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Abstract. The purpose of the paper is to consider an equivalence problem of sec-

ond order partial differential equations for one unknown function of two independent

variables under scale transformations. For this equivalence problem, explicit forms of

invariant functions are given. In particular, if all of these invariant functions vanish,

then PDEs are equivalent to the flat equation.
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1. Introduction

Sophus Lie initiated the study of geometric structures associated with
differential equations by considering a certain equivalence problem of second
order ordinary differential equations. To explain his work, we introduce a
notion of the (local) equivalence problem of differential equations in general.
We remark that every notions (e.g. coordinate transformations, functions)
appearing in this paper are assumed to be in the local category. We need
to fix classes of differential equations and a group of coordinate transfor-
mations to consider this problem. Then, the local equivalence problem of
differential equations is a problem how differential equations change under
local coordinate transformations. We can also express this problem in terms
of group actions. Let X be a set of certain differential equations and G be
a local coordinate transformation group which acts on X. Then the equiv-
alence problem for differential equations in X is interpreted as the problem
of determining the orbit decomposition under the action of G on X. Lie
studied the equivalence problem in the case of
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G = Cont(J1(R,R)), X =
{
y′′ = f(x, y, y′) | f ∈ C∞(J1(R,R))

}
,

where Cont(J1(R,R)) is the contact diffeomorphism group preserving the
canonical contact structure on J1(R,R). For this problem, he obtained the
fact that this action is transitive. Namely, the orbit decomposition of X for
the action of G has just one orbit. After the work of Lie, A. Tresse studied
the following case. Let G be the subgroup Diff(R2)cont consisting of contact
prolongations of diffeomorphisms on R2 to the jet space J1(R,R), and X be
the same set of differential equations. Under this set up, Tresse considered
an orbit decomposition of the action of G on X. In contrast to the above
problem considered by Lie, Tresse proved that this action is not transitive.

At the same time, Élie Cartan also considered the same problem with
a different method which is now called the equivalence method ([Gar], [O2],
[St]). Tresse and Cartan proved independently the following result by using
their original methods [GTW].

Theorem 1.1 (Tresse, Cartan) Let G = Diff(R2) be the diffeomor-
phism group of R2. Two second order ordinary differential equations y′′ =
f(x, y, y′) and y′′ = g(x, y, y′) are transformed for one to another by contact
prolongations of elements of G if and only if A(f) = A(g) and B(f) = B(g),
where A and B are functions expressed by :

A = A(f) =
d2fy′y′

dx2
− 4

dfy′y

dx
− 3fyfy′y′ + 6fyy + fy′

(
4fy′y − dfy′y′

dx

)
,

B = B(f) = fy′y′y′y′

(
d

dx
=

∂

∂x
+ y′

∂

∂y
+ f

∂

∂y′

)
.

It is well-known that this result is also obtained by using the theory of
construction of Cartan-Tanaka connections by N. Tanaka ([Tan2], [Ya3]).
After their works, some researchers studied the equivalence problem in the
case of more restricted diffeomorphism groups ([Gar], [O2]). For example,
Kamran, Lamb and Shadwick considered the equivalence problem with re-
spect to the fiber preserving diffeomorphisms φ on R2 [KLS]:

φ : (x, y) 7→ (X(x), Y (x, y)).

Along this historical background, it is natural to extend the above-
mentioned theory to the case of two independent variables. We consider an
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equivalence problem for the following second order PDE for one unknown
function of two variables y = y(x1, x2):

∂2y

∂xi∂xj
= fij(x1, x2, y, z1, z2), (1)

where fij (1 ≤ i, j ≤ 2) satisfying fij = fji are C∞ functions on the 1-jet
space J1(R2,R) := {(x1, x2, y, z1, z2)} with the canonical contact structure
C1 = {θ := dy− z1dx1− z2dx2 = 0}. By this contact structure C1, we have
the identification z1 = yx1 , z2 = yx2 with respect to the dependent variable
z = z(x, y), hence we have second order PDEs (1) of normalized type. If
fij all vanish, (1) is called the flat equation. We set M = {second order
PDEs (1)}. For these PDEs, we can choose many coordinate transformation
groups as well as the second order ODEs. As a typical example, there is the
following pseudo Lie group:

Diff(R3)cont = The contact prolongation of Diff(R3) to J1(R2,R).

In this case, we can apply the Tanaka theory to the equivalence problem as
well as the case of Tresse-Cartan for second order ODEs ([Tan2], [Ya3]). This
problem is also studied precisely by Ozawa, Sato, Suzuki [SOS]. However
they did not use the Tanaka theory and the Cartan’s equivalence method.
They characterized the orbit of the flat equation under contact prolonga-
tions. On the other hand, there are no results of equivalence problems
associated with more restricted diffeomorphism groups for PDEs (1). Thus,
it is natural to research an equivalence problem in the case of a restricted
transformation group as well as second order ODEs. So, we take the group

ScaleDiff(R3)
cont

= The contact prolongation of ScaleDiff(R3) to J1(R2,R),

where ScaleDiff(R3) is the diffeomorphism group consisting of scale trans-
formations defined by,

φ(x1, x2, y) =
(
X1(x1), X2(x2), Y (x1, x2, y)

)
. (2)

Since φ is a transformation on J0(R2,R) ∼= R3, we can also characterize this
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transformation geometrically as follows. Scale transformations preserve not
only fibers on J0(R2,R) but also the web-structure on the base space R2

consisting of by parallel translation of x1-axis and x2-axis. Now we state
the main problem treated in the present paper as follows.

