Reverse Cauchy–Schwarz type inequalities in pre-inner product C^* -modules

Jun-Ichi FUJII, Masatoshi FUJII, Mohammad Sal Moslehian, Josip E. Pečarić and Yuki Seo

(Received May 24, 2010; Revised December 6, 2010)

Abstract. In the framework of a pre-inner product C^* -module over a unital C^* algebra, we show several reverse Cauchy–Schwarz type inequalities of additive and multiplicative types, by using some ideas in N. Elezović et al. [Math. Inequal. Appl., 8 (2005), no. 2, 223–231]. We apply our results to give Klamkin-Mclenaghan, Shisha-Mond and Cassels type inequalities. We also present a Grüss type inequality.

Key words: C^* -algebra, reverse Cauchy–Schwarz inequality, pre-inner product C^* -module, Cassels' inequality, operator geometric mean, operator inequality

1. Introduction

A Hilbert C^* -module is a generalization of a Hilbert space in which the inner product takes its values in a C^* -algebra instead of the complex numbers. The theory of Hilbert C^* -modules is different from that of Hilbert spaces, for example, not any bounded linear operator between Hilbert C^* modules is adjointable and not any closed submodule of a Hilbert C^* -module is complemented, see [10].

The theory of Hilbert C^* -modules over commutative C^* -algebras was first appeared in a work of Kaplansky [8] in 1953. The research on this subject started in 1970's independently by Paschke [16] and Rieffel [17] and since then it has grown rapidly and has played significant roles in the theory of operator algebras and noncommutative geometry.

Let \mathscr{A} be a unital C^* -algebra with the unit element e and the center $\mathcal{Z}(\mathscr{A})$. For $a \in \mathscr{A}$, we denote the real part of a by Re $a = \frac{1}{2}(a + a^*)$. If $a \in \mathscr{A}$ is positive (that is selfadjoint with positive spectrum), then $a^{\frac{1}{2}}$ denotes a unique positive $b \in \mathscr{A}$ such that $b^2 = a$. For $a \in \mathscr{A}$, we denote the absolute value of a by $|a| = (a^*a)^{\frac{1}{2}}$. If $a \in \mathcal{Z}(\mathscr{A})$ is positive, then $a^{\frac{1}{2}} \in \mathcal{Z}(\mathscr{A})$. If $a, b \in \mathscr{A}$ are positive and ab = ba, then ab is positive and

²⁰⁰⁰ Mathematics Subject Classification : Primary 46L08; Secondary 26D15, 46L05, 47A30, 47A63.

 $(ab)^{\frac{1}{2}} = a^{\frac{1}{2}}b^{\frac{1}{2}}.$

Let \mathscr{X} be an algebraic left \mathscr{A} -module which is a complex linear space fulfilling $a(\lambda x) = (\lambda a)x = \lambda(ax)$ ($x \in \mathscr{X}, a \in \mathscr{A}, \lambda \in \mathbb{C}$). The space \mathscr{X} is called a *(left) pre-inner product* \mathscr{A} -module (or a pre-inner product C^* module over the unital C^* -algebra \mathscr{A}) if there exists a mapping $\langle \cdot, \cdot \rangle \colon \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ satisfying

(i) $\langle x, x \rangle \ge 0$, (ii) $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$, (iii) $\langle ax, y \rangle = a \langle x, y \rangle$, (iv) $\langle y, x \rangle = \langle x, y \rangle^*$,

for all $x, y, z \in \mathscr{X}$, $a \in \mathscr{A}$, $\lambda \in \mathbb{C}$. Moreover, if

(v) x = 0 whenever $\langle x, x \rangle = 0$,

then \mathscr{X} is called an *inner product* \mathscr{A} -module. In this case $||x|| := \sqrt{||\langle x, x \rangle||}$, where the latter norm denotes the C^* -norm on \mathscr{A} . If this norm is complete, then \mathscr{X} is called a *Hilbert* \mathscr{A} -module. Any inner product space is an inner product \mathbb{C} -module and any C^* -algebra \mathscr{A} is a Hilbert C^* -module over itself via $\langle a, b \rangle = ab^* \ (a, b \in \mathscr{A})$. For more details on Hilbert C^* -modules, see [10]. Notice that (iii) and (iv) imply $\langle x, ay \rangle = \langle x, y \rangle a^*$ for all $x, y \in \mathscr{X}$, $a \in \mathscr{A}$.

The Cauchy–Schwarz inequality asserts that

$$\langle x, y \rangle \langle y, x \rangle \le \| \langle y, y \rangle \| \langle x, x \rangle \tag{1.1}$$

in a pre-inner product module \mathscr{X} over \mathscr{A} ; see [10, Proposition 1.1]. This is a generalization of the classical Cauchy–Schwarz inequality. There have been proved several reverse Cauchy–Schwarz inequalities of additive and multiplicative types in the literature. The reader is referred to [2], [6], [13], [14], [15] and references therein for more information.

In this paper, as a continuation of [13] and by using some ideas of [4], we investigate complementary Cauchy-Schwarz type inequalities in the framework of pre-inner product C^* -modules over a unital C^* -algebra. We apply our results to present Klamkin-Mclenaghan, Shisha-Mond and Cassels type inequalities. We also present a Grüss type inequality.

