule of a Hilbert C∗-module
is complemented, see [10].

The theory of Hilbert C∗-modules over commutative C∗-algebras was
first appeared in a work of Kaplansky [8] in 1953. The research on this
subject started in 1970’s independently by Paschke [16] and Rieffel [17] and
since then it has grown rapidly and has played significant roles in the theory
of operator algebras and noncommutative geometry.

Let A be a unital C∗-algebra with the unit element e and the center
Z(A ). For a ∈ A , we denote the real part of a by Re a = 1

2 (a + a∗).
If a ∈ A is positive (that is selfadjoint with positive spectrum), then a

1
2

denotes a unique positive b ∈ A such that b2 = a. For a ∈ A , we denote
the absolute value of a by |a| = (a∗a)

1
2 . If a ∈ Z(A ) is positive, then

a
1
2 ∈ Z(A ). If a, b ∈ A are positive and ab = ba, then ab is positive and

2000 Mathematics Subject Classification : Primary 46L08; Secondary 26D15, 46L05,
47A30, 47A63.



394 J.-I. Fujii, M. Fujii, M. S. Moslehian, J. E. Pečarić and Y. Seo

(ab)
1
2 = a

1
2 b

1
2 .

Let X be an algebraic left A -module which is a complex linear space
fulfilling a(λx) = (λa)x = λ(ax) (x ∈ X , a ∈ A , λ ∈ C). The space X
is called a (left) pre-inner product A -module (or a pre-inner product C∗-
module over the unital C∗-algebra A ) if there exists a mapping 〈·, ·〉 : X ×
X → A satisfying

( i ) 〈x, x〉 ≥ 0,
( ii ) 〈λx + y, z〉 = λ〈x, z〉+ 〈y, z〉,
(iii) 〈ax, y〉 = a〈x, y〉,
(iv) 〈y, x〉 = 〈x, y〉∗,

for all x, y, z ∈ X , a ∈ A , λ ∈ C. Moreover, if

( v ) x = 0 whenever 〈x, x〉 = 0,

then X is called an inner product A -module. In this case ‖x‖ :=
√
‖〈x, x〉‖,

where the latter norm denotes the C∗-norm on A . If this norm is complete,
then X is called a Hilbert A -module. Any inner product space is an inner
product C-module and any C∗-algebra A is a Hilbert C∗-module over itself
via 〈a, b〉 = ab∗ (a, b ∈ A ). For more details on Hilbert C∗-modules, see
[10]. Notice that (iii) and (iv) imply 〈x, ay〉 = 〈x, y〉a∗ for all x, y ∈ X ,
a ∈ A .

The Cauchy–Schwarz inequality asserts that

〈x, y〉〈y, x〉 ≤ ‖〈y, y〉‖ 〈x, x〉 (1.1)

in a pre-inner product module X over A ; see [10, Proposition 1.1]. This
is a generalization of the classical Cauchy–Schwarz inequality. There have
been proved several reverse Cauchy–Schwarz inequalities of additive and
multiplicative types in the literature. The reader is refereed to [2], [6], [13],
[14], [15] and references therein for more information.

In this paper, as a continuation of [13] and by using some ideas of
[4], we investigate complementary Cauchy-Schwarz type inequalities in the
framework of pre-inner product C∗-modules over a unital C∗-algebra. We
apply our results to present Klamkin-Mclenaghan, Shisha-Mond and Cassels
type inequalities. We also present a Grüss type inequality.
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2. Reverse Cauchy–Schwarz type inequality I

In a semi-inner product space (H , 〈·, ·〉), the classical Cauchy-Schwarz
inequality says that |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 for all x, y ∈ H . We discuss
around Cauchy-Schwarz inequality under a non-commutative situation. In
a pre-inner product C∗-module X over a unital C∗-algebra A , since the
product 〈x, x〉〈y, y〉 is not selfadjoint in general, we would expect that a
symmetric form |〈x, y〉|〈y, y〉−1|〈x, y〉| ≤ 〈x, x〉 holds for x, y ∈ X such that
〈y, y〉 is invertible. But we have a counterexample. As a matter of fact,
let A = M2(C) be the C∗-albegra of 2 × 2 matrices with an inner prod-
uct 〈x, y〉 = xy∗ for x, y ∈ A . Put x =