Problem 1.2 Examine the orbit decomposition under the action of
ScaleDiff(R3)cont on M.

We can not apply the Tanaka theory to this equivalence problem, be-
cause a symmetry group under ScaleDiff(R3)cont is not semi-simple. Thus, it
is necessary to use Cartan’s classical method. We will calculate explicitly in-
variant functions for this equivalence problem by using Cartan’s equivalence
method ([Gar], [O2], [St]). To apply the theory of G-structure, we assume
the integrability condition (6) with respect to the equation (1). Then, our
main result can be stated as follows.

Main Theorem. For Problem 1.2 of equations (1) satisfying the inte-
grability condition, we obtain the {e}-structure F (1)

G2
. The structure equation

of this {e}-structure F (1)
G2

is given by

d




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2

α̂

γ̂

ψ̂




=




(α̂ + γ̂) ∧ θ̂0 + ω̂1 ∧ θ̂1 + ω̂2 ∧ θ̂2

α̂ ∧ θ̂1 + M1θ̂2 ∧ ω̂1 + M3θ̂2 ∧ θ̂0 + M4ω̂1 ∧ θ̂0 + M5ω̂2 ∧ θ̂0

(α̂ + γ̂ − ψ̂) ∧ θ̂2 + M6θ̂1 ∧ ω̂2 + M7θ̂1 ∧ θ̂0

+M8ω̂1 ∧ θ̂0 + M9ω̂2 ∧ θ̂0

γ̂ ∧ ω̂1

ψ̂ ∧ ω̂2

S1ω̂1 ∧ θ̂0 + S2ω̂2 ∧ θ̂0 + S3θ̂1 ∧ θ̂0 + S4θ̂2 ∧ θ̂0 + S5ω̂1 ∧ θ̂1

+S6ω̂1 ∧ ω̂2 + S7θ̂2 ∧ ω̂1 −M7θ̂1 ∧ ω̂2

S8ω̂1 ∧ ω̂2 + S9ω̂1 ∧ θ̂0 + S5θ̂1 ∧ ω̂1 + S10θ̂2 ∧ ω̂1

S11ω̂1 ∧ ω̂2 + S12ω̂2 ∧ θ̂0 + S13θ̂1 ∧ ω̂2 + S14θ̂2 ∧ ω̂2




,

where torsions Mi, Sj are found on (24). Moreover, torsions M4,M9, S3, S4,

S7, S10, S13 are described by other torsions. Thus, we have 15 invariant
functions Mi, Sj (i = 1, 3, 5, 6, 7, 8, j = 1, 2, 5, 6, 8, 9, 11, 12, 14).
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This theorem is obtained by Theorem 3.8 and Proposition 3.9. More-
over, we obtain the following necessary and sufficient condition with respect
to this equivalence problem. For the second order PDE (1) satisfying the in-
tegrability condition, if these invariant functions (24) vanish, then this equa-
tion is locally equivalent to the flat equation via the theory of G-structure
[St].

Corollary 1.3 Suppose that the second order PDE (1) satisfies the inte-
grability condition. Then, the equation (1) is locally equivalent to the flat
equation under contact prolongations of scale transformations if and only if
invariant functions Mi, Sj vanish. In particular, we assume that defining
functions fij in the equation (1) are given by the following form:

f11 = P (x1, x2, y), f12 = Q(x1, x2, y), f22 = R(x1, x2, y).

Then, the equation (1) is locally equivalent to the flat equation under con-
tact prolongations of scale transformations if and only if the integrability
condition Py = Qy = Ry = 0, Px2 = Qx1 , Qx2 = Rx1 is satisfied.

This corollary is given by Corollary 3.12 and Corollary 3.13.

2. Equivalence problem and G-structure

In this section, we introduce the G-structure associated with Problem
1.2.

First, we consider contact prolongations φ(1) on J1(R2,R) of scale trans-
formations φ in (2) as follows:

φ(1)(x1, x2, y, z1, z2) = (X1, X2, Y, Z1, Z2), (3)

where Z1 = Yx1+Yyz1

(X1)x1
, Z2 = Yx2+Yyz2

(X2)x2
. Indeed, we can see that φ(1) are

contact diffeomorphisms by:

φ(1)∗θ = Yyθ,

where θ = dy − z1dx1 − z2dx2 is the contact 1-form. Next, we introduce
exterior differential systems I corresponding to PDEs (1) as follows. We
choose the following adapted coframe of J1(R2,R) corresponding to the
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equation (1),

θ0 = dy − z1dx1 − z2dx2,

θ1 = dz1 − f11dx1 − f12dx2,

θ2 = dz2 − f21dx1 − f22dx2, (4)

ω1 = dx1,

ω2 = dx2.