2. Reverse Cauchy–Schwarz type inequality I

In a semi-inner product space $(\mathscr{H}, \langle \cdot, \cdot \rangle)$, the classical Cauchy-Schwarz inequality says that $|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle$ for all $x, y \in \mathscr{H}$. We discuss around Cauchy-Schwarz inequality under a non-commutative situation. In a pre-inner product C^* -module \mathscr{K} over a unital C^* -algebra \mathscr{A} , since the product $\langle x, x \rangle \langle y, y \rangle$ is not selfadjoint in general, we would expect that a symmetric form $|\langle x, y \rangle| \langle y, y \rangle^{-1} |\langle x, y \rangle| \leq \langle x, x \rangle$ holds for $x, y \in \mathscr{X}$ such that $\langle y, y \rangle$ is invertible. But we have a counterexample. As a matter of fact, let $\mathscr{A} = M_2(\mathbb{C})$ be the C*-albegra of 2×2 matrices with an inner product $\langle x, y \rangle = xy^*$ for $x, y \in \mathscr{A}$. Put $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $y = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$. Then we have $|\langle x, y \rangle| \langle y, y \rangle^{-1} |\langle x, y \rangle| \not\leq \langle x, x \rangle$. In this section, we present some reverse Cauchy–Schwarz inequalities of additive and multiplicative types which differs from [13, Theorem 3.3]. For this, we need the following lemma:

Lemma 2.1 Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that $\langle x, y \rangle$ is normal and

$$\operatorname{Re}\langle Ay - x, x - ay \rangle \ge 0$$
 (2.1)

for some $a, A \in \mathcal{Z}(\mathscr{A})$. Then

$$\langle x, x \rangle + \operatorname{Re}(Aa^*) \langle y, y \rangle \le |a + A| |\langle x, y \rangle|.$$
(2.2)

Proof. Since $\operatorname{Re} \langle Ay - x, x - ay \rangle \geq 0$, we have

$$\begin{aligned} \langle x, x \rangle + \operatorname{Re}(Aa^*) \langle y, y \rangle &\leq \operatorname{Re}(A\langle x, y \rangle^* + a^* \langle x, y \rangle) \\ &= \operatorname{Re}(A^* \langle x, y \rangle + a^* \langle x, y \rangle) = \operatorname{Re}((A^* + a^*) \langle x, y \rangle) \\ &\leq |(A^* + a^*) \langle x, y \rangle| \quad \text{by the normality of } (A^* + a^*) \langle x, y \rangle \\ &= |A + a| |\langle x, y \rangle|. \end{aligned}$$

Theorem 2.2 Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that $\langle x, y \rangle$ is normal, $\operatorname{Re}(Aa^*)$ is a positive invertible operator for $A, a \in \mathscr{Z}(\mathscr{A})$ and (2.1) holds. If $\langle y, y \rangle$ is invertible, then

(i)
$$\langle x, x \rangle \leq \frac{1}{4} \operatorname{Re}(Aa^*)^{-1} |A+a|^2 |\langle x, y \rangle |\langle y, y \rangle^{-1} |\langle x, y \rangle|,$$

(ii)
$$\langle x, x \rangle - |\langle x, y \rangle| \langle y, y \rangle^{-1} |\langle x, y \rangle|$$

 $\leq \frac{1}{4} \operatorname{Re}(Aa^*)^{-1} |A - a|^2 |\langle x, y \rangle| \langle y, y \rangle^{-1} |\langle x, y \rangle|.$

Proof. For (i), it follows from Lemma 2.1 that

$$\begin{split} \langle x, x \rangle &\leq |A + a| |\langle x, y \rangle| - \operatorname{Re}(Aa^*) \langle y, y \rangle \\ &= \frac{1}{4} \operatorname{Re}(Aa^*)^{-1} |A + a|^2 |\langle x, y \rangle| \langle y, y \rangle^{-1} |\langle x, y \rangle| - X^* X, \end{split}$$

where $X = \operatorname{Re}(Aa^*)^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} - \frac{1}{2} \operatorname{Re}(Aa^*)^{-\frac{1}{2}} |A + a| \langle y, y \rangle^{-\frac{1}{2}} |\langle x, y \rangle|$ and hence we get (i). For (ii), it follows from (i) that

$$\begin{split} \langle x, x \rangle &- |\langle x, y \rangle | \langle y, y \rangle^{-1} | \langle x, y \rangle | \\ &\leq \frac{1}{4} \operatorname{Re}(Aa^*)^{-1} |A + a|^2 | \langle x, y \rangle | \langle y, y \rangle^{-1} | \langle x, y \rangle | - | \langle x, y \rangle | \langle y, y \rangle^{-1} | \langle x, y \rangle | \\ &= \frac{1}{4} \operatorname{Re}(Aa^*)^{-1} (|A + a|^2 - 4 \operatorname{Re}(Aa^*)) | \langle x, y \rangle | \langle y, y \rangle^{-1} | \langle x, y \rangle | \\ &= \frac{1}{4} \operatorname{Re}(Aa^*)^{-1} |A - a|^2 | \langle x, y \rangle | \langle y, y \rangle^{-1} | \langle x, y \rangle |. \end{split}$$

The next result is a generalization of both Klamkin–Mclenaghan's inequality and Shisha–Mond's inequality [4, Theorem 2].

Theorem 2.3 Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that $\langle x, y \rangle$ is normal and invertible, $\langle y, y \rangle$ is invertible and $A, a \in \mathscr{Z}(\mathscr{A})$ satisfy $\operatorname{Re}(Aa^*) \geq 0$ and (2.1). Then

$$\begin{split} |\langle x, y \rangle|^{-\frac{1}{2}} \langle x, x \rangle |\langle x, y \rangle|^{-\frac{1}{2}} - |\langle x, y \rangle|^{\frac{1}{2}} \langle y, y \rangle^{-1} |\langle x, y \rangle|^{\frac{1}{2}} \\ &\leq |A+a| - 2 \operatorname{Re}(Aa^*)^{\frac{1}{2}}. \end{split}$$

