Invariant measures for subshifts arising from substitutions of some primitive components

Masaki Hama and Hisatoshi Yuasa

(Received April 26, 2010; Revised August 16, 2010)

Abstract

The notion of substitutions of some primitive components is introduced. A bilateral subshift arising from a substitution of some primitive components is decomposed into pairwise disjoint, locally compact, shift-invariant sets, on each of which an invariant Radon measure is unique up to scaling. In terms of eigenvalues of an incidence matrix associated with the substitution, it is completely characterized when the unique invariant measure is finite.

Key words: non-primitive substitution, subshift, invariant measure, ergodicity.

1. Introduction

It was shown by [6], [4] that any "aperiodic", stationary, properly ordered Bratteli diagram gives rise to a Bratteli-Vershik system conjugate to a bilateral subshift arising from an aperiodic, primitive substitution, and vice versa. In [1], this correspondence was extended by successfully removing the hypothesis of both simplicity for Bratteli diagrams and primitivity for substitutions. They showed that if B is a stationary, ordered Bratteli diagram which admits an aperiodic Vershik map λ_{B} acting on a perfect space X_{B}, then the following are equivalent:

- Bratteli-Vershik system $\left(X_{B}, \lambda_{B}\right)$ is conjugate to a subshift arising from an aperiodic substitution;
- no restriction of λ_{B} to a minimal set is conjugate to an odometer.

They also showed a converse statement that given an aperiodic substitution with nesting property, there exists a stationary, ordered Bratteli diagram yielding a Bratteli-Vershik system conjugate to a subshift arising from the substitution. In contrast to [6], [4], it is remarkable that ordered Bratteli diagrams with more than one minimal or maximal paths play central roles in the above-mentioned correspondence [1]; see also [9].

On the other hand, aiming at a similar result in the class of almost simple, ordered Bratteli diagrams [3], the second author [12] introduced the notion of almost primitivity for substitutions, and showed that an almost primitive substitution generates an almost minimal subshift [3] with a unique (up to scaling), nonatomic, invariant Radon measure. Before this work, as pointed out in [2], a concrete almost primitive substitution was studied in [5], which is the so-called Cantor substitution. By [7], [3], any almost minimal system is conjugate to the Vershik map arising from an almost simple, ordered Bratteli diagram. It is still an open question to characterize a class of almost simple, ordered Bratteli diagrams whose Vershik maps conjugate to subshifts arising from almost primitive substitutions. Actually, this question forces us to be in a quite different situation from [6], [4], [1]: there exists a class of non-stationary, almost simple, ordered Bratteli diagrams whose Vershik maps are conjugate to subshifts arising from almost primitive substitutions; see for details [12, Remark 5.5].

Applying the correspondence [1] mentioned above and exploiting stationary, ordered Bratteli diagrams, S. Bezuglyi, J. Kwiatkowski, K. Medynets and B. Solomyak [2] studied invariant measures for subshifts arising from aperiodic substitutions. Roughly speaking, one of their results showed the existence of a one-to-one correspondence between the set of ergodic, probability (resp. nonatomic, infinite) measures for the subshift X_{σ} arising from a given aperiodic substitution σ and the set of "distinguished" eigenvectors (resp. non-distinguished eigenvalues) of the incidence matrix M_{σ} of σ. One of the goals of this paper is to restructure this correspondence in the class of substitutions of some primitive components (Definition 2.1) without using any Bratteli diagrams. The class is so large that it includes all the primitive or almost primitive ones, and the so-called Chacon substitution as well. Some properties required for a substitution to be of some primitive components are stronger, but the other is weaker, than properties of substitutions studied in [2]. We will also show that a bilateral subshift X_{σ} arising from a given substitution σ of some primitive components is decomposed into finite number of pairwise disjoint, locally compact, shiftinvariant sets X_{i} so that an invariant Radon measure on each X_{i} is unique up to scaling, and moreover, the orbit of any point in each X_{i} is dense in X_{i}. In terms of eigenvalues of M_{σ}, we will also describe the same criterion as [2] to determine when the unique invariant Radon measure is finite.

All the way to the end of this paper, we will not exploit any Bratteli
diagrams but tools within the framework of subshifts. This standing position is quite different from [2]. A characterization (Lemma 5.4) when a locally compact minimal subshift over a finite alphabet has a unique (up to scaling) invariant Radon measure will help us prove Theorem 5.5. In Section 4, auxiliary substitutions developed by [11] play central roles when we estimate how fast the number of the occurrences of a letter in a k-word of a given substitution of some primitive components increases as k tends to infinity. The auxiliary substitutions also make it possible to calculate measures of cylinder sets with respect to invariant measures (Example 5.3).