We consider the completely integrable system (Frobenius system)

I :=
{
θ0, θ1, θ2

}
diff

with ω1 ∧ ω2 6= 0 (5)

consisting of this coframe. This system I is a differential ideal of the algebra
Ω(J1) :=

⊕
Γ(ΛkT ∗J1) consisting of differential forms defined on J1(R2,R).

The correspondence between the second order PDE (1) and the integrable
system I is described as follows. We consider vector fields X satisfying
the following property. 1-forms θi annihilate X, while ωi do not annihilate
X. At any point on J1(R2,R), such vector fields are generated by two
vector fields v1, v2. The integral surfaces which are tangent to the 2-plane
span{v1, v2} at any point are the graphs of solutions of the second order
PDE (1). Then, the parameters (x1, x2) are regarded as a local coordinate
system of this integral surface.

The integrability condition (Frobenius condition) of the integrable sys-
tem I is:

dθi ≡ 0
(
mod θ0, θ1, θ2

)
(i = 0, 1, 2). (6)

Note that this condition is equivalent to the integrability condition of the
PDE (1). Then, the above integrability condition is equivalent to A = B =
0, where A and B are given by

A = (f11)x2 − (f12)x1 + (f11)yz2 + (f11)z1f12 + (f11)z2f22

− (f12)yz1 − (f12)z1f11 − (f12)z2f12,

B = (f12)x2 − (f22)x1 + (f12)yz2 + (f12)z1f12 + (f12)z2f22

− (f22)yz1 − (f22)z1f11 − (f22)z2f12.
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Remark 2.1 From now on, we discuss only overdetermined systems (1)
satisfying this integrability condition.

A family of integral surfaces of I gives a 2-dimensional foliation on
J1(R2,R). We describe the infinitesimal automorphism group of the folia-
tion, and consider the principal bundle over J1(R2,R) with this group as
a structure group. To define this structure group, we take another PDE of
the same form:

∂2Y

∂Xi∂Xj
= Fij(X1, X2, Y, Z1, Z2), (7)

where this equation is defined on the jet space J1(R2,R) = {(X1, X2, Y,

Z1, Z2)} with the canonical contact form θ := dY − Z1dX1 − Z2dX2. For
this PDE, we also have the following adapted coframe:

θ0 = dY − Z1dX1 − Z2dX2,

θ1 = dZ1 − F11dX1 − F12dX2,

θ2 = dZ2 − F21dX1 − F22dX2, (8)

ω1 = dX1,

ω2 = dX2.

If the contact prolongation φ(1) of the scale transformation φ transforms a
solution of the PDE (1) to a solution of the PDE (7), then φ(1) induces
a linear transformation between the adapted coframe (4) and the another
coframe (8). We express an explicit form of these linear transformations.
First, we have the following relation by the form of φ(1):

φ(1)∗θ0 = a0θ0 (a0 6= 0),

φ(1)∗θ1 = b0θ0 + b1θ1 + b2ω1 + b3ω2,

φ(1)∗θ2 = c0θ0 + c1θ2 + c2ω1 + c3ω2, (9)

φ(1)∗ω1 = eω1 (e 6= 0),

φ(1)∗ω2 = fω2 (f 6= 0).
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Moreover, we have b2 = b3 = c2 = c3 = 0, because φ(1) transforms a
solution of the PDE (1) to a solution of the PDE (7). More precisely,
if we restrict coefficient functions b2, b3, c2, c3 to a solution surface, then
b2, b3, c2, c3 vanish. Now, by the integrability condition, the integral surfaces
of I form a foliation in J1(R2,R). Hence, if we take any point v in J1(R2,R),
then there exists a solution surface of (1) which contains v, and we have
b2 = b3 = c2 = c3 = 0 in the above transformation (9). Consequently, we
have the following linear transformation of adapted coframes:




θ0

θ1

θ2

ω1

ω2




=




a 0 0 0 0
b c 0 0 0
e 0 g 0 0
0 0 0 h 0
0 0 0 0 k







θ0

θ1

θ2

ω1

ω2




, (10)

where a, b, c, e, g, h, k are functions defined on J1(R2,R). Thus we have linear
transformations of coframes determined by φ(1). Moreover, we have the
condition that contact prolongations φ(1) must satisfy the following structure
equation of the exterior differential system I:

dθ0 ≡ −θ1 ∧ ω1 − θ2 ∧ ω2 (mod θ0),

dθ1 ≡ 0 (mod θ0, θ1, θ2), (11)

dθ2 ≡ 0 (mod θ0, θ1, θ2).

In this equation, the first equation means that contact prolongations pre-
serve a linear symplectic structure on the contact distribution. Moreover,
the second and third conditions mean that contact prolongations φ(1) pre-
serve the integrability condition of I. The first relation gives the condition
a = ch = gk. Summarizing, we get the linear transformations of coframes
of the following form:




θ0

θ1

θ2

ω1

ω2




=




ch 0 0 0 0
b c 0 0 0
e 0 g 0 0
0 0 0 h 0
0 0 0 0 k







θ0

θ1

θ2

ω1

ω2




. (12)
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Therefore, we obtain the following 5-dimensional Lie group as the infinites-
imal automorphism group:

G =








ch 0 0 0 0
b c 0 0 0
e 0 g 0 0
0 0 0 h 0
0 0 0 0 k



∈ GL(5,R)

∣∣∣∣∣∣∣∣∣∣∣

ch = gk





. (13)

Then, we have the reduced G-bundle FG of the coframe bundle FGL(R5) over
J1(R2,R). This bundle FG is G-structure associated with the equivalence
problem of second order PDE (1) for scale transformations.

