Reverse Cauchy-Schwarz type inequalities in pre-inner product C^{*}-modules

Jun-Ichi Fujir, Masatoshi Fujir, Mohammad Sal Moslehian, Josip E. Pečarić and Yuki Seo

(Received May 24, 2010; Revised December 6, 2010)

Abstract

In the framework of a pre-inner product C^{*}-module over a unital C^{*} algebra, we show several reverse Cauchy-Schwarz type inequalities of additive and multiplicative types, by using some ideas in N. Elezović et al. [Math. Inequal. Appl., 8 (2005), no. 2, 223-231]. We apply our results to give Klamkin-Mclenaghan, ShishaMond and Cassels type inequalities. We also present a Grüss type inequality.

Key words: C^{*}-algebra, reverse Cauchy-Schwarz inequality, pre-inner product C^{*} module, Cassels' inequality, operator geometric mean, operator inequality

1. Introduction

A Hilbert C^{*}-module is a generalization of a Hilbert space in which the inner product takes its values in a C^{*}-algebra instead of the complex numbers. The theory of Hilbert C^{*}-modules is different from that of Hilbert spaces, for example, not any bounded linear operator between Hilbert C^{*} modules is adjointable and not any closed submodule of a Hilbert C^{*}-module is complemented, see [10].

The theory of Hilbert C^{*}-modules over commutative C^{*}-algebras was first appeared in a work of Kaplansky [8] in 1953. The research on this subject started in 1970's independently by Paschke [16] and Rieffel [17] and since then it has grown rapidly and has played significant roles in the theory of operator algebras and noncommutative geometry.

Let \mathscr{A} be a unital C^{*}-algebra with the unit element e and the center $\mathcal{Z}(\mathscr{A})$. For $a \in \mathscr{A}$, we denote the real part of a by $\operatorname{Re} a=\frac{1}{2}\left(a+a^{*}\right)$. If $a \in \mathscr{A}$ is positive (that is selfadjoint with positive spectrum), then $a^{\frac{1}{2}}$ denotes a unique positive $b \in \mathscr{A}$ such that $b^{2}=a$. For $a \in \mathscr{A}$, we denote the absolute value of a by $|a|=\left(a^{*} a\right)^{\frac{1}{2}}$. If $a \in \mathcal{Z}(\mathscr{A})$ is positive, then $a^{\frac{1}{2}} \in \mathcal{Z}(\mathscr{A})$. If $a, b \in \mathscr{A}$ are positive and $a b=b a$, then $a b$ is positive and

[^0]$(a b)^{\frac{1}{2}}=a^{\frac{1}{2}} b^{\frac{1}{2}}$.
Let \mathscr{X} be an algebraic left \mathscr{A}-module which is a complex linear space fulfilling $a(\lambda x)=(\lambda a) x=\lambda(a x)(x \in \mathscr{X}, a \in \mathscr{A}, \lambda \in \mathbb{C})$. The space \mathscr{X} is called a (left) pre-inner product \mathscr{A}-module (or a pre-inner product C^{*} module over the unital C^{*}-algebra $\left.\mathscr{A}\right)$ if there exists a mapping $\langle\cdot, \cdot\rangle: \mathscr{X} \times$ $\mathscr{X} \rightarrow \mathscr{A}$ satisfying
(i) $\langle x, x\rangle \geq 0$,
(ii) $\langle\lambda x+y, z\rangle=\lambda\langle x, z\rangle+\langle y, z\rangle$,
(iii) $\langle a x, y\rangle=a\langle x, y\rangle$,
(iv) $\langle y, x\rangle=\langle x, y\rangle^{*}$,
for all $x, y, z \in \mathscr{X}, a \in \mathscr{A}, \lambda \in \mathbb{C}$. Moreover, if
(v) $x=0$ whenever $\langle x, x\rangle=0$,
then \mathscr{X} is called an inner product \mathscr{A}-module. In this case $\|x\|:=\sqrt{\|\langle x, x\rangle\|}$, where the latter norm denotes the C^{*}-norm on \mathscr{A}. If this norm is complete, then \mathscr{X} is called a Hilbert \mathscr{A}-module. Any inner product space is an inner product \mathbb{C}-module and any C^{*}-algebra \mathscr{A} is a Hilbert C^{*}-module over itself via $\langle a, b\rangle=a b^{*}(a, b \in \mathscr{A})$. For more details on Hilbert C^{*}-modules, see [10]. Notice that (iii) and (iv) imply $\langle x, a y\rangle=\langle x, y\rangle a^{*}$ for all $x, y \in \mathscr{X}$, $a \in \mathscr{A}$.

The Cauchy-Schwarz inequality asserts that

$$
\begin{equation*}
\langle x, y\rangle\langle y, x\rangle \leq\|\langle y, y\rangle\|\langle x, x\rangle \tag{1.1}
\end{equation*}
$$

in a pre-inner product module \mathscr{X} over \mathscr{A}; see [10, Proposition 1.1]. This is a generalization of the classical Cauchy-Schwarz inequality. There have been proved several reverse Cauchy-Schwarz inequalities of additive and multiplicative types in the literature. The reader is refereed to [2], [6], [13], [14], [15] and references therein for more information.

In this paper, as a continuation of [13] and by using some ideas of [4], we investigate complementary Cauchy-Schwarz type inequalities in the framework of pre-inner product C^{*}-modules over a unital C^{*}-algebra. We apply our results to present Klamkin-Mclenaghan, Shisha-Mond and Cassels type inequalities. We also present a Grüss type inequality.