2. Substitutions in question

We basically follow notation and terminology adopted in [4] concerning combinatorics on words. Let A be a finite alphabet with $\sharp A \geq 2$. Let A^{+} denote the set of nonempty words over A. Set $A^{*}=A^{+} \cup\{\Lambda\}$, where Λ is the empty word. We say that $u \in A^{+}$occurs in $v \in A^{+}$, or u is a factor of v, if there exists an integer i with $1 \leq i \leq|v|$ such that $v_{[i, i+|u|)}:=$ $v_{i} v_{i+1} \ldots v_{i+|u|-1}=u$, where $|v|$ denotes the length of v and v_{n} is the n-th letter of v. We refer to i as an occurrence of u in v. Given $u, v \in A^{+}$, we denote by $N(u, v)$ the number of the occurrences of u in v.

A substitution σ on A is a map from A to A^{+}. By concatenations of words, we may define powers $\sigma^{k}: A \rightarrow A^{+}$of σ for $k \in \mathbb{N}$, and may enlarge the domain of the powers to A^{+}or $A^{\mathbb{Z}}$. A subshift

$$
X_{\sigma}=\left\{x=\left(x_{i}\right)_{i \in \mathbb{Z}} \in A^{\mathbb{Z}} ; x_{[-i, i]}:=x_{-i} x_{-i+1} \ldots x_{i} \in \mathcal{L}(\sigma) \text { for every } i \in \mathbb{N}\right\}
$$

is called a substitution dynamical system, where

$$
\mathcal{L}(\sigma)=\bigcup_{n \in \mathbb{N}, a \in A}\left\{w \in A^{*} ; w \text { is a factor of } \sigma^{n}(a)\right\}
$$

A word of the form $\sigma^{n}(a)$ is called an n-word. We set $\mathcal{L}_{n}(\sigma)=\{w \in$ $\mathcal{L}(\sigma) ;|w|=n\}$ for $n \in \mathbb{N}$. We denote by T_{σ} the left shift on X_{σ}, and let $\operatorname{Orb}_{T_{\sigma}}(x)=\left\{T_{\sigma}{ }^{n} x ; n \in \mathbb{Z}\right\}$ for $x \in X_{\sigma}$. Given an infinite sequence x over A, we set $\mathcal{L}(x)=\left\{w \in A^{*} ; w\right.$ is a factor of $\left.x\right\}$, and $\mathcal{L}(X)=\bigcup_{x \in X} \mathcal{L}(x)$ if $X \subset$ $A^{\mathbb{Z}}$. Given $u, v \in A^{*}$, we denote by $[u . v]$ a cylinder set $\left\{x \in X_{\sigma} ; x_{[-|u|,|v|)}=\right.$ $u v\}$. If $u=\Lambda$, then we use the notation $[v]$ in stead of [$\Lambda . v]$. Given $x \in X_{\sigma}$, let δ_{x} denote the point mass concentrated on x. A positive measure on a
locally compact metric space is called a Radon measure if it is finite on any compact set.

The incidence matrix M_{σ} of σ is an $A \times A$ matrix whose (a, b)-entry is $N(b, \sigma(a))$. Putting a linear order on A, say $a_{1}<a_{2}<\cdots<a_{n}$, we also write $\left(M_{\sigma}\right)_{i, j}$ to indicate the $\left(a_{i}, a_{j}\right)$-entry $\left(M_{\sigma}\right)_{a_{i}, a_{j}}$. Let us recall some basic facts concerning square matrices. Let M be a nonnegative square matrix. The matrix M is said to be primitive if there exists $k \in \mathbb{N}$ such that $M^{k}>0$, i.e. every entry of M^{k} is positive. We denote by $\operatorname{Sp}(M)$ the set of eigenvalues of M. If $\lambda \in \operatorname{Sp}(M)$ is such that $|\eta|<\lambda$ for any other $\eta \in \operatorname{Sp}(M)$, then we call λ a dominant eigenvalue of M. In this case,

$$
\min _{i} \sum_{j} M_{i, j} \leq \lambda \leq \max _{i} \sum_{j} M_{i, j} .
$$

Perron-Frobenius Theory guarantees that any primitive matrix M has a simple, dominant eigenvalue λ which admits a positive eigenvector. Then, letting α and β be positive, right and left eigenvectors of M corresponding to λ, respectively, with $\beta \alpha=1$, it follows that $\lim _{k \rightarrow \infty} \lambda^{-k}\left(M^{k}\right)_{i j}=\alpha_{i} \beta_{j}$ for all possible i, j. See for details [8].