(
0 1
0 0

)
and y =

(
2 0
0 1

)
. Then we

have |〈x, y〉|〈y, y〉−1|〈x, y〉| 6≤ 〈x, x〉. In this section, we present some reverse
Cauchy–Schwarz inequalities of additive and multiplicative types which dif-
fers from [13, Theorem 3.3]. For this, we need the following lemma:

Lemma 2.1 Let X be a pre-inner product C∗-module over a unital C∗-
algebra A . Suppose that x, y ∈ X such that 〈x, y〉 is normal and

Re〈Ay − x, x− ay〉 ≥ 0 (2.1)

for some a,A ∈ Z(A ). Then

〈x, x〉+ Re(Aa∗)〈y, y〉 ≤ |a + A| |〈x, y〉|. (2.2)

Proof. Since Re 〈Ay − x, x− ay〉 ≥ 0, we have

〈x, x〉+ Re(Aa∗)〈y, y〉 ≤ Re(A〈x, y〉∗ + a∗〈x, y〉)
= Re(A∗〈x, y〉+ a∗〈x, y〉) = Re((A∗ + a∗)〈x, y〉)
≤ |(A∗ + a∗)〈x, y〉| by the normality of (A∗ + a∗)〈x, y〉
= |A + a| |〈x, y〉|. ¤

Theorem 2.2 Let X be a pre-inner product C∗-module over a unital C∗-
algebra A . Suppose that x, y ∈ X such that 〈x, y〉 is normal, Re(Aa∗) is
a positive invertible operator for A, a ∈ Z(A ) and (2.1) holds. If 〈y, y〉 is
invertible, then

(i) 〈x, x〉 ≤ 1
4
Re(Aa∗)−1|A + a|2|〈x, y〉|〈y, y〉−1|〈x, y〉|,
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(ii) 〈x, x〉 − |〈x, y〉|〈y, y〉−1|〈x, y〉|

≤ 1
4
Re(Aa∗)−1|A− a|2|〈x, y〉|〈y, y〉−1|〈x, y〉|.

Proof. For (i), it follows from Lemma 2.1 that

〈x, x〉 ≤ |A + a||〈x, y〉| − Re(Aa∗)〈y, y〉

=
1
4
Re(Aa∗)−1|A + a|2|〈x, y〉|〈y, y〉−1|〈x, y〉| −X∗X,

where X = Re(Aa∗)
1
2 〈y, y〉 1

2 − 1
2Re(Aa∗)−

1
2 |A+a|〈y, y〉− 1

2 |〈x, y〉| and hence
we get (i). For (ii), it follows from (i) that

〈x, x〉 − |〈x, y〉|〈y, y〉−1|〈x, y〉|

≤ 1
4
Re(Aa∗)−1|A + a|2|〈x, y〉|〈y, y〉−1|〈x, y〉| − |〈x, y〉|〈y, y〉−1|〈x, y〉|

=
1
4
Re(Aa∗)−1(|A + a|2 − 4Re(Aa∗))|〈x, y〉|〈y, y〉−1|〈x, y〉|

=
1
4
Re(Aa∗)−1|A− a|2|〈x, y〉|〈y, y〉−1|〈x, y〉|. ¤

The next result is a generalization of both Klamkin–Mclenaghan’s in-
equality and Shisha–Mond’s inequality [4, Theorem 2].

Theorem 2.3 Let X be a pre-inner product C∗-module over a unital C∗-
algebra A . Suppose that x, y ∈ X such that 〈x, y〉 is normal and invertible,
〈y, y〉 is invertible and A, a ∈ Z(A ) satisfy Re(Aa∗) ≥ 0 and (2.1). Then

|〈x, y〉|− 1
2 〈x, x〉|〈x, y〉|− 1

2 − |〈x, y〉| 12 〈y, y〉−1|〈x, y〉| 12

≤ |A + a| − 2Re(Aa∗)
1
2 .