2. Reverse Cauchy-Schwarz type inequality I

In a semi-inner product space $(\mathscr{H},\langle\cdot, \cdot\rangle)$, the classical Cauchy-Schwarz inequality says that $|\langle x, y\rangle|^{2} \leq\langle x, x\rangle\langle y, y\rangle$ for all $x, y \in \mathscr{H}$. We discuss around Cauchy-Schwarz inequality under a non-commutative situation. In a pre-inner product C^{*}-module \mathscr{X} over a unital C^{*}-algebra \mathscr{A}, since the product $\langle x, x\rangle\langle y, y\rangle$ is not selfadjoint in general, we would expect that a symmetric form $|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle| \leq\langle x, x\rangle$ holds for $x, y \in \mathscr{X}$ such that $\langle y, y\rangle$ is invertible. But we have a counterexample. As a matter of fact, let $\mathscr{A}=M_{2}(\mathbb{C})$ be the C^{*}-albegra of 2×2 matrices with an inner product $\langle x, y\rangle=x y^{*}$ for $x, y \in \mathscr{A}$. Put $x=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $y=\left(\begin{array}{cc}2 & 0 \\ 0 & 1\end{array}\right)$. Then we have $|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle| \not \leq\langle x, x\rangle$. In this section, we present some reverse Cauchy-Schwarz inequalities of additive and multiplicative types which differs from [13, Theorem 3.3]. For this, we need the following lemma:

Lemma 2.1 Let \mathscr{X} be a pre-inner product C^{*}-module over a unital C^{*} algebra \mathscr{A}. Suppose that $x, y \in \mathscr{X}$ such that $\langle x, y\rangle$ is normal and

$$
\begin{equation*}
\operatorname{Re}\langle A y-x, x-a y\rangle \geq 0 \tag{2.1}
\end{equation*}
$$

for some $a, A \in \mathcal{Z}(\mathscr{A})$. Then

$$
\begin{equation*}
\langle x, x\rangle+\operatorname{Re}\left(A a^{*}\right)\langle y, y\rangle \leq|a+A||\langle x, y\rangle| . \tag{2.2}
\end{equation*}
$$

Proof. Since $\operatorname{Re}\langle A y-x, x-a y\rangle \geq 0$, we have

$$
\begin{aligned}
\langle x, & x\rangle+\operatorname{Re}\left(A a^{*}\right)\langle y, y\rangle \leq \operatorname{Re}\left(A\langle x, y\rangle^{*}+a^{*}\langle x, y\rangle\right) \\
& =\operatorname{Re}\left(A^{*}\langle x, y\rangle+a^{*}\langle x, y\rangle\right)=\operatorname{Re}\left(\left(A^{*}+a^{*}\right)\langle x, y\rangle\right) \\
& \leq\left|\left(A^{*}+a^{*}\right)\langle x, y\rangle\right| \quad \text { by the normality of }\left(A^{*}+a^{*}\right)\langle x, y\rangle \\
& =|A+a||\langle x, y\rangle| .
\end{aligned}
$$

Theorem 2.2 Let \mathscr{X} be a pre-inner product C^{*}-module over a unital C^{*} algebra \mathscr{A}. Suppose that $x, y \in \mathscr{X}$ such that $\langle x, y\rangle$ is normal, $\operatorname{Re}\left(A a^{*}\right)$ is a positive invertible operator for $A, a \in \mathcal{Z}(\mathscr{A})$ and (2.1) holds. If $\langle y, y\rangle$ is invertible, then
(i) $\langle x, x\rangle \leq \frac{1}{4} \operatorname{Re}\left(A a^{*}\right)^{-1}|A+a|^{2}|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle|$,
(ii) $\langle x, x\rangle-|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle|$

$$
\leq \frac{1}{4} \operatorname{Re}\left(A a^{*}\right)^{-1}|A-a|^{2}|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle| .
$$

Proof. For (i), it follows from Lemma 2.1 that

$$
\begin{aligned}
\langle x, x\rangle & \leq|A+a||\langle x, y\rangle|-\operatorname{Re}\left(A a^{*}\right)\langle y, y\rangle \\
& =\frac{1}{4} \operatorname{Re}\left(A a^{*}\right)^{-1}|A+a|^{2}|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle|-X^{*} X,
\end{aligned}
$$

where $X=\operatorname{Re}\left(A a^{*}\right)^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}-\frac{1}{2} \operatorname{Re}\left(A a^{*}\right)^{-\frac{1}{2}}|A+a|\langle y, y\rangle^{-\frac{1}{2}}|\langle x, y\rangle|$ and hence we get (i). For (ii), it follows from (i) that

$$
\begin{aligned}
& \langle x, x\rangle-|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle| \\
& \quad \leq \frac{1}{4} \operatorname{Re}\left(A a^{*}\right)^{-1}|A+a|^{2}|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle|-|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle| \\
& \quad=\frac{1}{4} \operatorname{Re}\left(A a^{*}\right)^{-1}\left(|A+a|^{2}-4 \operatorname{Re}\left(A a^{*}\right)\right)|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle| \\
& \quad=\frac{1}{4} \operatorname{Re}\left(A a^{*}\right)^{-1}|A-a|^{2}|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle x, y\rangle| .
\end{aligned}
$$

The next result is a generalization of both Klamkin-Mclenaghan's inequality and Shisha-Mond's inequality [4, Theorem 2].

Theorem 2.3 Let \mathscr{X} be a pre-inner product C^{*}-module over a unital C^{*} algebra \mathscr{A}. Suppose that $x, y \in \mathscr{X}$ such that $\langle x, y\rangle$ is normal and invertible, $\langle y, y\rangle$ is invertible and $A, a \in \mathcal{Z}(\mathscr{A})$ satisfy $\operatorname{Re}\left(A a^{*}\right) \geq 0$ and (2.1). Then

$$
\begin{aligned}
& |\langle x, y\rangle|^{-\frac{1}{2}}\langle x, x\rangle|\langle x, y\rangle|^{-\frac{1}{2}}-|\langle x, y\rangle|^{\frac{1}{2}}\langle y, y\rangle^{-1}|\langle x, y\rangle|^{\frac{1}{2}} \\
& \quad \leq|A+a|-2 \operatorname{Re}\left(A a^{*}\right)^{\frac{1}{2}}
\end{aligned}
$$