3. Cartan’s equivalence method

In the previous section, we introduced the G-structure FG associated
with the second order PDE (1). In this section we compute local invari-
ant functions for the equivalence problem. For this purpose, we adopt the
Cartan’s equivalence method ([Gar], [O2], [St]).

To compute the structure equation on FG, we take the tautological 1-
form of FG defined as follows.

Definition 3.1 The tautological 1-form ω on FG is a R5-valued 1-form
on FG defined by

ω|(x,gx)(X) = g−1
x π∗(X) for X ∈ T(x,gx)FG, (14)

where π is the bundle projection of FG → J1(R2,R).

From this definition, we have the tautological 1-form (θ0, θ1, θ2, ω1, ω2)
in (12) on FG. To obtain the structure equation, we compute the exterior
derivative of this tautological 1-forms (θ0, θ1, θ2, ω1, ω2).

d




θ0

θ1

θ2

ω1

ω2




=




dc
c + dh

h 0 0 0 0
db
ch − bdc

c2h
dc
c 0 0 0

de
ch − edg

cgh 0 dg
g 0 0

0 0 0 dh
h 0

0 0 0 0 dk
k



∧




θ0

θ1

θ2

ω1

ω2



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+




T1ω1 ∧ θ0 + T2ω2 ∧ θ0 − θ1 ∧ ω1 − θ2 ∧ ω2

θ0 ∧ (T3ω1 + T4ω2) + θ1 ∧ (T5ω1 + T6ω2)
+θ2 ∧ (T7ω1 + T8ω2)

θ0 ∧ (T9ω1 + T10ω2) + θ1 ∧ (T11ω1 + T12ω2)
+θ2 ∧ (T13ω1 + T14ω2)

0
0




, (15)

where

T1 = − b

ch
, T2 = − e

ch
, T3 =

b2

(ch)2
− (f11)y

h2
+

b(f11)z1

ch2
+

e(f11)z2

gh2
,

T4 =
be

(ch)2
− (f12)y

hk
+

b(f12)z1

chk
+

e(f12)z2

ch2
, T5 = − b

ch
− (f11)z1

h
,

T6 = − (f12)z1

k
, T7 = −c(f11)z2

gh
, T8 = − b

ch
− (f12)z2

h
,

T9 =
be

(ch)2
− g(f12)y

ch2
+

bg(f12)z1

(ch)2
+

e(f12)z2

ch2
,

T10 =
e2

(ch)2
− g(f22)y

chk
+

bg(f22)z1

c2hk
+

e(f22)z2

chk
,

T11 = − e

ch
− g(f12)z1

ch
, T12 = −g(f22)z1

ck
, T13 = − (f12)z2

h
,

T14 = − e

ch
− (f22)z2

k
.

Remark 3.2 We put ω=(θ0, θ1, θ2, ω1, ω2) and write the structure equa-
tion as follows:

dω = −θ ∧ ω + Tω ∧ ω.

In the above, we note that θ is a g-valued 1-form and Tω ∧ω is a R5-valued
2-form, where g is the Lie algebra of G. In fact,

dω = d(gω) = dg · g−1 ∧ ω + Tω ∧ ω,
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where g ∈ G and ω = (θ0, θ1, θ2, ω1, ω2). In the structure equation, each
component of θ is called the pseudo-connection form and Tω ∧ ω is called
the torsion 2-form, and coefficient functions of 2-forms in each component
of Tω ∧ ω are called torsions [IL].

To simplify the structure equation, we set:

α :=
dc

c
− b

ch
ω1 − e

ch
ω2,

β :=
db

ch
− bdc

c2h
−

{
b2

(ch)2
− (f11)y

h2
+

b(f11)z1

ch2
+

e(f11)z2

gh2

}
ω1

−
{

be

(ch)2
− (f12)y

hk
+

b(f12)z1

chk
+

e(f12)z2

ch2

}
ω2,

ε :=
de

ch
− edg

cgh
−

{
be

(ch)2
− g(f12)y

ch2
+

bg(f12)z1

(ch)2
+

e(f12)z2

ch2

}
ω1

−
{

e2

(ch)2
− g(f22)y

chk
+

bg(f22)z1

c2hk
+

e(f22)z2

chk

}
ω2,

δ :=
dg

g
− b

ch
ω1 − e

ch
ω2, γ :=

dh

h
, ψ :=

dk

k
.

By substituting the above terms into the structure equation (15), we
get the following proposition.