Definition 2.1 A substitution $\sigma: A \rightarrow A^{+}$is said to be of some primitive components if there is a sequence $\emptyset \neq A_{1} \subsetneq A_{2} \subsetneq \cdots \subsetneq A_{n-1} \subsetneq A_{n}=A$ such that
(i) for every integer i with $1 \leq i \leq n$, it holds that $\sigma(a) \in A_{i}{ }^{+}$if $a \in A_{i}$;
(ii) there exists $k \in \mathbb{N}$ such that for any integer i with $1 \leq i \leq n$, any $a \in A_{i} \backslash A_{i-1}$ and any $b \in A_{i}$, the letter b occurs in $\sigma^{k}(a)$,
where $A_{0}=\emptyset$. We also say that the substitution σ is of n primitive components. We call n the number of primitive components of σ, and denote it by n_{σ}.

If a given substitution σ is of some primitive components, then M_{σ} is written in a form:

$$
M_{\sigma}=\left[\begin{array}{ccccc}
Q_{1} & 0 & 0 & \cdots & 0 \tag{2.1}\\
R_{2,1} & Q_{2} & 0 & \cdots & 0 \\
R_{3,1} & R_{3,2} & Q_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
R_{n_{\sigma}, 1} & R_{n_{\sigma}, 2} & R_{n_{\sigma}, 3} & \cdots & Q_{n_{\sigma}}
\end{array}\right]
$$

so that all the entries on or below diagonal of some power of M_{σ} are positive. Conversely, this property implies that a given substitution is of some primitive components.

In the case $n_{\sigma}=1$, a substitution σ becomes primitive. Then the subshift X_{σ} is minimal and uniquely ergodic; see for example [10], [11]. Throughout this paper, we assume $n_{\sigma} \geq 2$. Any almost primitive substitution is of two primitive components; see for details [12].

Definition 2.1 allows us to define a substitution $\sigma_{i}: A_{i} \rightarrow A_{i}{ }^{+}, 1 \leq$ $i \leq n_{\sigma}$, by $\sigma_{i}(a)=\sigma(a)$ for $a \in A_{i}$. The substitution σ_{i} is of i primitive components. Since

$$
\mathcal{L}\left(\sigma_{1}\right) \subset \mathcal{L}\left(\sigma_{2}\right) \subset \cdots \subset \mathcal{L}\left(\sigma_{n_{\sigma}-1}\right) \subset \mathcal{L}\left(\sigma_{n_{\sigma}}\right)=\mathcal{L}(\sigma)
$$

we have

$$
X_{\sigma_{1}} \subset X_{\sigma_{2}} \subset \cdots \subset X_{\sigma_{n_{\sigma}-1}} \subset X_{\sigma_{n_{\sigma}}}=X_{\sigma}
$$

which are all T_{σ}-invariant closed sets. All of $X_{\sigma_{2}}, X_{\sigma_{3}}, \ldots, X_{\sigma}$ are always nonempty. It holds that $X_{\sigma_{1}}=\emptyset$ if and only if A_{1} is a singleton and $\sigma(s)=s$, where $A_{1}=\{s\}$.

The class \mathcal{S} of substitutions of some primitive components is different from the class \mathcal{T} of substitutions studied in [2]. A substitution $\sigma: A \rightarrow A^{+}$ belongs to \mathcal{T} if and only if the following conditions are satisfied:
(1) $\lim _{n \rightarrow \infty}\left|\sigma^{n}(a)\right|=\infty$ for any $a \in A$;
(2) σ is aperiodic, that is, X_{σ} has no periodic points of T_{σ};
(3) M_{σ} is written in a form:

$$
M_{\sigma}=\left[\begin{array}{ccccccc}
Q_{1} & 0 & \cdots & 0 & 0 & \cdots & 0 \tag{2.2}\\
0 & Q_{2} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & Q_{s} & 0 & \cdots & 0 \\
R_{s+1,1} & R_{s+1,2} & \cdots & R_{s+1, s} & Q_{s+1} & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
R_{m, 1} & R_{m, 2} & \cdots & R_{m, s} & R_{m, s+1} & \cdots & Q_{m}
\end{array}\right]
$$

so that
(a) for every integer i with $1 \leq i \leq m, Q_{i}$ is a primitive matrix if it is nonzero;
(b) for every integer i with $s<i \leq m$, there exists an integer j with $1 \leq j<i$ such that $R_{i, j} \neq 0$.