Proof. It follows from Lemma 2.1 that

$$
\begin{aligned}
& |\langle x, y\rangle|^{-\frac{1}{2}}\langle x, x\rangle|\langle x, y\rangle|^{-\frac{1}{2}}-|\langle x, y\rangle|^{\frac{1}{2}}\langle y, y\rangle^{-1}|\langle x, y\rangle|^{\frac{1}{2}} \\
& \quad \leq|A+a|-\operatorname{Re}\left(A a^{*}\right)|\langle x, y\rangle|^{-\frac{1}{2}}\langle y, y\rangle|\langle x, y\rangle|^{-\frac{1}{2}}-|\langle x, y\rangle|^{\frac{1}{2}}\langle y, y\rangle^{-1}|\langle x, y\rangle|^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
&=|A+a|-2 \operatorname{Re}\left(A a^{*}\right)^{\frac{1}{2}}-(\operatorname{Re}\left(A a^{*}\right)^{\frac{1}{2}}\left(|\langle x, y\rangle|^{-\frac{1}{2}}\langle y, y\rangle|\langle x, y\rangle|^{-\frac{1}{2}}\right)^{\frac{1}{2}} \\
& \leq|A+a|-2 \operatorname{Re}\left(A a^{*}\right)^{\frac{1}{2}}\left.-\left(|\langle x, y\rangle|^{\frac{1}{2}}\langle y, y\rangle^{-1}|\langle x, y\rangle|^{\frac{1}{2}}\right)^{\frac{1}{2}}\right)^{2} \\
& \leq \mid
\end{aligned}
$$

The next result is an integral version of Klamkin-Mclenaghan's inequality.

Corollary 2.4 Let (X, μ) be a probability space and $f, g \in L^{\infty}(\mu)$ with $m g \leq f \leq M g$ for some scalars $M>m>0$. Then

$$
\begin{equation*}
\frac{\int_{X}|f|^{2} d \mu}{\left|\int_{X} f g d \mu\right|}-\frac{\left|\int_{X} f g d \mu\right|}{\int_{X}|g|^{2} d \mu} \leq(\sqrt{M}-\sqrt{m})^{2} \tag{2.3}
\end{equation*}
$$

Proof. $\mathscr{X}=L^{\infty}(X, \mu)$ is regarded as a subspace of $L^{2}(X, \mu)$ via $\langle f, g\rangle=$ $\int_{X} f \bar{g} d \mu \quad(f, g \in \mathscr{X})$. Then Theorem 2.3 implies the desired inequality since $\langle M g-f, f-m g\rangle \geq 0$.

Considering \mathbb{C}^{n} equipped with the natural inner product defined with weights $\left(w_{1}, \ldots, w_{n}\right)$ or, equivalently, starting with a weighted counting measure $\mu=\sum_{i=1}^{n} w_{i} \delta_{i}$, where w_{i} 's are positive numbers and δ_{i} 's are the Dirac delta functions, a discrete version of the above is a weighted Shisha-Mond's inequality as follows:

Corollary 2.5 If x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} are sequences of positive real numbers satisfying the condition $0<m_{1} \leq y_{i} \leq M_{1}<\infty$ and $0<m_{2} \leq$ $x_{i} \leq M_{2}<\infty$, then

$$
\frac{\sum_{i=1}^{n} w_{i} x_{i}^{2}}{\sum_{i=1}^{n} w_{i} x_{i} y_{i}}-\frac{\sum_{i=1}^{n} w_{i} x_{i} y_{i}}{\sum_{i=1}^{n} w_{i} y_{i}^{2}} \leq\left(\sqrt{M_{2} / m_{1}}-\sqrt{m_{2} / M_{1}}\right)^{2}
$$

Now we give an additive reverse Cauchy-Schwarz inequality, which seems to be nicer than [13, Theorem 3.1].

Theorem 2.6 Let \mathscr{X} be a pre-inner product C^{*}-module over a unital C^{*} algebra \mathscr{A}. Suppose that $x, y \in \mathscr{X}$ such that $\langle x, y\rangle$ is normal, and $A, a \in$ $\mathcal{Z}(\mathscr{A})$ such that $|A+a|$ is invertible and (2.1) holds. Then

$$
\begin{equation*}
\operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}\right)-|\langle x, y\rangle| \leq \frac{1}{4}|A-a|^{2}|A+a|^{-1}\langle y, y\rangle \tag{i}
\end{equation*}
$$

If moreover $\operatorname{Re}\left(A a^{*}\right)$ is positive invertible, then
(ii) $\operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}\right)-|\langle x, y\rangle| \leq \frac{1}{4}|A-a|^{2}|A+a|^{-1} \operatorname{Re}\left(A a^{*}\right)^{-1}\langle x, x\rangle$.

Proof. For (i), by Lemma 2.1, we have

$$
\begin{aligned}
\operatorname{Re}(& \left.\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}\right)-|\langle x, y\rangle| \\
\leq & \operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}\right)-|A+a|^{-1}\langle x, x\rangle-|A+a|^{-1} \operatorname{Re}\left(A a^{*}\right)\langle y, y\rangle \\
= & {\left[\frac{1}{4}|A+a|-\operatorname{Re}\left(A a^{*}\right)|A+a|^{-1}\right]\langle y, y\rangle } \\
& -|A+a|^{-1}\left(\langle x, x\rangle^{\frac{1}{2}}-\frac{1}{2}|A+a|\langle y, y\rangle^{\frac{1}{2}}\right)^{2} \\
\leq & \frac{1}{4}\left[|A+a|^{2}-4 \operatorname{Re}\left(A a^{*}\right)\right]|A+a|^{-1}\langle y, y\rangle \\
= & \frac{1}{4}|A-a|^{2}|A+a|^{-1}\langle y, y\rangle .
\end{aligned}
$$

For (ii), it similarly follows from

$$
\begin{aligned}
& \operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}\right)-|\langle x, y\rangle| \\
& \quad \leq \frac{1}{4}|A-a|^{2}|A+a|^{-1} \operatorname{Re}\left(A a^{*}\right)^{-1}\langle x, x\rangle \\
& \quad-\operatorname{Re}\left(A a^{*}\right)|A+a|^{-1}\left(\langle y, y\rangle^{\frac{1}{2}}-\frac{1}{2}|A+a| \operatorname{Re}\left(A a^{*}\right)^{-1}\langle x, x\rangle^{\frac{1}{2}}\right)^{2}
\end{aligned}
$$