Proof. It follows from Lemma 2.1 that

|〈x, y〉|− 1
2 〈x, x〉|〈x, y〉|− 1

2 − |〈x, y〉| 12 〈y, y〉−1|〈x, y〉| 12

≤ |A + a| − Re(Aa∗)|〈x, y〉|− 1
2 〈y, y〉|〈x, y〉|− 1

2 − |〈x, y〉| 12 〈y, y〉−1|〈x, y〉| 12
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= |A + a| − 2Re(Aa∗)
1
2 − (

Re(Aa∗)
1
2 (|〈x, y〉|− 1

2 〈y, y〉|〈x, y〉|− 1
2 )

1
2

− (|〈x, y〉| 12 〈y, y〉−1|〈x, y〉| 12 )
1
2
)2

≤ |A + a| − 2Re(Aa∗)
1
2 . ¤

The next result is an integral version of Klamkin–Mclenaghan’s inequal-
ity.

Corollary 2.4 Let (X, µ) be a probability space and f, g ∈ L∞(µ) with
mg ≤ f ≤ Mg for some scalars M > m > 0. Then

∫
X
|f |2dµ∣∣ ∫

X
fgdµ

∣∣ −
∣∣ ∫

X
fgdµ

∣∣
∫

X
|g|2dµ

≤ (√
M −√m

)2
. (2.3)

Proof. X = L∞(X, µ) is regarded as a subspace of L2(X, µ) via 〈f, g〉 =∫
X

fgdµ (f, g ∈ X ). Then Theorem 2.3 implies the desired inequality
since 〈Mg − f, f −mg〉 ≥ 0. ¤

Considering Cn equipped with the natural inner product defined with
weights (w1, . . . , wn) or, equivalently, starting with a weighted counting mea-
sure µ =

∑n
i=1 wiδi, where wi’s are positive numbers and δi’s are the Dirac

delta functions, a discrete version of the above is a weighted Shisha–Mond’s
inequality as follows:

Corollary 2.5 If x1, . . . , xn and y1, . . . , yn are sequences of positive real
numbers satisfying the condition 0 < m1 ≤ yi ≤ M1 < ∞ and 0 < m2 ≤
xi ≤ M2 < ∞, then

∑n
i=1 wix

2
i∑n

i=1 wixiyi
−

∑n
i=1 wixiyi∑n
i=1 wiy2

i

≤ (√
M2/m1 −

√
m2/M1

)2
.

Now we give an additive reverse Cauchy–Schwarz inequality, which
seems to be nicer than [13, Theorem 3.1].

Theorem 2.6 Let X be a pre-inner product C∗-module over a unital C∗-
algebra A . Suppose that x, y ∈ X such that 〈x, y〉 is normal, and A, a ∈
Z(A ) such that |A + a| is invertible and (2.1) holds. Then

(i) Re
(〈x, x〉 1

2 〈y, y〉 1
2
)− |〈x, y〉| ≤ 1

4
|A− a|2|A + a|−1〈y, y〉.
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If moreover Re(Aa∗) is positive invertible, then

(ii) Re
(〈x, x〉 1

2 〈y, y〉 1
2
)− |〈x, y〉| ≤ 1

4
|A− a|2|A + a|−1Re(Aa∗)−1〈x, x〉.

Proof. For (i), by Lemma 2.1, we have

Re
(〈x, x〉 1

2 〈y, y〉 1
2
)− |〈x, y〉|

≤ Re
(〈x, x〉 1

2 〈y, y〉 1
2
)− |A + a|−1〈x, x〉 − |A + a|−1Re(Aa∗)〈y, y〉

=
[
1
4
|A + a| − Re(Aa∗)|A + a|−1

]
〈y, y〉

− |A + a|−1

(
〈x, x〉 1

2 − 1
2
|A + a| 〈y, y〉 1

2

)2

≤ 1
4
[|A + a|2 − 4Re(Aa∗)

]|A + a|−1〈y, y〉

=
1
4
|A− a|2|A + a|−1〈y, y〉.