Proposition 3.3 The structure equation on FG is written as:

d




θ0

θ1

θ2

ω1

ω2




=




α + γ 0 0 0 0
β α 0 0 0
ε 0 δ 0 0
0 0 0 γ 0
0 0 0 0 ψ



∧




θ0

θ1

θ2

ω1

ω2




+




−θ1 ∧ ω1 − θ2 ∧ ω2

L1θ1 ∧ ω1 + L2θ1 ∧ ω2 + L3θ2 ∧ ω1 + L4θ2 ∧ ω2

L2θ1 ∧ ω1 + L5θ1 ∧ ω2 + L4θ2 ∧ ω1 + L6θ2 ∧ ω2

0
0




, (16)
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where

L1 := − 2b

ch
− (f11)z1

h
, L2 := − e

ch
− (f12)z1

k
, L3 := −c(f11)z2

gh
,

L4 := − b

ch
− (f12)z2

h
, L5 := −g(f22)z1

ck
, L6 := −2e

ch
− (f22)z2

k
,

α + γ = δ + ψ.

Remark 3.4 In the structure equation (16), some torsions in (15) are ab-
sorbed in pseudo-connection forms in the g-valued 1-form. This procedure
is called absorption of torsions, the above expression of pseudo-connection
forms α, β, ε, δ, γ, ψ are obtained by solving the absorption equation (pre-
cisely, see Chapter 10 in [O2]).

There exists ambiguity for the pseudo-connection forms of FG. Hence,
we consider a reduction of G-structure FG. Precisely, refer to Lecture 4 in
[Gar] or Chapter 10 in [O2] (normalization of torsions and group reduction).
To eliminate the group parameter b of G, we choose an element (x, gx) ∈ FG

which satisfies L4(x, gx) = 0, for example,

(x, gx) =




x,




1 0 0 0 0
−(f12)z2 1 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







. (17)

The isotropy subgroup G1 for (x, gx) above is

G1 = {g ∈ G | L4(x, ggx) = 0}

=








ch 0 0 0 0
0 c 0 0 0
e 0 g 0 0
0 0 0 h 0
0 0 0 0 k



∈ GL(5,R) | ch = gk





. (18)

We consider the reduced G1-structure FG1 which has the structure group G1.
For two G-structures FG(U) on an open set U and FG(V ) on an open set V ,
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FG(U) and FG(V ) are locally isomorphic if and only if FG1(U) and FG1(V )
are locally isomorphic ([Gar, Lecture 4, Theorem]). Hence, it is sufficient
to apply the equivalence method to the G1-structure FG1 . To compute the
structure equation of FG1 , we need to take the tautological form of FG1 . In
this case, this tautological 1-form is obtained by substituting the condition
L4 = 0 into the tautological form (12) of FG:




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2




=




chθ0

−c(f12)z2θ0 + cθ1

eθ0 + gθ2

hω1

kω2




. (19)

Then, the structure equation on FG1 is given by

d




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2




=




α + γ 0 0 0 0
0 α 0 0 0
ε 0 δ 0 0
0 0 0 γ 0
0 0 0 0 ψ



∧




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2




+




N1ω̂1 ∧ θ̂0 + N2ω̂2 ∧ θ̂0 − θ̂1 ∧ ω̂1 − θ̂2 ∧ ω̂2

N3θ̂1 ∧ ω̂1 + N4θ̂1 ∧ ω̂2 + N5θ̂1 ∧ θ̂0 + N6θ̂2 ∧ ω̂1

+N7θ̂2 ∧ θ̂0 + N8ω̂1 ∧ θ̂0 + N9ω̂2 ∧ θ̂0

N10θ̂1 ∧ ω̂1 + N11θ̂1 ∧ ω̂2 −N1θ̂2 ∧ ω̂1 + N12θ̂2 ∧ ω̂2

+N13ω̂1 ∧ θ̂0 + N14ω̂2 ∧ θ̂0

0
0




,

where

α =
dc

c
, ε =

de

ch
− edg

cgh
, δ =

dg

g
, γ =

dh

h
, ψ =

dk

k
,

N1 =
(f12)z2

h
, N2 = − e

ch
, N3 =

1
h
{−(f11)z1 + (f12)z2},
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N4 = − (f12)z1

k
, N5 = − (f12)z2z1

ch
, N6 = − c

gh
(f11)z2 , N7 = − (f12)z2z2

gh
,

N8 = − 1
h2

{
(f12)2z2

− (f11)y − (f12)z2(f11)z1 +
e

g
(f11)z2

+ (f12)z2x1 + (f12)z2yz1 + (f12)z2z1f11 + (f12)z2z2f21

}
,

N9 =
1
hk
{(f12)y + (f12)z2(f12)z1 − (f12)z2x2

− (f12)z2yz2 − (f12)z2z1f12 − (f12)z2z2f22},

N10 = −e + g(f12)z1

ch
, N11 = −g(f22)z1

ck
, N12 = − e

ch
− (f22)z2

k
,

N13 =
g

ch2
{(f12)y + (f12)z1(f12)z2},

N14 = − e2

(ch)2
+

g(f22)y

chk
+

g(f12)z2(f22)z1

chk
− e(f22)z2

chk
.

To simplify this structure equation, we set:

α̂ = α−N5θ̂0 −N3ω̂1 + N2ω̂2,

ε̂ = ε−N5θ̂2 + N13ω̂1 + N14ω̂2,

δ̂ = δ −N5θ̂0 + N1ω̂1 −N12ω̂2,

γ̂ = γ + (N1 + N3)ω̂1,

ψ̂ = ψ + (N2 + N12)ω̂2.