Corollary 2.7 Let φ be a positive linear functional on a C^{*}-algebra \mathscr{A} and let $x, y \in \mathscr{A}$ be such that

$$
\operatorname{Re} \varphi\left((\Lambda y-x)^{*}(x-\lambda y)\right) \geq 0
$$

for some $\lambda, \Lambda \in \mathbb{C}$. Then
(i) $\varphi\left(x^{*} x\right)^{1 / 2} \varphi\left(y^{*} y\right)^{1 / 2} \leq \frac{|\lambda+\Lambda|}{2 \sqrt{\operatorname{Re}(\bar{\lambda} \Lambda)}}\left|\varphi\left(y^{*} x\right)\right|$.
(ii) $\varphi\left(x^{*} x\right)^{1 / 2} \varphi\left(y^{*} y\right)^{1 / 2}-\left|\varphi\left(y^{*} x\right)\right| \leq \frac{|\Lambda-\lambda|^{2}}{4|\Lambda+\lambda|} \min \left\{\varphi\left(y^{*} y\right), \varphi\left(x^{*} x\right)\right\}$.

Proof. The C^{*}-algebra \mathscr{A} can be regarded as a pre-inner product module over \mathbb{C} via $\langle x, y\rangle=\varphi\left(y^{*} x\right)$. Now (i) and (ii) follow from Theorem 2.2 and Theorem 2.6 and an obvious symmetry argument, respectively.

Remark 2.8 Let \mathscr{A} be a C^{*}-algebra, $x, y \in \mathscr{A}$ such that $x y=y x$, $m_{1} \leq x \leq M_{1}, m_{2} \leq y \leq M_{2}$ and φ is a positive linear functional on \mathscr{A}. Setting $\lambda=m_{1} / M_{2}$ and $\Lambda=M_{1} / m_{2}$, we observe that $x-\lambda y \geq 0$ and $\Lambda y-x \geq 0$, whence

$$
\varphi\left((\Lambda y-x)(x-\lambda y)^{*}\right) \geq 0
$$

Thus the requirements of Theorems 2.2 and 2.6 are fulfilled.
Considering the C^{*}-algebra $\mathscr{A}=\mathbb{B}(\mathscr{H})$ of all bounded linear operators on a Hilbert space \mathscr{H} and the positive linear functional $\varphi(R)=$ $\sum_{i=1}^{n}\left\langle R e_{i}, e_{i}\right\rangle$, where $e_{1}, \ldots, e_{n} \in \mathscr{H}$ we deduce the following result from (i) and (ii) of Corollary 2.7.

Corollary 2.9 Let \mathscr{H} be a Hilbert space, $e_{1}, \ldots, e_{n} \in \mathscr{H}, T, S \in \mathbb{B}(\mathscr{H})$ with $T S=S T$ and $m S \leq T \leq M S$ for some scalars $M>m>0$. Then
(i) $\left(\sum_{i=1}^{n}\left\|T e_{i}\right\|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left\|S e_{i}\right\|^{2}\right)^{1 / 2} \leq \frac{M+m}{2 \sqrt{M m}}\left|\sum_{i=1}^{n}\left\langle T e_{i}, S e_{i}\right\rangle\right|$.
(ii) $\left(\sum_{i=1}^{n}\left\|T e_{i}\right\|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left\|S e_{i}\right\|^{2}\right)^{1 / 2}-\left|\sum_{i=1}^{n}\left\langle T e_{i}, S e_{i}\right\rangle\right|$

$$
\leq \frac{(M-m)^{2}}{4(M+m)} \min \left\{\sum_{i=1}^{n}\left\|S e_{i}\right\|^{2}, \sum_{i=1}^{n}\left\|T e_{i}\right\|^{2}\right\}
$$

3. Reverse Cauchy-Schwarz type inequality II

In [6], Ilisević and Varošanec sharpened (1.1) in a restricted case: If $x, y \in \mathscr{X}$ and $\langle x, x\rangle \in \mathcal{Z}(\mathscr{A})$, then

$$
\begin{equation*}
|\langle x, y\rangle|^{2} \leq\langle x, x\rangle\langle y, y\rangle \tag{3.1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
|\langle x, y\rangle| \leq\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}} \tag{3.2}
\end{equation*}
$$

We present another version of the Cauchy-Schwarz inequality in a preinner product C^{*}-module, in which we assume the invertibility of $\langle y, y\rangle$ instead of $\langle x, x\rangle \in \mathcal{Z}(\mathscr{A})$:

Proposition 3.1 Let \mathscr{X} be a pre-inner product C^{*}-module over a unital C^{*}-algebra \mathscr{A}. Suppose that $x, y \in \mathscr{X}$ such that $\langle y, y\rangle$ is invertible. Then

$$
\begin{equation*}
\langle x, y\rangle\langle y, y\rangle^{-1}\langle x, y\rangle^{*} \leq\langle x, x\rangle . \tag{3.3}
\end{equation*}
$$

Proof. By the module properties and the Cauthy-Schwarz inequality (1.1), we have

$$
\begin{aligned}
\langle x, y\rangle\langle y, y\rangle^{-1}\langle y, x\rangle & =\left\langle x,\langle y, y\rangle^{-\frac{1}{2}} y\right\rangle\left\langle\langle y, y\rangle^{-\frac{1}{2}} y, x\right\rangle \\
& \leq\left\|\left\langle\langle y, y\rangle^{-\frac{1}{2}} y,\langle y, y\rangle^{-\frac{1}{2}} y\right\rangle\right\|\langle x, x\rangle \\
& =\langle x, x\rangle .
\end{aligned}
$$

To obtain reverse inequalities of additive and multiplicative types to the Cauchy-Schwarz one (3.3), we need the following lemma which differs from Lemma 2.1:

Lemma 3.2 Let \mathscr{X} be a pre-inner product C^{*}-module over a unital C^{*} algebra \mathscr{A}. Suppose that $x, y \in \mathscr{X}$ such that

$$
\begin{equation*}
\langle A y-x, x-a y\rangle \geq 0 \tag{3.4}
\end{equation*}
$$

for some positive invertible elements $a, A \in \mathcal{Z}(\mathscr{A})$. Then

$$
\begin{equation*}
\langle x, x\rangle \leq(A+a) \operatorname{Re}\langle x, y\rangle-A a\langle y, y\rangle . \tag{3.5}
\end{equation*}
$$

Proof. The assumption (3.4) implies

$$
\begin{equation*}
A\langle y, x\rangle-A\langle y, y\rangle a-\langle x, x\rangle+\langle x, y\rangle a \geq 0 \tag{3.6}
\end{equation*}
$$

Taking the adjoint in (3.6),

$$
\begin{equation*}
\langle y, x\rangle^{*} A-a\langle y, y\rangle A-\langle x, x\rangle+a\langle x, y\rangle^{*} \geq 0 \tag{3.7}
\end{equation*}
$$

Combining with (3.6) and (3.7), since $a, A \in \mathcal{Z}(\mathscr{A})$ are positive, we have the desired inequality (3.5).

Theorem 3.3 Let \mathscr{X} be a pre-inner product C^{*}-module over a unital C^{*} algebra \mathscr{A}. Suppose that $x, y \in \mathscr{X}$ such that $\langle y, y\rangle$ is invertible and (3.4) holds for some positive invertible elements $a, A \in \mathcal{Z}(\mathscr{A})$. Then
(i) $\langle x, x\rangle \leq \frac{1}{4}(A a)^{-1}(A+a)^{2}\langle x, y\rangle\langle y, y\rangle^{-1}\langle x, y\rangle^{*}$.
(ii) $\langle x, x\rangle-\langle x, y\rangle\langle y, y\rangle^{-1}\langle x, y\rangle^{*} \leq\left(A^{\frac{1}{2}}-a^{\frac{1}{2}}\right)^{2} \operatorname{Re}\langle x, y\rangle$.

Proof. For (i), it follows from Lemma 3.2 that

$$
\begin{aligned}
\langle x, x\rangle & \leq(A+a) \operatorname{Re}\langle x, y\rangle-A a\langle y, y\rangle \\
& =\frac{1}{4}(A a)^{-1}(A+a)^{2}\langle x, y\rangle\langle y, y\rangle^{-1}\langle x, y\rangle^{*}-X^{*} X
\end{aligned}
$$

where $X=(A a)^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}-\frac{1}{2}(A a)^{-\frac{1}{2}}(A+a)\langle y, y\rangle^{-\frac{1}{2}}\langle x, y\rangle^{*}$ and hence we have (i).

For (ii), by using Lemma 3.2 again, we have

$$
\begin{aligned}
\langle x, & x\rangle-\langle x, y\rangle\langle y, y\rangle^{-1}\langle x, y\rangle^{*} \\
\leq & (A+a) \operatorname{Re}\langle x, y\rangle-A a\langle y, y\rangle-\langle x, y\rangle\langle y, y\rangle^{-1}\langle x, y\rangle^{*} \\
= & \left(A+a-2(A a)^{\frac{1}{2}}\right) \operatorname{Re}\langle x, y\rangle \\
& -\left((A a)^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}-\langle x, y\rangle\langle y, y\rangle^{-f r a c 12}\right)\left((A a)^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}-\langle x, y\rangle\langle y, y\rangle^{-\frac{1}{2}}\right)^{*} \\
\leq & \left(A^{\frac{1}{2}}-a^{\frac{1}{2}}\right)^{2} \operatorname{Re}\langle x, y\rangle .
\end{aligned}
$$

We can also obtain the following reverse Cauchy-Schwarz type inqualities related to (3.2):
Theorem 3.4 Let \mathscr{X} be a pre-inner product C^{*}-module over \mathscr{A}. Suppose that $x, y \in \mathscr{X}$ such that (3.4) holds for some positive invertible elements $A, a \in \mathcal{Z}(\mathscr{A})$. Then
(i) $\operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}\right) \leq \frac{1}{2}(A a)^{-\frac{1}{2}}(A+a) \operatorname{Re}\langle x, y\rangle$.
(ii) $\operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}-\langle x, y\rangle\right) \leq \frac{1}{4}(A-a)^{2}(A+a)^{-1}\langle y, y\rangle$.
(iii) $\operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}-\langle x, y\rangle\right) \leq \frac{1}{4}(A-a)^{2}(A+a)^{-1}(A a)^{-1}\langle x, x\rangle$.

Proof. For (i), by Lemma 3.2, we have

$$
\begin{aligned}
(A+a) \operatorname{Re}\langle x, y\rangle & \geq\langle x, x\rangle+A a\langle y, y\rangle \\
& =\left(\langle x, x\rangle^{\frac{1}{2}}-(A a)^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}\right)^{2}+2(A a)^{\frac{1}{2}} \operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}\right) \\
& \geq 2(A a)^{\frac{1}{2}} \operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}\right)
\end{aligned}
$$

For (ii), it follows from Lemma 3.2 that $\langle x, x\rangle \leq(A+a) \operatorname{Re}\langle x, y\rangle-$ $A a\langle y, y\rangle$ and since $A+a$ is invertible,

$$
(A+a)^{-1}\langle x, x\rangle+A a(A+a)^{-1}\langle y, y\rangle \leq \operatorname{Re}\langle x, y\rangle .
$$

Therefore we have

$$
\begin{aligned}
& \operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}-\langle x, y\rangle\right) \\
& \quad \leq \operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}\right)-(A+a)^{-1}\langle x, x\rangle-A a(A+a)^{-1}\langle y, y\rangle \\
& \quad=\frac{1}{4}(A+a)^{-1}(A-a)^{2}\langle y, y\rangle-(A+a)^{-1}\left(\langle x, x\rangle^{\frac{1}{2}}-\frac{1}{2}(A+a)\langle y, y\rangle^{\frac{1}{2}}\right)^{2} \\
& \quad \leq \frac{1}{4}(A-a)^{2}(A+a)^{-1}\langle y, y\rangle
\end{aligned}
$$