For (ii), it similarly follows from

Re
(〈x, x〉 1

2 〈y, y〉 1
2
)− |〈x, y〉|

≤ 1
4
|A− a|2|A + a|−1Re(Aa∗)−1〈x, x〉

− Re(Aa∗)|A + a|−1

(
〈y, y〉 1

2 − 1
2
|A + a|Re(Aa∗)−1〈x, x〉 1

2

)2

. ¤

Corollary 2.7 Let ϕ be a positive linear functional on a C∗-algebra A
and let x, y ∈ A be such that

Re ϕ((Λy − x)∗(x− λy)) ≥ 0

for some λ, Λ ∈ C. Then

(i) ϕ(x∗x)1/2ϕ(y∗y)1/2 ≤ |λ + Λ|
2
√

Re(λΛ)
|ϕ(y∗x)|.



Reverse Cauchy–Schwarz type inequalities 399

(ii) ϕ(x∗x)1/2ϕ(y∗y)1/2 − |ϕ(y∗x)| ≤ |Λ− λ|2
4|Λ + λ| min{ϕ(y∗y), ϕ(x∗x)}.

Proof. The C∗-algebra A can be regarded as a pre-inner product module
over C via 〈x, y〉 = ϕ(y∗x). Now (i) and (ii) follow from Theorem 2.2 and
Theorem 2.6 and an obvious symmetry argument, respectively. ¤

Remark 2.8 Let A be a C∗-algebra, x, y ∈ A such that xy = yx,
m1 ≤ x ≤ M1, m2 ≤ y ≤ M2 and ϕ is a positive linear functional on A .
Setting λ = m1/M2 and Λ = M1/m2, we observe that x − λy ≥ 0 and
Λy − x ≥ 0, whence

ϕ((Λy − x)(x− λy)∗) ≥ 0.

Thus the requirements of Theorems 2.2 and 2.6 are fulfilled.

Considering the C∗-algebra A = B(H ) of all bounded linear oper-
ators on a Hilbert space H and the positive linear functional ϕ(R) =∑n

i=1〈Rei, ei〉, where e1, . . . , en ∈ H we deduce the following result from
(i) and (ii) of Corollary 2.7.

Corollary 2.9 Let H be a Hilbert space, e1, . . . , en ∈ H , T, S ∈ B(H )
with TS = ST and mS ≤ T ≤ MS for some scalars M > m > 0. Then

(i)
( n∑

i=1

‖Tei‖2
)1/2( n∑

i=1

‖Sei‖2
)1/2

≤ M + m

2
√

Mm

∣∣∣∣
n∑

i=1

〈Tei, Sei〉
∣∣∣∣.

(ii)
( n∑

i=1

‖Tei‖2
)1/2( n∑

i=1

‖Sei‖2
)1/2

−
∣∣∣∣

n∑

i=1

〈Tei, Sei〉
∣∣∣∣

≤ (M −m)2

4(M + m)
min

{ n∑

i=1

‖Sei‖2,
n∑

i=1

‖Tei‖2
}

.

3. Reverse Cauchy–Schwarz type inequality II

In [6], Ilisević and Varošanec sharpened (1.1) in a restricted case: If
x, y ∈ X and 〈x, x〉 ∈ Z(A ), then

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉, (3.1)
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which implies

|〈x, y〉| ≤ 〈x, x〉 1
2 〈y, y〉 1

2 . (3.2)

We present another version of the Cauchy–Schwarz inequality in a pre-
inner product C∗-module, in which we assume the invertibility of 〈y, y〉 in-
stead of 〈x, x〉 ∈ Z(A ):