Proof. It follows from Lemma 2.1 that

$$\begin{aligned} |\langle x, y \rangle|^{-\frac{1}{2}} \langle x, x \rangle |\langle x, y \rangle|^{-\frac{1}{2}} - |\langle x, y \rangle|^{\frac{1}{2}} \langle y, y \rangle^{-1} |\langle x, y \rangle|^{\frac{1}{2}} \\ &\leq |A+a| - \operatorname{Re}(Aa^*)|\langle x, y \rangle|^{-\frac{1}{2}} \langle y, y \rangle |\langle x, y \rangle|^{-\frac{1}{2}} - |\langle x, y \rangle|^{\frac{1}{2}} \langle y, y \rangle^{-1} |\langle x, y \rangle|^{\frac{1}{2}} \end{aligned}$$

$$= |A + a| - 2\operatorname{Re}(Aa^{*})^{\frac{1}{2}} - \left(\operatorname{Re}(Aa^{*})^{\frac{1}{2}}(|\langle x, y \rangle|^{-\frac{1}{2}}\langle y, y \rangle|\langle x, y \rangle|^{-\frac{1}{2}})^{\frac{1}{2}} - \left(|\langle x, y \rangle|^{\frac{1}{2}}\langle y, y \rangle^{-1}|\langle x, y \rangle|^{\frac{1}{2}}\right)^{\frac{1}{2}}\right)^{2} \le |A + a| - 2\operatorname{Re}(Aa^{*})^{\frac{1}{2}}.$$

The next result is an integral version of Klamkin–Mclenaghan's inequality.

Corollary 2.4 Let (X, μ) be a probability space and $f, g \in L^{\infty}(\mu)$ with $mg \leq f \leq Mg$ for some scalars M > m > 0. Then

$$\frac{\int_X |f|^2 d\mu}{\left|\int_X fg d\mu\right|} - \frac{\left|\int_X fg d\mu\right|}{\int_X |g|^2 d\mu} \le \left(\sqrt{M} - \sqrt{m}\right)^2.$$
(2.3)

Proof. $\mathscr{X} = L^{\infty}(X,\mu)$ is regarded as a subspace of $L^{2}(X,\mu)$ via $\langle f,g \rangle = \int_{X} f \overline{g} d\mu$ $(f,g \in \mathscr{X})$. Then Theorem 2.3 implies the desired inequality since $\langle Mg - f, f - mg \rangle \geq 0$.

Considering \mathbb{C}^n equipped with the natural inner product defined with weights (w_1, \ldots, w_n) or, equivalently, starting with a weighted counting measure $\mu = \sum_{i=1}^n w_i \delta_i$, where w_i 's are positive numbers and δ_i 's are the Dirac delta functions, a discrete version of the above is a weighted Shisha–Mond's inequality as follows:

Corollary 2.5 If x_1, \ldots, x_n and y_1, \ldots, y_n are sequences of positive real numbers satisfying the condition $0 < m_1 \le y_i \le M_1 < \infty$ and $0 < m_2 \le x_i \le M_2 < \infty$, then

$$\frac{\sum_{i=1}^{n} w_i x_i^2}{\sum_{i=1}^{n} w_i x_i y_i} - \frac{\sum_{i=1}^{n} w_i x_i y_i}{\sum_{i=1}^{n} w_i y_i^2} \le \left(\sqrt{M_2/m_1} - \sqrt{m_2/M_1}\right)^2.$$

Now we give an additive reverse Cauchy–Schwarz inequality, which seems to be nicer than [13, Theorem 3.1].

Theorem 2.6 Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that $\langle x, y \rangle$ is normal, and $A, a \in \mathscr{Z}(\mathscr{A})$ such that |A + a| is invertible and (2.1) holds. Then

(i)
$$\operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}\right) - |\langle x, y \rangle| \leq \frac{1}{4} |A - a|^2 |A + a|^{-1} \langle y, y \rangle.$$

If moreover $\operatorname{Re}(Aa^*)$ is positive invertible, then

(ii)
$$\operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}\right) - |\langle x, y \rangle| \leq \frac{1}{4} |A - a|^2 |A + a|^{-1} \operatorname{Re}(Aa^*)^{-1} \langle x, x \rangle.$$

Proof. For (i), by Lemma 2.1, we have

$$\begin{split} \operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}\right) &- |\langle x, y \rangle| \\ &\leq \operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}\right) - |A + a|^{-1} \langle x, x \rangle - |A + a|^{-1} \operatorname{Re}(Aa^{*}) \langle y, y \rangle \\ &= \left[\frac{1}{4}|A + a| - \operatorname{Re}(Aa^{*})|A + a|^{-1}\right] \langle y, y \rangle \\ &- |A + a|^{-1} \left(\langle x, x \rangle^{\frac{1}{2}} - \frac{1}{2}|A + a| \langle y, y \rangle^{\frac{1}{2}}\right)^{2} \\ &\leq \frac{1}{4} \left[|A + a|^{2} - 4\operatorname{Re}(Aa^{*})\right] |A + a|^{-1} \langle y, y \rangle \\ &= \frac{1}{4} |A - a|^{2} |A + a|^{-1} \langle y, y \rangle. \end{split}$$

For (ii), it similarly follows from

$$\begin{aligned} \operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}\right) &- |\langle x, y \rangle| \\ &\leq \frac{1}{4} |A - a|^2 |A + a|^{-1} \operatorname{Re}(Aa^*)^{-1} \langle x, x \rangle \\ &- \operatorname{Re}(Aa^*) |A + a|^{-1} \left(\langle y, y \rangle^{\frac{1}{2}} - \frac{1}{2} |A + a| \operatorname{Re}(Aa^*)^{-1} \langle x, x \rangle^{\frac{1}{2}}\right)^2. \quad \Box \end{aligned}$$