For (iii), it similarly follows from

$$
\begin{aligned}
& \operatorname{Re}\left(\langle x, x\rangle^{\frac{1}{2}}\langle y, y\rangle^{\frac{1}{2}}-\langle x, y\rangle\right) \\
& \leq \frac{1}{4}(A-a)^{2}(A+a)^{-1}(A a)^{-1}\langle x, x\rangle \\
& \quad-A a(A+a)^{-1}\left(\langle y, y\rangle^{\frac{1}{2}}-\frac{1}{2}(A+a)(A a)^{-1}\langle x, x\rangle^{\frac{1}{2}}\right)^{2}
\end{aligned}
$$

Remark 3.5 Theorem 3.4 is also a non-commutative version of the following results in [3, Theorem 2.2] and [4, Theorem 4]: Let $(H,\langle\cdot, \cdot\rangle)$ be an inner product over a complex number field \mathbb{C}. If $x, y \in H$ and $c, C \in \mathbb{C}$ such that $\operatorname{Re}\langle C y-x, x-c y\rangle \geq 0$ and $\operatorname{Re}(C \bar{c})>0$, then

$$
\frac{\sqrt{\langle x, x\rangle\langle y, y\rangle}}{|\langle x, y\rangle|} \leq \frac{|C+c|}{2 \sqrt{\operatorname{Re}(C \bar{c})}} \quad \text { and } \quad \sqrt{\langle x, x\rangle\langle y, y\rangle}-|\langle x, y\rangle| \leq \frac{|C-c|^{2}}{4|C+c|}\langle y, y\rangle .
$$

4. Cassels type inequalities

In 1952 Cassels (see [18] and [15]) established that if for some real numbers m, M the positive n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ satisfy $0<m \leq \frac{a_{k}}{b_{k}} \leq M<\infty(1 \leq k \leq n)$ for some scalars $M>m>0$, then

$$
\begin{equation*}
\sum_{k=1}^{n} w_{k} a_{k}^{2} \sum_{k=1}^{n} w_{k} b_{k}^{2} \leq \frac{(M+m)^{2}}{4 m M}\left(\sum_{k=1}^{n} w_{k} a_{k} b_{k}\right)^{2} \tag{4.1}
\end{equation*}
$$

for any weight $\left(w_{1}, \ldots, w_{n}\right)$.
In this section, we consider Cassels type inequalities by using the geometric mean of $\langle x, x\rangle$ and $\langle y, y\rangle$. We recall that the geometric mean of two positive elements $a, b \in \mathscr{A}$ is defined by

$$
a \sharp b=a^{\frac{1}{2}}\left(a^{-\frac{1}{2}} b a^{-\frac{1}{2}}\right)^{\frac{1}{2}} a^{\frac{1}{2}}
$$

if a is invertible, also see [9]. We notice that if a and b commute, then $a \sharp b=a^{\frac{1}{2}} b^{\frac{1}{2}}$. Unfortunately, the following Cauchy-Schwarz type inequality $\operatorname{Re}\langle x, y\rangle \leq\langle x, x\rangle \sharp\langle y, y\rangle$ does not hold in general. As a matter of fact, let $\mathscr{A}=M_{2}(\mathbb{C})$ be the C^{*}-albegra of 2×2 matrices with an inner product $\langle x, y\rangle=x y^{*}$ for $x, y \in \mathscr{A}$. Put $x=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $y=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Then we have $\operatorname{Re}\langle x, y\rangle \not \leq\langle x, x\rangle \sharp\langle y, y\rangle$. However, we can obtain Cassels type inequalities by virtue of Lemma 3.2 again:

Theorem 4.1 Let \mathscr{X} be a pre-inner product C^{*}-module over a unital C^{*} algebra \mathscr{A}. Suppose that $x, y \in \mathscr{X}$ such that (3.4) holds for some positive invertible elements $a, A \in \mathcal{Z}(\mathscr{A})$. Then
(i) $\langle x, x\rangle \sharp\langle y, y\rangle \leq \frac{1}{2}(A a)^{-\frac{1}{2}}(A+a) \operatorname{Re}\langle x, y\rangle$.
(ii) $\langle x, x\rangle \sharp\langle y, y\rangle-\operatorname{Re}\langle x, y\rangle \leq \frac{1}{4}(A a)^{-1}(A+a)^{-1}(A-a)^{2}\langle x, x\rangle$.
(iii) $\langle y, y\rangle \sharp\langle x, x\rangle-\operatorname{Re}\langle x, y\rangle \leq \frac{1}{4}(A+a)^{-1}(A-a)^{2}\langle y, y\rangle$.

Proof. For any $\varepsilon>0$, since $\langle x, x\rangle+\varepsilon e$ is invertible, it follows from the arithmetic-geometric mean inequality and Lemma 3.2 that

$$
\begin{aligned}
(A a)^{\frac{1}{2}}(\langle x, x\rangle+\varepsilon e) \sharp\langle y, y\rangle & =(\langle x, x\rangle+\varepsilon e) \sharp(A a\langle y, y\rangle) \\
& \leq \frac{1}{2}(\langle x, x\rangle+\varepsilon e+A a\langle y, y\rangle) \\
& \leq \frac{1}{2}((A+a) \operatorname{Re}\langle x, y\rangle+\varepsilon e) .
\end{aligned}
$$

As $\varepsilon \downarrow 0$, we get (i).
Similarly we may assume that $\langle x, x\rangle$ and $\langle y, y\rangle$ are invertible to prove (ii) and (iii).