Notice that no inclusion relations hold between \mathcal{S} and \mathcal{T}. Neither (1) nor (2) is required for a substitution to be of some primitive components. However, the irreducible properties of incidence matrices required in (3) are not as rigid as those required for substitutions of some primitive components.

The following is a key lemma to investigate recurrence property and invariant sets for X_{σ}.

Lemma 2.2 Given an integer i with $1<i \leq n_{\sigma}$, there exist $a \in A_{i-1}$, $b \in A_{i} \backslash A_{i-1}, k \in \mathbb{N}, u \in A_{i-1}{ }^{*}$ and $v \in A_{i}{ }^{*}$ such that at least one of the following holds:
(i) $a b \in \mathcal{L}\left(\sigma_{i}\right)$ and $\sigma^{k}(a b)=u a b v$;
(ii) $b a \in \mathcal{L}\left(\sigma_{i}\right)$ and $\sigma^{k}(b a)=v b a u$.

Proof. Put $r=\sharp A_{i}$. Find $a_{0} \in A_{i-1}$ and $b_{0} \in A_{i} \backslash A_{i-1}$ such that $a_{0} b_{0}$ $\in \mathcal{L}\left(\sigma_{i}\right)$ or $b_{0} a_{0} \in \mathcal{L}\left(\sigma_{i}\right)$. It is enough to consider only the case $a_{0} b_{0} \in$ $\mathcal{L}\left(\sigma_{i}\right)$. Let $1 \leq m_{j}<\left|\sigma^{j}\left(b_{0}\right)\right|$ be such that $\sigma^{j}\left(b_{0}\right)_{\left[1, m_{j}\right)} \in A_{i-1}{ }^{*}$ and $b_{j}:=$ $\sigma^{j}\left(b_{0}\right)_{m_{j}} \in A_{i} \backslash A_{i-1}$. Put $a_{j}=\sigma^{j}\left(a_{0} b_{0}\right)_{\left|\sigma^{j}\left(a_{0}\right)\right|+m_{j}-1}$. Since $a_{j_{1}} b_{j_{1}}=a_{j_{2}} b_{j_{2}}$ for some $j_{2}>j_{1} \geq 0$, (i) holds with $a=a_{j_{1}}, b=b_{j_{1}}$ and $k=j_{2}-j_{1}$.

We consider mainly the case where Lemma 2.2 (i) holds, because results below would be verified by means of symmetric arguments also for substitutions satisfying (ii) of the lemma. Since $X_{\sigma^{k}}=X_{\sigma}$ for any $k \in \mathbb{N}$, we may assume Lemma 2.2 (i) with $k=1$.

3. Recurrence property of σ

Throughout this section, we let a, b, i, u and v be as in Lemma 2.2 (i). We are concerned with structure of $X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}$. Consider the case $u=\Lambda$. Then $\sigma(a)=a$, and hence $\sigma(b)=b v, v \neq \Lambda, A_{i-1}=\{a\}, i=2$ and $X_{\sigma_{1}}=\emptyset$.

Lemma 3.1 ([12, Lemma 2.3]) Let $\tau: B \rightarrow B^{+}$be a substitution such that $\tau(s)=s$ for some $s \in B$. Then the following are equivalent:
(i) $s^{p} \in \mathcal{L}(\tau)$ for any $p \in \mathbb{N}$;
(ii) there exist $c \in B \backslash\{s\}, k, l \in \mathbb{N}$ and $w \in B^{*}$ such that $\tau^{k}(c)=s^{l} c w$ or $\tau^{k}(c)=w c s^{l}$.

Assume Lemma 3.1 (ii) with $\tau=\sigma_{2}$. Then $B=A_{2}$ and $s=a$. If $w=\Lambda$, then $c=b$ and $X_{\sigma_{2}}=\left\{a^{\infty}\right\}$. If $w \neq \Lambda$, then σ_{2} is almost primitive, so that $X_{\sigma_{2}}$ is almost minimal [12, Theorem 3.8].