Proposition 3.1 Let X be a pre-inner product C∗-module over a unital
C∗-algebra A . Suppose that x, y ∈ X such that 〈y, y〉 is invertible. Then

〈x, y〉〈y, y〉−1〈x, y〉∗ ≤ 〈x, x〉. (3.3)

Proof. By the module properties and the Cauthy–Schwarz inequality (1.1),
we have

〈x, y〉〈y, y〉−1〈y, x〉 =
〈
x, 〈y, y〉− 1

2 y
〉〈〈y, y〉− 1

2 y, x
〉

≤ ∥∥〈〈y, y〉− 1
2 y, 〈y, y〉− 1

2 y
〉∥∥〈x, x〉

= 〈x, x〉. ¤

To obtain reverse inequalities of additive and multiplicative types to the
Cauchy-Schwarz one (3.3), we need the following lemma which differs from
Lemma 2.1:

Lemma 3.2 Let X be a pre-inner product C∗-module over a unital C∗-
algebra A . Suppose that x, y ∈ X such that

〈Ay − x, x− ay〉 ≥ 0 (3.4)

for some positive invertible elements a,A ∈ Z(A ). Then

〈x, x〉 ≤ (A + a)Re〈x, y〉 −Aa〈y, y〉. (3.5)

Proof. The assumption (3.4) implies

A〈y, x〉 −A〈y, y〉a− 〈x, x〉+ 〈x, y〉a ≥ 0. (3.6)

Taking the adjoint in (3.6),
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〈y, x〉∗A− a〈y, y〉A− 〈x, x〉+ a〈x, y〉∗ ≥ 0. (3.7)

Combining with (3.6) and (3.7), since a,A ∈ Z(A ) are positive, we have
the desired inequality (3.5). ¤

Theorem 3.3 Let X be a pre-inner product C∗-module over a unital C∗-
algebra A . Suppose that x, y ∈ X such that 〈y, y〉 is invertible and (3.4)
holds for some positive invertible elements a,A ∈ Z(A ). Then

(i) 〈x, x〉 ≤ 1
4
(Aa)−1(A + a)2〈x, y〉〈y, y〉−1〈x, y〉∗.

(ii) 〈x, x〉 − 〈x, y〉〈y, y〉−1〈x, y〉∗ ≤ (
A

1
2 − a

1
2
)2Re〈x, y〉.

Proof. For (i), it follows from Lemma 3.2 that

〈x, x〉 ≤ (A + a)Re〈x, y〉 −Aa〈y, y〉

=
1
4
(Aa)−1(A + a)2〈x, y〉〈y, y〉−1〈x, y〉∗ −X∗X,

where X = (Aa)
1
2 〈y, y〉 1

2 − 1
2 (Aa)−

1
2 (A + a)〈y, y〉− 1

2 〈x, y〉∗ and hence we
have (i).

For (ii), by using Lemma 3.2 again, we have

〈x, x〉 − 〈x, y〉〈y, y〉−1〈x, y〉∗

≤ (A + a)Re〈x, y〉 −Aa〈y, y〉 − 〈x, y〉〈y, y〉−1〈x, y〉∗

=
(
A + a− 2(Aa)

1
2
)
Re〈x, y〉

− (
(Aa)

1
2 〈y, y〉 1

2 − 〈x, y〉〈y, y〉−frac12
)(

(Aa)
1
2 〈y, y〉 1

2 − 〈x, y〉〈y, y〉− 1
2
)∗

≤ (
A

1
2 − a

1
2
)2Re〈x, y〉. ¤

We can also obtain the following reverse Cauchy-Schwarz type inquali-
ties related to (3.2):

Theorem 3.4 Let X be a pre-inner product C∗-module over A . Suppose
that x, y ∈ X such that (3.4) holds for some positive invertible elements
A, a ∈ Z(A ). Then
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(i) Re
(〈x, x〉 1

2 〈y, y〉 1
2
) ≤ 1

2
(Aa)−

1
2 (A + a)Re〈x, y〉.