For (ii), set $X:=\langle x, x\rangle^{-\frac{1}{2}}\langle y, y\rangle\langle x, x\rangle^{-\frac{1}{2}}$. Then it follows from Lemma 3.2 and invertibility of $A+a$ that

$$
\begin{aligned}
&\langle x, x\rangle \sharp\langle y, y\rangle-\operatorname{Re}\langle x, y\rangle \\
& \leq\langle x, x\rangle^{\frac{1}{2}} X^{\frac{1}{2}}\langle x, x\rangle^{\frac{1}{2}}-(A+a)^{-1}\langle x, x\rangle-A a(A+a)^{-1}\langle y, y\rangle \\
&=\langle x, x\rangle^{\frac{1}{2}}\left(X^{\frac{1}{2}}-(A+a)^{-1}-A a(A+a)^{-1} X\right)\langle x, x\rangle^{\frac{1}{2}} \\
&=\langle x, x\rangle^{\frac{1}{2}}\left(\frac{(A a(A+a))^{-1}(A-a)^{2}}{4}\right. \\
&\left.\quad-A a(A+a)^{-1}\left(X^{\frac{1}{2}}-\frac{(A a)^{-1}(A+a)}{2}\right)^{2}\right)\langle x, x\rangle^{\frac{1}{2}} \\
& \quad \leq \frac{1}{4}(A a(A+a))^{-1}(A-a)^{2}\langle x, x\rangle .
\end{aligned}
$$

For (iii), set $Y:=\langle y, y\rangle^{-\frac{1}{2}}\langle x, x\rangle\langle y, y\rangle^{-\frac{1}{2}}$ as in (ii). Then it follows that

$$
\begin{aligned}
& \langle y, y\rangle \sharp\langle x, x\rangle-\operatorname{Re}\langle x, y\rangle \\
& \quad \leq\langle y, y\rangle^{\frac{1}{2}}\left(Y^{\frac{1}{2}}-(A+a)^{-1} Y-A a(A+a)^{-1}\right)\langle y, y\rangle^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\langle y, y\rangle^{\frac{1}{2}}\left(\frac{(A+a)^{-1}(A-a)^{2}}{4}-(A+a)^{-1}\left(Y^{\frac{1}{2}}-\frac{(A+a)}{2}\right)^{2}\right)\langle y, y\rangle^{\frac{1}{2}} \\
& \leq \frac{1}{4}(A+a)^{-1}(A-a)^{2}\langle y, y\rangle
\end{aligned}
$$

The next result is an integral version of the Cassels inequality:
Corollary 4.2 Let (X, μ) be a probability space and $f, g \in L^{\infty}(\mu)$ with $m g \leq f \leq M g$. Then

$$
\int_{X}|f|^{2} d \mu \int_{X}|g|^{2} d \mu \leq \frac{(M+m)^{2}}{4 M m}\left|\int_{X} f g d \mu\right|^{2}
$$

Proof. $\quad \mathscr{X}=L^{\infty}(X, \mu)$ is regarded as a subspace of $L^{2}(X, \mu)$ via $\langle f, g\rangle=$ $\int_{X} f \bar{g} d \mu(f, g \in \mathscr{X})$ and use Theorem 4.1 since $\langle M g-f, f-m g\rangle \geq 0$.

Considering \mathbb{C}^{n} equipped with the natural inner product defined with weights $\left(w_{1}, \ldots, w_{n}\right)$ we obtain the Cassels inequality (4.1).

5. A Grüss type inequality

In order to establish a complement of Chebyshev's inequality, Grüss [5] proved the following inequality: If f and g are integrable real functions on $[a, b]$ such that $C \leq f(x) \leq D$ and $E \leq g(x) \leq F$ for some real constants C, D, E, F and for all $x \in[a, b]$, then
$\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x\right| \leq \frac{1}{4}(D-C)(F-E) ;$
and the constant $1 / 4$ is the best possible, see [3], [11], [12] and references therein.

In the final section, we show a Grüss type inequality in a pre-inner product C^{*}-module. Some norm inequalities of Grüss type have been obtained in [1], [7]. First, we state the following lemma by using some ideas of [7, Lemma 2.4].

Lemma 5.1 Let \mathscr{X} be a pre-inner product C^{*}-module over a unital C^{*} algebra \mathscr{A}. Suppose that $x, h \in \mathscr{X}$ such that $\langle h, h\rangle$ is the unit element e of \mathscr{A} and (3.4) holds for some positive invertible elements $a, A \in \mathcal{Z}(\mathscr{A})$. Then

$$
\begin{equation*}
0 \leq\langle x, x\rangle-|\langle h, x\rangle|^{2} \leq \frac{1}{4}(A-a)^{2} \tag{5.2}
\end{equation*}
$$

Proof. By the module properties, we have

$$
\begin{aligned}
0 & \leq\langle x-\langle x, h\rangle h, x-\langle x, h\rangle h\rangle \\
& =\langle x, x\rangle-\langle x, h\rangle\langle h, x\rangle-\langle x, h\rangle\langle h, x\rangle+\langle x, h\rangle\langle h, h\rangle\langle h, x\rangle \\
& =\langle x, x\rangle-\langle x, h\rangle\langle h, x\rangle-\langle x, h\rangle\langle h, x\rangle+\langle x, h\rangle e\langle h, x\rangle \\
& =\langle x, x\rangle-\langle x, h\rangle\langle h, x\rangle \\
& =\langle x, x\rangle-|\langle h, x\rangle|^{2} .
\end{aligned}
$$

Second, it follows from Lemma 3.2 and $\langle h, h\rangle=e$ that

$$
\begin{aligned}
\langle x, x\rangle-|\langle h, x\rangle|^{2} & \leq(A+a) \operatorname{Re}\langle x, h\rangle-A a-\langle x, h\rangle\langle h, x\rangle \\
& =-\left(\langle x, h\rangle-\frac{A+a}{2}\right)\left(\langle x, h\rangle-\frac{A+a}{2}\right)^{*}+\frac{(A-a)^{2}}{4} \\
& \leq \frac{(A-a)^{2}}{4}
\end{aligned}
$$

By utilizing Lemma 5.1, we show the following Grüss type inequality in a pre-inner product C^{*}-module.