Assume the existence of $p_{1} \in \mathbb{N}$ such that $a^{p} \notin \mathcal{L}\left(\sigma_{2}\right)$ if $p \geq p_{1}$. Then a letter of $A_{2} \backslash A_{1}$ occurs in v, so that b occurs infinitely many times in a fixed point $\omega^{+}:=b v \sigma(v) \sigma^{2}(v) \sigma^{3}(v) \cdots \in A_{2}{ }^{\mathbb{N}}$ of σ. This implies that there exists a periodic point $\omega \in X_{\sigma_{2}}$ of σ such that $\omega_{[0, \infty)}=\omega^{+}$. It follows therefore that $\mathcal{L}\left(X_{\sigma_{2}}\right)=\mathcal{L}(\omega)$ and hence $X_{\sigma_{2}}=\overline{\operatorname{Orb}_{T_{\sigma}}(\omega)}$.

Proposition $3.2 \quad X_{\sigma_{2}}$ is minimal and uniquely ergodic.
Proof. Let $w \in \mathcal{L}(\omega)$. We may assume $\sigma(\omega)=\omega$. Take $k \in \mathbb{N}$ so that w occurs in $\sigma^{k}(c)$ for any $c \in A_{2} \backslash A_{1}$. Since $\omega=\ldots \sigma^{k}\left(\omega_{-2}\right) \sigma^{k}\left(\omega_{-1}\right) \cdot \sigma^{k}\left(\omega_{0}\right) \sigma^{k}$ $\left(\omega_{1}\right) \ldots, w$ occurs in any factor of ω whose length is $2 \max _{c \in A_{2} \backslash A_{1}}\left|\sigma^{k}(c)\right|+$ p_{1}. This means the minimality of $X_{\sigma_{2}}$, since w occurs infinitely often in ω with a bounded gap.

The unique ergodicity will be proved below by using Theorem 5.5.
The Chacon substitution: $a \mapsto a, b \mapsto b b a b$ satisfies the hypothesis of Proposition 3.2. The subshift $X_{\sigma_{2}}$ may be the orbit of a shift-periodic point. If $A_{2}=\{a, b\}$ and σ_{2} is defined by $a \mapsto a$ and $b \mapsto b a b$, then $X_{\sigma_{2}}=\left\{(a b)^{\infty} .(a b)^{\infty},(b a)^{\infty} .(b a)^{\infty}\right\}$.

We assume $u \neq \Lambda$ until Proposition 3.13. Consider the case $v=\Lambda$. Denoting $u a$ by u afresh, we may write $\sigma(b)=u b$. Observe $A_{i} \backslash A_{i-1}=\{b\}$. In view of a configuration of words:

$$
\begin{aligned}
\sigma(b) & = & u b \\
\sigma^{2}(b) & = & \sigma(u) u b \\
\sigma^{3}(b) & = & \sigma^{2}(u) \sigma(u) u b
\end{aligned}
$$

we define a fixed point $\omega \in A_{i}{ }^{-\mathbb{N}}$ of σ by $\omega=\ldots \sigma^{5}(u) \sigma^{4}(u) \sigma^{3}(u) \sigma^{2}(u)$ $\sigma(u) u b$. Observe $\mathcal{L}(\omega)=\mathcal{L}\left(\sigma_{i}\right)$.

Assume $u=a^{|u|}$. Then $A_{i-1}=\{a\}$, so that $i=2$. If $\sigma(a)=a$, then $X_{\sigma_{2}}=\left\{a^{\infty}\right\}$ and $X_{\sigma_{1}}=\emptyset$. If $\sigma(a)=a^{p}$ with $p \geq 2$, then $X_{\sigma_{2}}=X_{\sigma_{1}}=$
$\left\{a^{\infty}\right\}$. Throughout the remainder of this section, we assume $u \neq a^{|u|}$. Then one of the following holds:

- $i=2$ and $\sharp A_{i-1} \geq 2$;
- $i \geq 3$.

Lemma 3.3 Any word in $\mathcal{L}\left(X_{\sigma_{i}}\right)$ occurs infinitely often in ω. Consequently, $X_{\sigma_{i}} \subset A_{i-1} \mathbb{Z}^{\mathbb{Z}}$.

Proof. Assume that some $v \in \mathcal{L}\left(X_{\sigma_{i}}\right)$ occurs only finitely many times in ω. Take $L \in \mathbb{N}$ so that v does not occur in $\omega_{(-\infty,-L)}$. It follows that if $v w \in \mathcal{L}\left(X_{\sigma_{i}}\right)$ then $|w| \leq L$, which is a contradiction.