(ii) Re
(〈x, x〉 1

2 〈y, y〉 1
2 − 〈x, y〉) ≤ 1

4
(A− a)2(A + a)−1〈y, y〉.

(iii) Re
(〈x, x〉 1

2 〈y, y〉 1
2 − 〈x, y〉) ≤ 1

4
(A− a)2(A + a)−1(Aa)−1〈x, x〉.

Proof. For (i), by Lemma 3.2, we have

(A + a)Re〈x, y〉 ≥ 〈x, x〉+ Aa〈y, y〉

=
(〈x, x〉 1

2 − (Aa)
1
2 〈y, y〉 1

2
)2 + 2(Aa)

1
2 Re

(〈x, x〉 1
2 〈y, y〉 1

2
)

≥ 2(Aa)
1
2 Re

(〈x, x〉 1
2 〈y, y〉 1

2
)
.

For (ii), it follows from Lemma 3.2 that 〈x, x〉 ≤ (A + a)Re〈x, y〉 −
Aa〈y, y〉 and since A + a is invertible,

(A + a)−1〈x, x〉+ Aa(A + a)−1〈y, y〉 ≤ Re〈x, y〉.

Therefore we have

Re
(〈x, x〉 1

2 〈y, y〉 1
2 − 〈x, y〉)

≤ Re
(〈x, x〉 1

2 〈y, y〉 1
2
)− (A + a)−1〈x, x〉 −Aa(A + a)−1〈y, y〉

=
1
4
(A + a)−1(A− a)2〈y, y〉 − (A + a)−1

(
〈x, x〉 1

2 − 1
2
(A + a)〈y, y〉 1

2

)2

≤ 1
4
(A− a)2(A + a)−1〈y, y〉.

For (iii), it similarly follows from

Re
(〈x, x〉 1

2 〈y, y〉 1
2 − 〈x, y〉)

≤ 1
4
(A− a)2(A + a)−1(Aa)−1〈x, x〉

−Aa(A + a)−1

(
〈y, y〉 1

2 − 1
2
(A + a)(Aa)−1〈x, x〉 1

2

)2

. ¤
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Remark 3.5 Theorem 3.4 is also a non-commutative version of the fol-
lowing results in [3, Theorem 2.2] and [4, Theorem 4]: Let (H, 〈·, ·〉) be an
inner product over a complex number field C. If x, y ∈ H and c, C ∈ C such
that Re〈Cy − x, x− cy〉 ≥ 0 and Re(Cc) > 0, then

√
〈x, x〉〈y, y〉
|〈x, y〉| ≤ |C + c|

2
√

Re(Cc)
and

√
〈x, x〉〈y, y〉−|〈x, y〉| ≤ |C − c|2

4|C + c| 〈y, y〉.

4. Cassels type inequalities

In 1952 Cassels (see [18] and [15]) established that if for some real
numbers m,M the positive n−tuples (a1, . . . , an) and (b1, . . . , bn) satisfy
0 < m ≤ ak

bk
≤ M < ∞ (1 ≤ k ≤ n) for some scalars M > m > 0, then

n∑

k=1

wka2
k

n∑

k=1

wkb2
k ≤

(M + m)2

4mM

( n∑

k=1

wkakbk

)2

(4.1)

for any weight (w1, . . . , wn).
In this section, we consider Cassels type inequalities by using the geo-

metric mean of 〈x, x〉 and 〈y, y〉. We recall that the geometric mean of two
positive elements a, b ∈ A is defined by

a ] b = a
1
2
(
a−

1
2 ba−

1
2
) 1

2 a
1
2

if a is invertible, also see [9]. We notice that if a and b commute, then
a ] b = a

1
2 b

1
2 . Unfortunately, the following Cauchy-Schwarz type inequality

Re〈x, y〉 ≤ 〈x, x〉 ] 〈y, y〉 does not hold in general. As a matter of fact, let
A = M2(C) be the C∗-albegra of 2 × 2 matrices with an inner product
〈x, y〉 = xy∗ for x, y ∈ A . Put x =