Corollary 2.7 Let φ be a positive linear functional on a C^* -algebra \mathscr{A} and let $x, y \in \mathscr{A}$ be such that

$$\operatorname{Re}\varphi((\Lambda y - x)^*(x - \lambda y)) \ge 0$$

for some $\lambda, \Lambda \in \mathbb{C}$. Then

(i)
$$\varphi(x^*x)^{1/2}\varphi(y^*y)^{1/2} \le \frac{|\lambda+\Lambda|}{2\sqrt{\operatorname{Re}(\overline{\lambda}\Lambda)}}|\varphi(y^*x)|.$$

(ii)
$$\varphi(x^*x)^{1/2}\varphi(y^*y)^{1/2} - |\varphi(y^*x)| \le \frac{|\Lambda - \lambda|^2}{4|\Lambda + \lambda|} \min\{\varphi(y^*y), \varphi(x^*x)\}$$

Proof. The C^* -algebra \mathscr{A} can be regarded as a pre-inner product module over \mathbb{C} via $\langle x, y \rangle = \varphi(y^*x)$. Now (i) and (ii) follow from Theorem 2.2 and Theorem 2.6 and an obvious symmetry argument, respectively.

Remark 2.8 Let \mathscr{A} be a C^* -algebra, $x, y \in \mathscr{A}$ such that xy = yx, $m_1 \leq x \leq M_1, m_2 \leq y \leq M_2$ and φ is a positive linear functional on \mathscr{A} . Setting $\lambda = m_1/M_2$ and $\Lambda = M_1/m_2$, we observe that $x - \lambda y \geq 0$ and $\Lambda y - x \geq 0$, whence

$$\varphi((\Lambda y - x)(x - \lambda y)^*) \ge 0.$$

Thus the requirements of Theorems 2.2 and 2.6 are fulfilled.

Considering the C^* -algebra $\mathscr{A} = \mathbb{B}(\mathscr{H})$ of all bounded linear operators on a Hilbert space \mathscr{H} and the positive linear functional $\varphi(R) = \sum_{i=1}^n \langle Re_i, e_i \rangle$, where $e_1, \ldots, e_n \in \mathscr{H}$ we deduce the following result from (i) and (ii) of Corollary 2.7.

Corollary 2.9 Let \mathscr{H} be a Hilbert space, $e_1, \ldots, e_n \in \mathscr{H}$, $T, S \in \mathbb{B}(\mathscr{H})$ with TS = ST and $mS \leq T \leq MS$ for some scalars M > m > 0. Then

(i)
$$\left(\sum_{i=1}^{n} \|Te_i\|^2\right)^{1/2} \left(\sum_{i=1}^{n} \|Se_i\|^2\right)^{1/2} \le \frac{M+m}{2\sqrt{Mm}} \left|\sum_{i=1}^{n} \langle Te_i, Se_i \rangle\right|.$$

(ii) $\left(\sum_{i=1}^{n} \|Te_i\|^2\right)^{1/2} \left(\sum_{i=1}^{n} \|Se_i\|^2\right)^{1/2} - \left|\sum_{i=1}^{n} \langle Te_i, Se_i \rangle\right|$
 $\le \frac{(M-m)^2}{4(M+m)} \min\left\{\sum_{i=1}^{n} \|Se_i\|^2, \sum_{i=1}^{n} \|Te_i\|^2\right\}.$

3. Reverse Cauchy–Schwarz type inequality II

In [6], Ilisević and Varošanec sharpened (1.1) in a restricted case: If $x, y \in \mathscr{X}$ and $\langle x, x \rangle \in \mathcal{Z}(\mathscr{A})$, then

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle, \tag{3.1}$$

which implies

$$|\langle x, y \rangle| \le \langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}.$$
(3.2)

We present another version of the Cauchy–Schwarz inequality in a preinner product C^{*}-module, in which we assume the invertibility of $\langle y, y \rangle$ instead of $\langle x, x \rangle \in \mathcal{Z}(\mathscr{A})$:

Proposition 3.1 Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* -algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that $\langle y, y \rangle$ is invertible. Then

$$\langle x, y \rangle \langle y, y \rangle^{-1} \langle x, y \rangle^* \le \langle x, x \rangle.$$
 (3.3)

Proof. By the module properties and the Cauthy–Schwarz inequality (1.1), we have

$$\begin{split} \langle x, y \rangle \langle y, y \rangle^{-1} \langle y, x \rangle &= \left\langle x, \langle y, y \rangle^{-\frac{1}{2}} y \right\rangle \left\langle \langle y, y \rangle^{-\frac{1}{2}} y, x \right\rangle \\ &\leq \left\| \left\langle \langle y, y \rangle^{-\frac{1}{2}} y, \langle y, y \rangle^{-\frac{1}{2}} y \right\rangle \right\| \langle x, x \rangle \\ &= \langle x, x \rangle. \end{split}$$

To obtain reverse inequalities of additive and multiplicative types to the Cauchy-Schwarz one (3.3), we need the following lemma which differs from Lemma 2.1:

Lemma 3.2 Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that

$$\langle Ay - x, x - ay \rangle \ge 0 \tag{3.4}$$

for some positive invertible elements $a, A \in \mathcal{Z}(\mathscr{A})$. Then

$$\langle x, x \rangle \le (A+a) \operatorname{Re}\langle x, y \rangle - Aa \langle y, y \rangle.$$
 (3.5)

Proof. The assumption (3.4) implies

$$A\langle y, x \rangle - A\langle y, y \rangle a - \langle x, x \rangle + \langle x, y \rangle a \ge 0.$$
(3.6)

Taking the adjoint in (3.6),

$$\langle y, x \rangle^* A - a \langle y, y \rangle A - \langle x, x \rangle + a \langle x, y \rangle^* \ge 0.$$
 (3.7)

Combining with (3.6) and (3.7), since $a, A \in \mathcal{Z}(\mathscr{A})$ are positive, we have the desired inequality (3.5).