If $\left\{u_{n}\right\}_{n \in \mathbb{N}},\left\{v_{n}\right\}_{n \in \mathbb{N}} \subset A^{+}$satisfy the properties:

- u_{n} is a suffix of u_{n+1} for each $n \in \mathbb{N}$;
- v_{n} is a prefix of v_{n+1} for each $n \in \mathbb{N}$;
- $\lim _{n \rightarrow \infty}\left|u_{n}\right|=\lim _{n \rightarrow \infty}\left|v_{n}\right|=\infty$,
we denote by $\lim _{n \rightarrow \infty} u_{n} \cdot v_{n}$ a point $x \in A^{\mathbb{Z}}$ defined by $x_{\left[-\left|u_{n}\right|,\left|v_{n}\right|\right)}=u_{n} v_{n}$ for each $n \in \mathbb{N}$.

Proposition 3.4 Let $x \in X_{\sigma_{i}}$. Then the following are equivalent:
(i) $x \in X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}$;
(ii) x belongs to the orbit of a periodic point $y \in X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}$ of σ, which is aperiodic under T_{σ}, such that for some $n \in \mathbb{N}$, $y_{[-n, n)} \notin \mathcal{L}\left(X_{\sigma_{i-1}}\right)$ and $y_{(-\infty,-n-1]}, y_{[n, \infty)} \in \mathcal{L}\left(X_{\sigma_{i-1}}\right)$.
The point y would occur in one of the following fashions. If $\lim _{n \rightarrow \infty}\left|\sigma^{n}(c)\right|$ $=\infty$ for any $c \in A$, then there exist $\gamma, \delta \in A_{i-1}$ and $q \in \mathbb{N}$ such that

- $\gamma \delta \in \mathcal{L}\left(X_{\sigma_{i}}\right) \backslash \mathcal{L}\left(X_{\sigma_{i-1}}\right)$;
- $\sigma^{q j}(\gamma)_{\left|\sigma^{q j}(\gamma)\right|}=\gamma$ and $\sigma^{q j}(\delta)_{1}=\delta$ for any $j \in \mathbb{N}$;
- $y=\lim _{j \rightarrow \infty} \sigma^{q j}(\gamma) . \sigma^{q j}(\delta)$.

If A_{1} is a singleton, say $\{s\}$, then there exist $\gamma, \delta \in A_{i-1} \backslash A_{1}, p \in \mathbb{N} \cup\{0\}$ and $r \in \mathbb{N}$ such that

- $\sigma^{r j}(\delta)_{\left|\sigma^{r j}(\delta)\right|}=\delta$ and $\sigma^{r j}(\gamma)_{1}=\gamma$ for any $j \in \mathbb{N}$;
- y is written in one of the following forms:

$$
y=\lim _{j \rightarrow \infty} s^{j} \cdot \sigma^{r j}(\gamma), \quad y=\lim _{j \rightarrow \infty} \sigma^{r j}(\delta) \cdot s^{j} \text { and } y=\lim _{j \rightarrow \infty} \sigma^{r j}(\delta) \cdot s^{p} \sigma^{r j}(\gamma)
$$

Proof. Assuming (i), we see (ii) in each of the cases:
(A) $\lim _{n \rightarrow \infty}\left|\sigma^{n}(c)\right|=\infty$ for all $c \in A_{1}$;
(B) A_{1} is a singleton, say $A_{1}=\{s\}$, and $\sigma(s)=s$.

Case (A). Take strictly increasing sequences $\left\{h_{j}\right\}_{j \in \mathbb{N}},\left\{n_{j}\right\}_{j \in \mathbb{N}} \subset \mathbb{N}$ so that for each $j \in \mathbb{N}, x_{\left[-h_{j}, h_{j}\right)} \notin \mathcal{L}\left(X_{\sigma_{i-1}}\right)$ and $\min _{c \in A_{i-1}}\left|\sigma^{n_{j}}(c)\right| \geq 2 h_{j}$. Set

$$
K_{j}=\left\{k \in-\mathbb{N} ; x_{\left[-h_{j}, h_{j}\right)} \text { occurs in } \sigma^{n_{j}}\left(\omega_{k-1}\right) \sigma^{n_{j}}\left(\omega_{k}\right)\right\} .
$$