By substituting these terms into the above structure equation, we get the
following.

Proposition 3.5 The structure equation on FG1 is written as:

d




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2




=




α̂ + γ̂ 0 0 0 0
0 α̂ 0 0 0
ε̂ 0 δ̂ 0 0
0 0 0 γ̂ 0
0 0 0 0 ψ̂



∧




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2



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+




−θ̂1 ∧ ω̂1 − θ̂2 ∧ ω̂2

N10θ̂1 ∧ ω̂2 + N6θ̂2 ∧ ω̂1 + N7θ̂2 ∧ θ̂0

+N8ω̂1 ∧ θ̂0 + N9ω̂2 ∧ θ̂0

N10θ̂1 ∧ ω̂1 + N11θ̂1 ∧ ω̂2

0
0




. (20)

In the structure equation (20), there still remains ambiguity of pseudo-
connection forms. Hence, we shall take the next step of reduction. To
eliminate the group parameter e of G1, we choose an element (x, gx) ∈ FG1

which satisfies N10(x, gx) = 0, for example,

(x, gx) =




x,




1 0 0 0 0
0 1 0 0 0

−(f12)z1 0 1 0 0
0 0 0 1 0
0 0 0 0 1







. (21)

The isotropy subgroup G2 for (x, gx) above is

G2 = {g ∈ G | N10(x, ggx) = 0}

=








ch 0 0 0 0
0 c 0 0 0
0 0 g 0 0
0 0 0 h 0
0 0 0 0 k



∈ GL(5,R) | ch = gk





. (22)

We take the reduced G2-structure FG2 which has the structure group G2.
Similarly to the case of G1-structure, we apply the equivalence method to the
G2-structure FG2 . We have the tautological 1-form on FG2 by substituting
the condition N10 = 0 into the equation (12):
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


θ̂0

θ̂1

θ̂2

ω̂1

ω̂2




=




chθ0

−c(f12)z2θ0 + cθ1

−g(f12)z1θ0 + gθ2

hω1

kω2




.

Then, the structure equation on FG2 is given by

d




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2




=




α + γ 0 0 0 0
0 α 0 0 0
0 0 δ 0 0
0 0 0 γ 0
0 0 0 0 ψ



∧




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2




+




M12ω̂1 ∧ θ̂0 + M11ω̂2 ∧ θ̂0 − θ̂1 ∧ ω̂1 − θ̂2 ∧ ω̂2

M1θ̂2 ∧ ω̂1 + M2θ̂1 ∧ θ̂0 + M3θ̂2 ∧ θ̂0 + M4ω̂1 ∧ θ̂0

+M5ω̂2 ∧ θ̂0 + M10ω̂1 ∧ θ̂1 + M11ω̂2 ∧ θ̂1

M6θ̂1 ∧ ω̂2 + M7θ̂1 ∧ θ̂0 + M2θ̂2 ∧ θ̂0 + M8ω̂1 ∧ θ̂0

+M9ω̂2 ∧ θ̂0 + M12ω̂1 ∧ θ̂2 + M13ω̂2 ∧ θ̂2

0
0




,

where

α =
dc

c
, δ =

dg

g
, γ =

dh

h
, ψ =

dk

k
,

M1 = −c(f11)z2

gh
, M2 = − (f12)z2z1

ch
, M3 = − (f12)z2z2

gh
,

M4 = − 1
h2

{
(f12)2z2

− (f11)y − (f12)z2(f11)z1 − (f11)z2(f12)z1

+ (f12)z2x1 + (f12)z2yz1 + (f12)z2z1f11 + (f12)z2z2f21

}
,

M5 =
1
hk

{
(f12)y + (f12)z2(f12)z1 − (f12)z2x2

− (f12)z2yz2 − (f12)z2z1f12 − (f12)z2z2f22

}
,
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M6 = −g(f22)z1

ck
, M7 = − (f12)z1z1

ck
,

M8 =
1
hk

{
(f12)y + (f12)z1(f12)z2 − (f12)z1x1 − (f12)z1yz1

− (f12)z1z1f11 − (f12)z1z2f21

}
,

M9 = − 1
k2

{
(f12)2z1

− (f22)y − (f12)z2(f22)z1 − (f12)z1(f22)z2

+ (f12)z1x2 + (f12)z1yz2 + (f12)z1z1f12 + (f12)z1z2f22

}
,

M10 =
1
h

{
(f11)z1 − (f12)z2

}
, M11 =

(f12)z1

k
,

M12 =
(f12)z2

h
, M13 =

1
k

{
(f22)z2 − (f12)z1

}
.

To simplify the structure equation, we set

α̂ = α−M2θ̂0 + M10ω̂1 + M11ω̂2,

γ̂ = γ + (M12 −M10)ω̂1,

δ̂ = δ −M2θ̂0 + M12ω̂1 + M13ω̂2,

ψ̂ = ψ + (M11 −M13)ω̂2.