Theorem 3.3 Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that $\langle y, y \rangle$ is invertible and (3.4) holds for some positive invertible elements $a, A \in \mathscr{Z}(\mathscr{A})$. Then

(i)
$$\langle x, x \rangle \leq \frac{1}{4} (Aa)^{-1} (A+a)^2 \langle x, y \rangle \langle y, y \rangle^{-1} \langle x, y \rangle^*.$$

(ii) $\langle x, x \rangle - \langle x, y \rangle \langle y, y \rangle^{-1} \langle x, y \rangle^* \leq (A^{\frac{1}{2}} - a^{\frac{1}{2}})^2 \operatorname{Re} \langle x, y \rangle.$

Proof. For (i), it follows from Lemma 3.2 that

$$\begin{aligned} \langle x, x \rangle &\leq (A+a) \operatorname{Re} \langle x, y \rangle - Aa \langle y, y \rangle \\ &= \frac{1}{4} (Aa)^{-1} (A+a)^2 \langle x, y \rangle \langle y, y \rangle^{-1} \langle x, y \rangle^* - X^* X, \end{aligned}$$

where $X = (Aa)^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} - \frac{1}{2} (Aa)^{-\frac{1}{2}} (A+a) \langle y, y \rangle^{-\frac{1}{2}} \langle x, y \rangle^*$ and hence we have (i).

For (ii), by using Lemma 3.2 again, we have

$$\begin{split} \langle x, x \rangle - \langle x, y \rangle \langle y, y \rangle^{-1} \langle x, y \rangle^{*} \\ &\leq (A+a) \operatorname{Re} \langle x, y \rangle - Aa \langle y, y \rangle - \langle x, y \rangle \langle y, y \rangle^{-1} \langle x, y \rangle^{*} \\ &= \left(A + a - 2(Aa)^{\frac{1}{2}}\right) \operatorname{Re} \langle x, y \rangle \\ &- \left((Aa)^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} - \langle x, y \rangle \langle y, y \rangle^{-frac12}\right) \left((Aa)^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} - \langle x, y \rangle \langle y, y \rangle^{-\frac{1}{2}}\right)^{*} \\ &\leq \left(A^{\frac{1}{2}} - a^{\frac{1}{2}}\right)^{2} \operatorname{Re} \langle x, y \rangle. \end{split}$$

We can also obtain the following reverse Cauchy-Schwarz type inqualities related to (3.2):

Theorem 3.4 Let \mathscr{X} be a pre-inner product C^* -module over \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that (3.4) holds for some positive invertible elements $A, a \in \mathscr{Z}(\mathscr{A})$. Then

(i)
$$\operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}\right) \leq \frac{1}{2} (Aa)^{-\frac{1}{2}} (A+a) \operatorname{Re}\langle x, y \rangle.$$

(ii)
$$\operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} - \langle x, y \rangle\right) \leq \frac{1}{4} (A-a)^2 (A+a)^{-1} \langle y, y \rangle.$$

(iii)
$$\operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} - \langle x, y \rangle\right) \leq \frac{1}{4} (A-a)^2 (A+a)^{-1} (Aa)^{-1} \langle x, x \rangle.$$

Proof. For (i), by Lemma 3.2, we have

$$\begin{split} (A+a) \mathrm{Re}\langle x, y \rangle &\geq \langle x, x \rangle + Aa \langle y, y \rangle \\ &= \left(\langle x, x \rangle^{\frac{1}{2}} - (Aa)^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} \right)^2 + 2(Aa)^{\frac{1}{2}} \mathrm{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} \right) \\ &\geq 2(Aa)^{\frac{1}{2}} \mathrm{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} \right). \end{split}$$

For (ii), it follows from Lemma 3.2 that $\langle x,x\rangle \leq (A+a)\mathrm{Re}\langle x,y\rangle - Aa\langle y,y\rangle$ and since A+a is invertible,

$$(A+a)^{-1}\langle x,x\rangle + Aa(A+a)^{-1}\langle y,y\rangle \le \operatorname{Re}\langle x,y\rangle.$$

Therefore we have

$$\begin{aligned} \operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} - \langle x, y \rangle\right) \\ &\leq \operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}\right) - (A+a)^{-1} \langle x, x \rangle - Aa(A+a)^{-1} \langle y, y \rangle \\ &= \frac{1}{4} (A+a)^{-1} (A-a)^2 \langle y, y \rangle - (A+a)^{-1} \left(\langle x, x \rangle^{\frac{1}{2}} - \frac{1}{2} (A+a) \langle y, y \rangle^{\frac{1}{2}}\right)^2 \\ &\leq \frac{1}{4} (A-a)^2 (A+a)^{-1} \langle y, y \rangle. \end{aligned}$$

For (iii), it similarly follows from

$$\operatorname{Re}\left(\langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}} - \langle x, y \rangle\right)$$

$$\leq \frac{1}{4} (A-a)^{2} (A+a)^{-1} (Aa)^{-1} \langle x, x \rangle$$

$$- Aa (A+a)^{-1} \left(\langle y, y \rangle^{\frac{1}{2}} - \frac{1}{2} (A+a) (Aa)^{-1} \langle x, x \rangle^{\frac{1}{2}}\right)^{2}. \qquad \Box$$