Choose $c, d \in A_{i-1}$ so that there exist infinitely many j 's such that $\omega_{k_{j}-1} \omega_{k_{j}}=c d$ for some $k_{j} \in K_{j}$. By replacing $\left\{n_{j}\right\}_{j \in \mathbb{N}}$ with its appropriate subsequence, we may assume that for every $j \in \mathbb{N}, x_{\left[-h_{j}, h_{j}\right)}$ is a factor of $\sigma^{n_{j}}(c) \sigma^{n_{j}}(d)$, and $\sigma^{n_{j}}(c)_{\left|\sigma^{n_{j}}(c)\right|}$ and $\sigma^{n_{j}}(d)_{1}$ are constant, say γ and δ, respectively. We may assume furthermore that $n_{j+1}-n_{j}$ is constant, say q, which might be the least common multiple of $\min \{n \in \mathbb{N}$; $\left.\sigma^{n}(\gamma){ }_{\left|\sigma^{n}(\gamma)\right|}=\gamma\right\}$ and $\min \left\{n \in \mathbb{N} ; \sigma^{n}(\delta)_{1}=\delta\right\}$. There exists a sequence $\left\{w_{j} \in A_{i-1}{ }^{+} ; w_{j} \text { is a factor of } \sigma^{q j}(\gamma \delta)\right\}_{j \in \mathbb{N}}$ which approximates x arbitrarily close, because (A) is assumed. Since $x_{\left[-h_{j}, h_{j}\right)} \notin \mathcal{L}\left(X_{\sigma_{i-1}}\right), \gamma \delta \notin \mathcal{L}\left(X_{\sigma_{i-1}}\right)$ and each factor $x_{\left[-h_{j}, h_{j}\right)}$ of $\sigma^{q j}(\gamma) \sigma^{q j}(\delta)$ necessarily contains $\gamma \delta$ as a factor. Observe that $\gamma \delta$ occurs just once in $x_{\left[-h_{j}, h_{j}\right)}$, which would imply the shift-aperiodicity of x. Then, $T_{\sigma}{ }^{k} x=\lim _{j \rightarrow \infty} \sigma^{q j}(\gamma) \cdot \sigma^{q j}(\delta)$ for some $k \in \mathbb{Z}$, which is a periodic point of σ.

Case (B). We have $i \geq 3$. By Lemma 3.1, $s^{\infty} \notin X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}$. Take strictly increasing sequences $\left\{h_{j}\right\}_{j},\left\{n_{j}\right\}_{j} \subset \mathbb{N}$ such that for every $j \in \mathbb{N}, x_{\left[-h_{j}, h_{j}\right)}$ $\notin \mathcal{L}\left(X_{\sigma_{i-1}}\right)$ and $\min _{c \in A_{i-1} \backslash A_{1}}\left|\sigma^{n_{j}}(c)\right| \geq 2 h_{j}$. For each $j \in \mathbb{N}$, there exist $k_{j} \in-\mathbb{N}$ and $p_{j}, q_{j} \geq 0$ such that

- $x_{\left[-h_{j}, h_{j}\right)}$ occurs in $\sigma^{n_{j}}\left(\omega_{\left[k_{j}-q_{j}, k_{j}+p_{j}+1\right]}\right)$;
- $\omega_{k_{j}}, \omega_{k_{j}+p_{j}+1} \in A_{i-1} \backslash A_{1}$;
- $\omega_{\left[k_{j}-q_{j}, k_{j}\right)}$ and $\omega_{\left[k_{j}+1, k_{j}+p_{j}\right]}$ are powers of s.

Similar arguments to those in Case (A) may allow us to assume the existence of $w, w^{\prime} \in \mathcal{L}\left(\sigma_{i-1}\right), \delta, \gamma, \epsilon \in A_{i-1} \backslash A_{1}$ and $r \in \mathbb{N}$ such that

- for each $j \in \mathbb{N}, x_{\left[-h_{j}, h_{j}\right)}$ is a factor of $s^{q_{j}} \sigma^{r j}(w) s^{p_{j}} \sigma^{r j}\left(w^{\prime}\right)$;
- for each $j \geq 0$, the first and the last letters of $A_{i-1} \backslash A_{1}$ to occur in $\sigma^{r j}(w)$ are δ and γ, respectively;
- for each $j \geq 0$, the first letter of $A_{i-1} \backslash A_{1}$ to occur in $\sigma^{r j}\left(w^{\prime}\right)$ is ϵ.