Theorem 5.2 Let \mathscr{X} be a pre-inner product C^{*}-module over a unital C^{*} algebra \mathscr{A}. Suppose that $x, y, h \in \mathscr{X}$ such that $\langle h, h\rangle$ is the unit element e of $\mathscr{A},\langle y, y\rangle-|\langle h, y\rangle|^{2}$ is invertible and

$$
\langle A h-x, x-a h\rangle \geq 0 \quad \text { and } \quad\langle B h-y, y-b h\rangle \geq 0
$$

hold for some positive invertible elements $a, A, b, B \in \mathcal{Z}(\mathscr{A})$. Then

$$
\begin{equation*}
|\langle y, x\rangle-\langle y, h\rangle\langle h, x\rangle| \leq \frac{1}{4}|A-a||B-b| . \tag{5.3}
\end{equation*}
$$

Proof. It follows from

$$
0 \leq\langle x-\langle x, h\rangle h, x-\langle x, h\rangle h\rangle=\langle x, x\rangle-|\langle h, x\rangle|^{2}
$$

that $[x, y]_{h}:=\langle x, y\rangle-\langle x, h\rangle\langle h, y\rangle$ is a pre-inner product \mathscr{A}-module. Utilizing

Proposition 3.1 for $[\cdot, \cdot]_{h}$ we get

$$
\begin{aligned}
& (\langle x, y\rangle-\langle x, h\rangle\langle h, y\rangle)\left(\langle y, y\rangle-|\langle h, y\rangle|^{2}\right)^{-1}(\langle x, y\rangle-\langle x, h\rangle\langle h, y\rangle)^{*} \\
& \quad \leq\langle x, x\rangle-|\langle h, x\rangle|^{2} .
\end{aligned}
$$

By Lemma 5.1 and the invertibility of $\langle y, y\rangle-|\langle h, y\rangle|^{2}$, we have

$$
4(B-b)^{-2} \leq\left(\langle y, y\rangle-|\langle h, y\rangle|^{2}\right)^{-1}
$$

and hence

$$
4(B-b)^{-2}|\langle y, x\rangle-\langle y, h\rangle\langle h, x\rangle|^{2} \leq \frac{1}{4}(A-a)^{2} .
$$

This implies the desired inequality.
Acknowledgement The authors would like to sincerely thank the referee for their useful comments. The third author was supported by a grant from Ferdowsi University of Mashhad (No. MP89128MOS).

References

[1] Banić S., Ilišević D. and Varošanec S., Bessel- and Grüss-type inequalities in inner product modules. Proc. Edinb. Math. Soc. (2), 50 (1) (2007), 2336.
[2] Dragomir S. S., Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces. Nova Science Publishers, New York, 2005.
[3] Dragomir S. S., Reverses of Schwarz, triangle and bessel inequalities in inner product spaces. J. Inequal. Pure Appl. Math., 5, Issue 3, Article 76, 2004.
[4] Elezović N., Marangunić Lj. and Pečarić J. E., Unified treatment of complemented Schwarz and Grüss inequalities in inner product spaces. Math. Inequal. Appl., 8 (2) (2005), 223-231.
[5] Grüss G., Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x)$ $\cdot g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$. Math. Z., 39 (1935), 215-226.
[6] Ilisević D. and Varošanec S., On the Cauchy-Schwarz inequality and its reverse in semi-inner product C^{*}-modules. Banach J. Math. Anal., 1 (2007), 78-84.
[7] Ilišević D. and Varošanec S., Grüss type inequalities in inner product modules. Proc. Amer. Math. Soc., 133 (11) (2005), 3271-3280.
[8] Kaplansky I., Modules over operator algebras. Amer. J. Math., 75 (1953), 839-858.
[9] Kubo F. and Ando T., Means of positive linear operators. Math. Ann., 246 (1980), 205-224.
[10] Lance E. C., Hilbert C*-Modules. London Math. Soc. Lecture Note Series 210, Cambridge Univ. Press, 1995.
[11] Mercer A. Mc. D. and Mercer P. R., New proofs of the Grüss inequality. Aust. J. Math. Anal. Appl., 1 (2) (2004), Art. 12, 6 pp.
[12] Mitrinović D. S., Pečarić J. E. and Fink A. M., Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht, 1993.
[13] Moslehian M. S. and Persson L.-E., Reverse Cauchy-Schwarz inequalities for positive C^{*}-valued sesquilinear forms. Math. Inequal. Appl., 4 (12) (2009), 701-709.
[14] Niculescu C. P., Converses of the Cauchy-Schwarz inequality in the C^{*} framework. An. Univ. Craiova Ser. Mat. Inform., 26 (1999), 22-28.
[15] Niezgoda M., Accretive operators and Cassels inequality. Linear Algebra Appl., 433 (1) (2009), 136-142.
[16] Paschke W. L., Inner product modules over B^{*}-algebras. Trans. Amer. Math. Soc., 182 (1973), 443-468.
[17] Rieffel M. A., Induced representations of C^{*}-algebras. Advances in Math., 13 (1974), 176-257.
[18] Watson G. S., Serial correlation in regression analysis I. Biometrika, 42 (1955), 327-342.

Jun-Ichi Fujir
Department of Art and Sciences (Information Science)
Osaka Kyoiku University
Asahigaoka, Kashiwara, Osaka 582-8582, Japan
E-mail: fujii@cc.osaka-kyoiku.ac.jp
Masatoshi Fujii
Department of mathematics
Osaka Kyoiku University
Asahigaoka, Kashiwara, Osaka 582-8582, Japan
E-mail: mfujii@cc.osaka-kyoiku.ac.jp
Mohammad Sal Moslehian
Department of Pure Mathematics
Centre of Excellence in Analysis
on Algebraic Structures (CEAAS)
Ferdowsi University of Mashhad
P.O. Box 1159, Mashhad 91775, Iran
E-mail: moslehian@ferdowsi.um.ac.ir moslehian@ams.org
Josip E. Pečarić
Faculty of Textile Technology
University of Zagreb
Pierottijeva 6, 10000 Zagreb, Croatia
E-mail: pecaric@mahazu.hazu.hr
Yuki Seo
Faculty of Engineering
Shibaura Institute of Technology
307 Fukasaku, Minuma-ku
Saitama-city, Saitama 337-8570, Japan
E-mail: yukis@sic.shibaura-it.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 46L08; Secondary 26D15, 46L05, 47A30, 47A63.