Remark 3.5 Theorem 3.4 is also a non-commutative version of the following results in [3, Theorem 2.2] and [4, Theorem 4]: Let $(H, \langle \cdot, \cdot \rangle)$ be an inner product over a complex number field \mathbb{C} . If $x, y \in H$ and $c, C \in \mathbb{C}$ such that $\operatorname{Re}\langle Cy - x, x - cy \rangle \geq 0$ and $\operatorname{Re}(C\overline{c}) > 0$, then

$$\frac{\sqrt{\langle x,x\rangle\langle y,y\rangle}}{|\langle x,y\rangle|} \leq \frac{|C+c|}{2\sqrt{\operatorname{Re}(C\overline{c})}} \quad \text{and} \quad \sqrt{\langle x,x\rangle\langle y,y\rangle} - |\langle x,y\rangle| \leq \frac{|C-c|^2}{4|C+c|}\langle y,y\rangle.$$

4. Cassels type inequalities

In 1952 Cassels (see [18] and [15]) established that if for some real numbers m, M the positive n-tuples (a_1, \ldots, a_n) and (b_1, \ldots, b_n) satisfy $0 < m \leq \frac{a_k}{b_k} \leq M < \infty$ $(1 \leq k \leq n)$ for some scalars M > m > 0, then

$$\sum_{k=1}^{n} w_k a_k^2 \sum_{k=1}^{n} w_k b_k^2 \le \frac{(M+m)^2}{4mM} \left(\sum_{k=1}^{n} w_k a_k b_k\right)^2 \tag{4.1}$$

for any weight (w_1, \ldots, w_n) .

In this section, we consider Cassels type inequalities by using the geometric mean of $\langle x, x \rangle$ and $\langle y, y \rangle$. We recall that the geometric mean of two positive elements $a, b \in \mathscr{A}$ is defined by

$$a \ \sharp \ b = a^{\frac{1}{2}} \left(a^{-\frac{1}{2}} b a^{-\frac{1}{2}} \right)^{\frac{1}{2}} a^{\frac{1}{2}}$$

if a is invertible, also see [9]. We notice that if a and b commute, then $a \ \sharp \ b = a^{\frac{1}{2}}b^{\frac{1}{2}}$. Unfortunately, the following Cauchy-Schwarz type inequality $\operatorname{Re}\langle x, y \rangle \leq \langle x, x \rangle \ \sharp \ \langle y, y \rangle$ does not hold in general. As a matter of fact, let $\mathscr{A} = M_2(\mathbb{C})$ be the C*-albegra of 2×2 matrices with an inner product $\langle x, y \rangle = xy^*$ for $x, y \in \mathscr{A}$. Put $x = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then we have $\operatorname{Re}\langle x, y \rangle \not\leq \langle x, x \rangle \ \sharp \ \langle y, y \rangle$. However, we can obtain Cassels type inequalities by virtue of Lemma 3.2 again:

Theorem 4.1 Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* algebra \mathscr{A} . Suppose that $x, y \in \mathscr{X}$ such that (3.4) holds for some positive invertible elements $a, A \in \mathscr{Z}(\mathscr{A})$. Then

(i)
$$\langle x, x \rangle \ \sharp \ \langle y, y \rangle \le \frac{1}{2} (Aa)^{-\frac{1}{2}} (A+a) \operatorname{Re} \langle x, y \rangle.$$

J.-I. Fujii, M. Fujii, M. S. Moslehian, J. E. Pečarić and Y. Seo

(ii)
$$\langle x, x \rangle \not\equiv \langle y, y \rangle - \operatorname{Re}\langle x, y \rangle \leq \frac{1}{4} (Aa)^{-1} (A+a)^{-1} (A-a)^2 \langle x, x \rangle$$

(iii) $\langle y, y \rangle \not\equiv \langle x, x \rangle - \operatorname{Re}\langle x, y \rangle \leq \frac{1}{4} (A+a)^{-1} (A-a)^2 \langle y, y \rangle$.

Proof. For any $\varepsilon > 0$, since $\langle x, x \rangle + \varepsilon e$ is invertible, it follows from the arithmetic-geometric mean inequality and Lemma 3.2 that

$$\begin{split} (Aa)^{\frac{1}{2}}(\langle x,x\rangle + \varepsilon e) \ \sharp \ \langle y,y\rangle &= (\langle x,x\rangle + \varepsilon e) \ \sharp \ (Aa\langle y,y\rangle) \\ &\leq \frac{1}{2}(\langle x,x\rangle + \varepsilon e + Aa\langle y,y\rangle) \\ &\leq \frac{1}{2}((A+a)\mathrm{Re}\langle x,y\rangle + \varepsilon e). \end{split}$$

As $\varepsilon \downarrow 0$, we get (i).

Similarly we may assume that $\langle x, x \rangle$ and $\langle y, y \rangle$ are invertible to prove (ii) and (iii).

For (ii), set $X := \langle x, x \rangle^{-\frac{1}{2}} \langle y, y \rangle \langle x, x \rangle^{-\frac{1}{2}}$. Then it follows from Lemma 3.2 and invertibility of A + a that

$$\begin{aligned} \langle x, x \rangle & \ \sharp \ \langle y, y \rangle - \operatorname{Re}\langle x, y \rangle \\ &\leq \langle x, x \rangle^{\frac{1}{2}} X^{\frac{1}{2}} \langle x, x \rangle^{\frac{1}{2}} - (A+a)^{-1} \langle x, x \rangle - Aa(A+a)^{-1} \langle y, y \rangle \\ &= \langle x, x \rangle^{\frac{1}{2}} \left(X^{\frac{1}{2}} - (A+a)^{-1} - Aa(A+a)^{-1} X \right) \langle x, x \rangle^{\frac{1}{2}} \\ &= \langle x, x \rangle^{\frac{1}{2}} \left(\frac{(Aa(A+a))^{-1} (A-a)^2}{4} \\ &- Aa(A+a)^{-1} \left(X^{\frac{1}{2}} - \frac{(Aa)^{-1} (A+a)}{2} \right)^2 \right) \langle x, x \rangle^{\frac{1}{2}} \\ &\leq \frac{1}{4} (Aa(A+a))^{-1} (A-a)^2 \langle x, x \rangle. \end{aligned}$$