Then, we obtain the following:

Proposition 3.6 We have the following structure equation on FG2 .

d




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2




=




α̂ + γ̂ 0 0 0 0
0 α̂ 0 0 0
0 0 δ̂ 0 0
0 0 0 γ̂ 0
0 0 0 0 ψ̂



∧




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2




+




ω̂1 ∧ θ̂1 + ω̂2 ∧ θ̂2

M1θ̂2 ∧ ω̂1 + M3θ̂2 ∧ θ̂0 + M4ω̂1 ∧ θ̂0 + M5ω̂2 ∧ θ̂0

M6θ̂1 ∧ ω̂2 + M7θ̂1 ∧ θ̂0 + M8ω̂1 ∧ θ̂0 + M9ω̂2 ∧ θ̂0

0
0




(23)
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We note that the structure equation (23) defines uniquely the pseudo-
connection forms α̂, γ̂, δ̂, ψ̂. Hence, we can obtain the G2-invariant 1-
forms (θ̂0, θ̂1, θ̂2, ω̂1, ω̂2, α̂, γ̂, ψ̂) on FG2 . To consider invariant functions for
Problem 1.2, we need to take the prolongation F (1)

G2
of FG2 defined as follows.

Definition 3.7 Let FG be a G-structure and g ⊂ Hom(V, V ) be the Lie
algebra of the structure group G. Then, the prolongation FG1 of FG is a
principal bundle over FG with the structure group G1, where G1 is the group
which has the corresponding Lie algebra g1 := (g⊗ V ∗) ∪ (V ⊗ S2(V ∗)).

For the G2-structure, we see that g
(1)
2 = 0 and the group G

(1)
2 = {e}.

Hence, F (1)
G2

is the {e}-structure over FG2 . That is, F (1)
G2

is absolute par-
allelism on FG2 . Now we choose the tautological 1-form (θ̂0, θ̂1, θ̂2, ω̂1, ω̂2,

α̂, γ̂, ψ̂) on F (1)
G2

. By taking the exterior derivation of this tautological 1-
form, we obtain the following structure equation on the {e}-structure.

Theorem 3.8 The structure equation of the {e}-structure F (1)
G2

with the
tautological 1-form (θ̂0, θ̂1, θ̂2, ω̂1, ω̂2, α̂, γ̂, ψ̂) is given by

d




θ̂0

θ̂1

θ̂2

ω̂1

ω̂2

α̂

γ̂

ψ̂




=




(α̂ + γ̂) ∧ θ̂0 + ω̂1 ∧ θ̂1 + ω̂2 ∧ θ̂2

α̂ ∧ θ̂1 + M1θ̂2 ∧ ω̂1 + M3θ̂2 ∧ θ̂0 + M4ω̂1 ∧ θ̂0 + M5ω̂2 ∧ θ̂0

(α̂ + γ̂ − ψ̂) ∧ θ̂2 + M6θ̂1 ∧ ω̂2 + M7θ̂1 ∧ θ̂0

+M8ω̂1 ∧ θ̂0 + M9ω̂2 ∧ θ̂0

γ̂ ∧ ω̂1

ψ̂ ∧ ω̂2

S1ω̂1 ∧ θ̂0 + S2ω̂2 ∧ θ̂0 + S3θ̂1 ∧ θ̂0 + S4θ̂2 ∧ θ̂0 + S5ω̂1 ∧ θ̂1

+S6ω̂1 ∧ ω̂2 + S7θ̂2 ∧ ω̂1 −M7θ̂1 ∧ ω̂2

S8ω̂1 ∧ ω̂2 + S9ω̂1 ∧ θ̂0 + S5θ̂1 ∧ ω̂1 + S10θ̂2 ∧ ω̂1

S11ω̂1 ∧ ω̂2 + S12ω̂2 ∧ θ̂0 + S13θ̂1 ∧ ω̂2 + S14θ̂2 ∧ ω̂2




,

where torsions Mi, Sj are given by
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M1 = − c

gh
(f11)θ2

, M3 = − 1
gh

(f12)θ2θ2
,

M4 = − 1
h2

{
(f11)θ2ω2

− 2(f11)θ2
(f12)θ1

+ (f11)θ2
(f22)θ2

}
,

M5 =
1
hk

{
(f12)θ0

+ (f12)θ2
(f12)θ1

− (f12)θ2ω2

}
,

M6 = − g

ck
(f22)θ1

, M7 = − 1
ck

(f12)θ1θ1
,

M8 =
1
hk

{
(f12)θ0

+ (f12)θ1
(f12)θ2

− (f12)θ1ω1

}
,

M9 = − 1
k2

{− 2(f12)θ2
(f22)θ1

+ (f22)θ1ω1
+ (f11)θ1

(f22)θ1

}
,

S1 =
1

ch2

{
(f11)θ2θ1ω2

+(f11)θ2θ2
(f22)θ1

+(f11)θ2θ1
(f22)θ2

−(f12)θ2θ1
(f11)θ2

− (f12)θ2θ2
(f12)θ2

− (f12)θ2θ1
(f11)θ1

+ 2(f12)θ2θ1
(f12)θ2

}
,

S2 =
1

chk

{
(f12)θ2θ1ω2

− (f12)θ1θ0
− (f12)θ1θ1

(f12)θ2

}
, (24)