(
0 0
1 0

)
and y =

(
1 0
0 0

)
. Then we have

Re〈x, y〉 6≤ 〈x, x〉 ] 〈y, y〉. However, we can obtain Cassels type inequalities
by virtue of Lemma 3.2 again:

Theorem 4.1 Let X be a pre-inner product C∗-module over a unital C∗-
algebra A . Suppose that x, y ∈ X such that (3.4) holds for some positive
invertible elements a,A ∈ Z(A ). Then

(i) 〈x, x〉 ] 〈y, y〉 ≤ 1
2
(Aa)−

1
2 (A + a)Re〈x, y〉.
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(ii) 〈x, x〉 ] 〈y, y〉 − Re〈x, y〉 ≤ 1
4
(Aa)−1(A + a)−1(A− a)2〈x, x〉.

(iii) 〈y, y〉 ] 〈x, x〉 − Re〈x, y〉 ≤ 1
4
(A + a)−1(A− a)2〈y, y〉.

Proof. For any ε > 0, since 〈x, x〉 + εe is invertible, it follows from the
arithmetic-geometric mean inequality and Lemma 3.2 that

(Aa)
1
2 (〈x, x〉+ εe) ] 〈y, y〉 = (〈x, x〉+ εe) ] (Aa〈y, y〉)

≤ 1
2
(〈x, x〉+ εe + Aa〈y, y〉)

≤ 1
2
((A + a)Re〈x, y〉+ εe).

As ε ↓ 0, we get (i).
Similarly we may assume that 〈x, x〉 and 〈y, y〉 are invertible to prove

(ii) and (iii).
For (ii), set X := 〈x, x〉− 1

2 〈y, y〉〈x, x〉− 1
2 . Then it follows from

Lemma 3.2 and invertibility of A + a that

〈x, x〉 ] 〈y, y〉 − Re〈x, y〉

≤ 〈x, x〉 1
2 X

1
2 〈x, x〉 1

2 − (A + a)−1〈x, x〉 −Aa(A + a)−1〈y, y〉

= 〈x, x〉 1
2
(
X

1
2 − (A + a)−1 −Aa(A + a)−1X

)〈x, x〉 1
2

= 〈x, x〉 1
2

(
(Aa(A + a))−1(A− a)2

4

−Aa(A + a)−1

(
X

1
2 − (Aa)−1(A + a)

2

)2)
〈x, x〉 1

2

≤ 1
4
(Aa(A + a))−1(A− a)2〈x, x〉.

For (iii), set Y := 〈y, y〉− 1
2 〈x, x〉〈y, y〉− 1

2 as in (ii). Then it follows that

〈y, y〉 ] 〈x, x〉 − Re〈x, y〉

≤ 〈y, y〉 1
2
(
Y

1
2 − (A + a)−1Y −Aa(A + a)−1

)〈y, y〉 1
2
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= 〈y, y〉 1
2

(
(A + a)−1(A− a)2

4
− (A + a)−1

(
Y

1
2 − (A + a)

2

)2)
〈y, y〉 1

2

≤ 1
4
(A + a)−1(A− a)2〈y, y〉. ¤

The next result is an integral version of the Cassels inequality:

Corollary 4.2 Let (X, µ) be a probability space and f, g ∈ L∞(µ) with
mg ≤ f ≤ Mg. Then

∫

X

|f |2dµ

∫

X

|g|2dµ ≤ (M + m)2

4Mm

∣∣∣∣
∫

X

fgdµ

∣∣∣∣
2

.

Proof. X = L∞(X, µ) is regarded as a subspace of L2(X, µ) via 〈f, g〉 =∫
X

fgdµ (f, g ∈ X ) and use Theorem 4.1 since 〈Mg − f, f −mg〉 ≥ 0. ¤

Considering Cn equipped with the natural inner product defined with
weights (w1, . . . , wn) we obtain the Cassels inequality (4.1).