For (iii), set $Y := \langle y, y \rangle^{-\frac{1}{2}} \langle x, x \rangle \langle y, y \rangle^{-\frac{1}{2}}$ as in (ii). Then it follows that

$$\begin{aligned} \langle y, y \rangle & \sharp \langle x, x \rangle - \operatorname{Re} \langle x, y \rangle \\ & \leq \langle y, y \rangle^{\frac{1}{2}} \left(Y^{\frac{1}{2}} - (A+a)^{-1} Y - Aa(A+a)^{-1} \right) \langle y, y \rangle^{\frac{1}{2}} \end{aligned}$$

$$= \langle y, y \rangle^{\frac{1}{2}} \left(\frac{(A+a)^{-1}(A-a)^{2}}{4} - (A+a)^{-1} \left(Y^{\frac{1}{2}} - \frac{(A+a)}{2} \right)^{2} \right) \langle y, y \rangle^{\frac{1}{2}}$$

$$\leq \frac{1}{4} (A+a)^{-1} (A-a)^{2} \langle y, y \rangle.$$

The next result is an integral version of the Cassels inequality:

Corollary 4.2 Let (X, μ) be a probability space and $f, g \in L^{\infty}(\mu)$ with $mg \leq f \leq Mg$. Then

$$\int_X |f|^2 d\mu \int_X |g|^2 d\mu \leq \frac{(M+m)^2}{4Mm} \bigg| \int_X fg d\mu \bigg|^2$$

Proof. $\mathscr{X} = L^{\infty}(X,\mu)$ is regarded as a subspace of $L^{2}(X,\mu)$ via $\langle f,g \rangle = \int_{X} f \overline{g} d\mu \ (f,g \in \mathscr{X})$ and use Theorem 4.1 since $\langle Mg - f, f - mg \rangle \geq 0$. \Box

Considering \mathbb{C}^n equipped with the natural inner product defined with weights (w_1, \ldots, w_n) we obtain the Cassels inequality (4.1).

5. A Grüss type inequality

In order to establish a complement of Chebyshev's inequality, Grüss [5] proved the following inequality: If f and g are integrable real functions on [a, b] such that $C \leq f(x) \leq D$ and $E \leq g(x) \leq F$ for some real constants C, D, E, F and for all $x \in [a, b]$, then

$$\left|\frac{1}{b-a}\int_{a}^{b}f(x)g(x)dx - \frac{1}{(b-a)^{2}}\int_{a}^{b}f(x)dx\int_{a}^{b}g(x)dx\right| \leq \frac{1}{4}(D-C)(F-E);$$
(5.1)

and the constant 1/4 is the best possible, see [3], [11], [12] and references therein.

In the final section, we show a Grüss type inequality in a pre-inner product C^* -module. Some norm inequalities of Grüss type have been obtained in [1], [7]. First, we state the following lemma by using some ideas of [7, Lemma 2.4].

Lemma 5.1 Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* algebra \mathscr{A} . Suppose that $x, h \in \mathscr{X}$ such that $\langle h, h \rangle$ is the unit element e of \mathscr{A} and (3.4) holds for some positive invertible elements $a, A \in \mathscr{Z}(\mathscr{A})$. Then J.-I. Fujii, M. Fujii, M. S. Moslehian, J. E. Pečarić and Y. Seo

$$0 \le \langle x, x \rangle - |\langle h, x \rangle|^2 \le \frac{1}{4} (A - a)^2.$$
 (5.2)

Proof. By the module properties, we have

$$\begin{split} 0 &\leq \langle x - \langle x, h \rangle h, x - \langle x, h \rangle h \rangle \\ &= \langle x, x \rangle - \langle x, h \rangle \langle h, x \rangle - \langle x, h \rangle \langle h, x \rangle + \langle x, h \rangle \langle h, h \rangle \langle h, x \rangle \\ &= \langle x, x \rangle - \langle x, h \rangle \langle h, x \rangle - \langle x, h \rangle \langle h, x \rangle + \langle x, h \rangle e \langle h, x \rangle \\ &= \langle x, x \rangle - \langle x, h \rangle \langle h, x \rangle \\ &= \langle x, x \rangle - \langle x, h \rangle \langle h, x \rangle \\ &= \langle x, x \rangle - |\langle h, x \rangle|^2. \end{split}$$

Second, it follows from Lemma 3.2 and $\langle h, h \rangle = e$ that

$$\begin{split} \langle x, x \rangle - |\langle h, x \rangle|^2 &\leq (A+a) \operatorname{Re}\langle x, h \rangle - Aa - \langle x, h \rangle \langle h, x \rangle \\ &= -\left(\langle x, h \rangle - \frac{A+a}{2}\right) \left(\langle x, h \rangle - \frac{A+a}{2}\right)^* + \frac{(A-a)^2}{4} \\ &\leq \frac{(A-a)^2}{4}. \end{split}$$

By utilizing Lemma 5.1, we show the following Grüss type inequality in a pre-inner product C^* -module.