S3 =
(f12)θ2θ1θ1

c2h
, S4 =

(f12)θ2θ1θ2

cgh
, S5 =

2(f12)θ2θ1
− (f11)θ1θ1

ch
,

S6 =
1
hk

{− (f12)θ0
− (f12)θ1

(f12)θ2
+ (f11)θ2

(f22)θ1
+ (f12)θ2ω2

}
,

S7 =
(f11)θ1θ2

− (f12)θ2θ2

gh
, S8 =

1
hk

{
(f11)θ1ω2

− 2(f12)θ2ω2

}
,

S9 =
1

ch2

{
(f11)θ1θ0

− 2(f12)θ2θ0
+ (f11)θ1θ1

(f12)θ2

+ (f11)θ1θ2
(f12)θ1

− 2(f12)θ1θ2
(f12)θ2

− 2(f12)θ2θ2
(f12)θ1

}
,

S10 =
−(f11)θ1θ2

+ 2(f12)θ2θ2

gh
, S11 =

1
hk

{
2(f12)θ1ω1

− (f22)θ2ω1

}
,

S12 =
1

chk

{− 2(f12)θ1θ0
− 2(f12)θ1θ1

(f12)θ2
− 2(f12)θ1θ2

(f12)θ1
+ (f22)θ2θ0

+ (f22)θ1θ2
(f12)θ2

+ (f22)θ2θ2
(f12)θ1

}
,

S13 =
2(f12)θ1θ1

− (f22)θ1θ2

ck
, S14 =

2(f12)θ1θ2
− (f22)θ2θ2

gk
,
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and we used the dual frame of the coframe (θ0, θ1, θ2, ω1, ω2):

∂θ0
=

∂

∂y
, ∂θ1

=
∂

∂z1
, ∂θ2

=
∂

∂z2
,

∂ω1
=

∂

∂x1
+ z1

∂

∂y
+ f11

∂

∂z1
+ f12

∂

∂z2
,

∂ω2
=

∂

∂x2
+ z2

∂

∂y
+ f21

∂

∂z1
+ f22

∂

∂z2
.

In the above torsions, there are the following relations.

Proposition 3.9 Torsions M4,M9, S3, S4, S7, S10, S13 are given by :

M4 = − 1
h2

{−gh

c
(M1)ω2

+
2gh

c
M1(f12)θ1

− gh

c
M1(f22)θ2

}
,

M9 = − 1
k2

{
− ck

g
(M6)ω1

− ck

g
M6(f11)θ1

+
2ck

g
M6(f12)θ2

}
,

S3 = − k

ch
(M7)θ2

, S4 = −1
c
(M3)θ1

, S7 = −1
c
(M1)θ1

+ M3,

S10 = −1
c
(M1)θ1

+ 2M3, S13 = −2M7 +
1
g
(M6)θ2

.

Hence, the vanishing of M4,M9, S3, S4, S7, S10, S13 is given by the van-
ishing of other torsions. Consequently, we obtain fifteen invariant functions.
By the theory of G-structure [St], we have the following results.

Theorem 3.10 ([St]) If a G-structure is locally flat then its structure
function vanishes identically.

Theorem 3.11 ([St]) Let G be a group of finite type. A necessary and
sufficient condition for a G-structure to be locally flat is that the structure
function of all prolongations of G be constant and equal to the corresponding
structure constants of the flat G-structure.

From these theorems, the vanishing condition of invariant functions
Mi, Sj (i = 1, 3, 5, 6, 7, 8, j = 1, 2, 5, 6, 8, 9, 11, 12, 14) gives the following
corollary.

Corollary 3.12 Suppose that the second order PDE (1) satisfies the
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integrability condition A = B = 0. Then, the equation (1) is locally
equivalent to the flat equation under contact prolongations of scale trans-
formations if and only if invariant functions Mi, Sj (i = 1, 3, 5, 6, 7, 8,
j = 1, 2, 5, 6, 8, 9, 11, 12, 14) vanish.

First, it is easy to check that the functions fij satisfying A = B = Mi =
Sj = 0 are written as quadratic polynomials in z1, z2. Hence, if there is a
polynomial z1, z2 of degree three among fij , then the corresponding equation
(1) is not equivalent to the flat equation under contact prolongations of scale
transformations.

Next, we give some examples of equations which are equivalent to the
flat equation. To show the vanishing condition of invariant functions more
explicitly, we consider the functions fij given by:

f11 = P (x1, x2, y), f12 = Q(x1, x2, y), f22 = R(x1, x2, y). (25)

Then, Corollary 3.12 gives the following corollary.

Corollary 3.13 Suppose that the functions fij in (1) are given by (25).
Then the equation (1) is locally equivalent to the flat equation under contact
prolongations of scale transformations if and only if Py = Qy = Ry = 0,
Px2 = Qx1 , Qx2 = Rx1 .

The condition Py = Qy = Ry = 0, Px2 = Qx1 , Qx2 = Rx1 in this
corollary are obtained by the integrability condition A = B = 0. Namely,
the vanishing condition of invariant functions (i.e. Mi = Sj = 0) is absorbed
into the integrability condition. Therefore, we can see that the second order
PDE (1) for the functions fij given by (25) is locally equivalent to the flat
equation if and only if it is integrable.
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