5. A Grüss type inequality

In order to establish a complement of Chebyshev’s inequality, Grüss [5]
proved the following inequality: If f and g are integrable real functions on
[a, b] such that C ≤ f(x) ≤ D and E ≤ g(x) ≤ F for some real constants
C,D, E, F and for all x ∈ [a, b], then

∣∣∣∣
1

b− a

∫ b

a

f(x)g(x)dx− 1
(b− a)2

∫ b

a

f(x)dx

∫ b

a

g(x)dx

∣∣∣∣ ≤
1
4
(D−C)(F −E);

(5.1)

and the constant 1/4 is the best possible, see [3], [11], [12] and references
therein.

In the final section, we show a Grüss type inequality in a pre-inner prod-
uct C∗-module. Some norm inequalities of Grüss type have been obtained
in [1], [7]. First, we state the following lemma by using some ideas of [7,
Lemma 2.4].

Lemma 5.1 Let X be a pre-inner product C∗-module over a unital C∗-
algebra A . Suppose that x, h ∈ X such that 〈h, h〉 is the unit element e of
A and (3.4) holds for some positive invertible elements a,A ∈ Z(A ). Then
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0 ≤ 〈x, x〉 − |〈h, x〉|2 ≤ 1
4
(A− a)2. (5.2)

Proof. By the module properties, we have

0 ≤ 〈x− 〈x, h〉h, x− 〈x, h〉h〉
= 〈x, x〉 − 〈x, h〉〈h, x〉 − 〈x, h〉〈h, x〉+ 〈x, h〉〈h, h〉〈h, x〉
= 〈x, x〉 − 〈x, h〉〈h, x〉 − 〈x, h〉〈h, x〉+ 〈x, h〉e〈h, x〉
= 〈x, x〉 − 〈x, h〉〈h, x〉
= 〈x, x〉 − |〈h, x〉|2.

Second, it follows from Lemma 3.2 and 〈h, h〉 = e that

〈x, x〉 − |〈h, x〉|2 ≤ (A + a)Re〈x, h〉 −Aa− 〈x, h〉〈h, x〉

= −
(
〈x, h〉 − A + a

2

)(
〈x, h〉 − A + a

2

)∗
+

(A− a)2

4

≤ (A− a)2

4
. ¤

By utilizing Lemma 5.1, we show the following Grüss type inequality in
a pre-inner product C∗-module.

Theorem 5.2 Let X be a pre-inner product C∗-module over a unital C∗-
algebra A . Suppose that x, y, h ∈ X such that 〈h, h〉 is the unit element e

of A , 〈y, y〉 − |〈h, y〉|2 is invertible and

〈Ah− x, x− ah〉 ≥ 0 and 〈Bh− y, y − bh〉 ≥ 0

hold for some positive invertible elements a,A, b,B ∈ Z(A ). Then

|〈y, x〉 − 〈y, h〉〈h, x〉| ≤ 1
4
|A− a||B − b|. (5.3)

Proof. It follows from

0 ≤ 〈x− 〈x, h〉h, x− 〈x, h〉h〉 = 〈x, x〉 − |〈h, x〉|2

that [x, y]h := 〈x, y〉−〈x, h〉〈h, y〉 is a pre-inner product A -module. Utilizing
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Proposition 3.1 for [·, ·]h we get

(〈x, y〉 − 〈x, h〉〈h, y〉)(〈y, y〉 − |〈h, y〉|2)−1(〈x, y〉 − 〈x, h〉〈h, y〉)∗

≤ 〈x, x〉 − |〈h, x〉|2.

By Lemma 5.1 and the invertibility of 〈y, y〉 − |〈h, y〉|2, we have

4(B − b)−2 ≤ (〈y, y〉 − |〈h, y〉|2)−1

and hence

4(B − b)−2|〈y, x〉 − 〈y, h〉〈h, x〉|2 ≤ 1
4
(A− a)2.

This implies the desired inequality. ¤
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