Theorem 5.2 Let \mathscr{X} be a pre-inner product C^* -module over a unital C^* algebra \mathscr{A} . Suppose that $x, y, h \in \mathscr{X}$ such that $\langle h, h \rangle$ is the unit element e of \mathscr{A} , $\langle y, y \rangle - |\langle h, y \rangle|^2$ is invertible and

$$\langle Ah - x, x - ah \rangle \ge 0$$
 and $\langle Bh - y, y - bh \rangle \ge 0$

hold for some positive invertible elements $a, A, b, B \in \mathcal{Z}(\mathcal{A})$. Then

$$|\langle y, x \rangle - \langle y, h \rangle \langle h, x \rangle| \le \frac{1}{4} |A - a| |B - b|.$$
(5.3)

Proof. It follows from

$$0 \le \langle x - \langle x, h \rangle h, x - \langle x, h \rangle h \rangle = \langle x, x \rangle - |\langle h, x \rangle|^2$$

that $[x,y]_h := \langle x,y \rangle - \langle x,h \rangle \langle h,y \rangle$ is a pre-inner product \mathscr{A} -module. Utilizing

Proposition 3.1 for $[\cdot, \cdot]_h$ we get

$$\begin{aligned} (\langle x, y \rangle - \langle x, h \rangle \langle h, y \rangle) (\langle y, y \rangle - |\langle h, y \rangle|^2)^{-1} (\langle x, y \rangle - \langle x, h \rangle \langle h, y \rangle)^* \\ &\leq \langle x, x \rangle - |\langle h, x \rangle|^2. \end{aligned}$$

By Lemma 5.1 and the invertibility of $\langle y, y \rangle - |\langle h, y \rangle|^2$, we have

$$4(B-b)^{-2} \le (\langle y, y \rangle - |\langle h, y \rangle|^2)^{-1}$$

and hence

$$4(B-b)^{-2}|\langle y,x\rangle - \langle y,h\rangle\langle h,x\rangle|^2 \le \frac{1}{4}(A-a)^2.$$

This implies the desired inequality.

Acknowledgement The authors would like to sincerely thank the referee for their useful comments. The third author was supported by a grant from Ferdowsi University of Mashhad (No. MP89128MOS).

References

- Banić S., Ilišević D. and Varošanec S., Bessel- and Grüss-type inequalities in inner product modules. Proc. Edinb. Math. Soc. (2), 50 (1) (2007), 23– 36.
- [2] Dragomir S. S., Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces. Nova Science Publishers, New York, 2005.
- [3] Dragomir S. S., Reverses of Schwarz, triangle and bessel inequalities in inner product spaces. J. Inequal. Pure Appl. Math., 5, Issue 3, Article 76, 2004.
- [4] Elezović N., Marangunić Lj. and Pečarić J. E., Unified treatment of complemented Schwarz and Grüss inequalities in inner product spaces. Math. Inequal. Appl., 8 (2) (2005), 223–231.
- [5] Grüss G., Über das Maximum des absoluten Betrages von 1/b-a ∫_a^b f(x)
 ·g(x)dx 1/(b-a)² ∫_a^b f(x)dx ∫_a^b g(x)dx. Math. Z., **39** (1935), 215-226.
 [6] Ilisević D. and Varošanec S., On the Cauchy-Schwarz inequality and its
- [6] Ilisević D. and Varošanec S., On the Cauchy-Schwarz inequality and its reverse in semi-inner product C^{*}-modules. Banach J. Math. Anal., 1 (2007), 78–84.
- [7] Ilišević D. and Varošanec S., Grüss type inequalities in inner product modules. Proc. Amer. Math. Soc., 133 (11) (2005), 3271–3280.

- [8] Kaplansky I., Modules over operator algebras. Amer. J. Math., 75 (1953), 839–858.
- [9] Kubo F. and Ando T., Means of positive linear operators. Math. Ann., 246 (1980), 205–224.
- [10] Lance E. C., *Hilbert C^{*}-Modules*. London Math. Soc. Lecture Note Series 210, Cambridge Univ. Press, 1995.
- [11] Mercer A. Mc. D. and Mercer P. R., New proofs of the Grüss inequality. Aust. J. Math. Anal. Appl., 1 (2) (2004), Art. 12, 6 pp.
- [12] Mitrinović D. S., Pečarić J. E. and Fink A. M., Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht, 1993.
- [13] Moslehian M. S. and Persson L.-E., Reverse Cauchy–Schwarz inequalities for positive C^{*}-valued sesquilinear forms. Math. Inequal. Appl., 4 (12) (2009), 701–709.
- [14] Niculescu C. P., Converses of the Cauchy-Schwarz inequality in the C^{*}framework. An. Univ. Craiova Ser. Mat. Inform., 26 (1999), 22–28.
- [15] Niezgoda M., Accretive operators and Cassels inequality. Linear Algebra Appl., 433 (1) (2009), 136–142.
- [16] Paschke W. L., Inner product modules over B*-algebras. Trans. Amer. Math. Soc., 182 (1973), 443–468.
- [17] Rieffel M. A., Induced representations of C^{*}-algebras. Advances in Math., 13 (1974), 176–257.
- [18] Watson G. S., Serial correlation in regression analysis I. Biometrika, 42 (1955), 327–342.

Jun-Ichi FUJII Department of Art and Sciences (Information Science) Osaka Kyoiku University Asahigaoka, Kashiwara, Osaka 582-8582, Japan E-mail: fujii@cc.osaka-kyoiku.ac.jp

Masatoshi FUJII Department of mathematics Osaka Kyoiku University Asahigaoka, Kashiwara, Osaka 582-8582, Japan E-mail: mfujii@cc.osaka-kyoiku.ac.jp

Mohammad Sal MOSLEHIAN Department of Pure Mathematics Centre of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University of Mashhad P.O. Box 1159, Mashhad 91775, Iran E-mail: moslehian@ferdowsi.um.ac.ir moslehian@ams.org

Josip E. PEČARIĆ Faculty of Textile Technology University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia E-mail: pecaric@mahazu.hazu.hr

Yuki SEO Faculty of Engineering Shibaura Institute of Technology 307 Fukasaku, Minuma-ku Saitama-city, Saitama 337-8570, Japan E-mail: yukis@sic.shibaura-it.ac.jp