Let m_{j} be an occurrence of $x_{\left[-h_{j}, h_{j}\right)}$ in $s^{q_{j}} \sigma^{r j}(w) s^{p_{j}} \sigma^{r j}\left(w^{\prime}\right)$. Put $m_{j}^{\prime}=$ $m_{j}+2 h_{j}-1$. It might be sufficient to consider the following cases:
(I) $\sharp\left\{j \in \mathbb{N} ; 1 \leq m_{j} \leq q_{j}\right\}=\infty$;
(II) $\sharp\left\{j \in \mathbb{N} ; 0<m_{j}-q_{j} \leq\left|\sigma^{r j}(w)\right|\right\}=\infty$.

Let us first consider Case (I). Let $l_{j}=\max \left\{l \geq 0 ; s^{l}\right.$ is a prefix of $\left.\sigma^{r j}\left(w^{\prime}\right)\right\}$. Assume $\sharp\left\{j \in \mathbb{N} ; m_{j}^{\prime} \leq q_{j}+\left|\sigma^{r j}(w)\right|+p_{j}+l_{j}\right\}=\infty$. Since $x \notin X_{\sigma_{i-1}} \cup\left\{s^{\infty}\right\}$, there exists $\left\{j_{k}\right\}_{k} \subset \mathbb{N}$ such that $\lim _{k \rightarrow \infty}\left(q_{j_{k}}-m_{j_{k}}\right)=\infty$ or $\lim _{k \rightarrow \infty}\left(m_{j_{k}}^{\prime}-q_{j_{k}}-\left|\sigma^{r j_{k}}(w)\right|\right)=\infty$. Hence, we may assume that either for every k, the first letter of $\sigma^{r j_{k}}(w)$ is γ, or for every k, the last letter of $\sigma^{r j_{k}}(w)$ is δ. Then, one of the following holds:

- $T_{\sigma}{ }^{k} x=\lim _{j \rightarrow \infty} s^{j} \cdot \sigma^{r j}(\gamma)$ for some $k \in \mathbb{Z}$, and $s^{p} \gamma \notin \mathcal{L}\left(X_{\sigma_{i-1}}\right)$ for some $p \in \mathbb{N}$;
- $T_{\sigma}{ }^{k} x=\lim _{j \rightarrow \infty} \sigma^{r j}(\delta) . s^{j}$ for some $k \in \mathbb{Z}$, and $\delta s^{p} \notin \mathcal{L}\left(X_{\sigma_{i-1}}\right)$ for some $p \in \mathbb{N}$.

This shows the conclusion.
Let us assume $\sharp\left\{j \in \mathbb{N} ; m_{j}^{\prime}>p_{j}+\left|\sigma^{r j}(w)\right|+q_{j}+l_{j}\right\}=\infty$. If for any $p \in \mathbb{N}, \delta s^{p} \epsilon$ occurs in x, then each of them occurs infinitely many times in ω. However, it is impossible, because the last (resp. first) letter of $A_{i-1} \backslash A_{1}$ to occur in $\sigma^{r j}(\delta)$ (resp. $\left.\sigma^{r j}(\epsilon)\right)$ is δ (resp. ϵ). Hence, $\left\{p_{j}\right\}_{j}$ is bounded, and the last (resp. first) letter of $\sigma^{r j}(\delta)$ (resp. $\left.\sigma^{r j}(\epsilon)\right)$ is δ (resp. ϵ). Then, $T_{\sigma}{ }^{k} x=\lim _{j \rightarrow \infty} \sigma^{r j}(\gamma) \cdot \sigma^{r j}\left(s^{p}\right) \cdot \sigma^{r j}(\delta)$ for some $k \in \mathbb{Z}$ and some $p \in \mathbb{N}$, and we have $\gamma s^{p} \delta \notin \mathcal{L}\left(X_{\sigma_{i-1}}\right)$. The same argument works also in Case (II). This completes the proof.

The following is an immediate consequence of Proposition 3.4.
Corollary 3.5 There is a possibly empty set $\left\{x_{j} \in X_{\sigma_{i}} \backslash X_{\sigma_{i-1}} ; 1 \leq j \leq N\right\}$ of periodic points of σ such that
(i) $\overline{\operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)}=X_{\sigma_{i-1}} \cup \operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)$ (a disjoint union) for any integer j with $1 \leq j \leq N$;
(ii) $X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}=\bigcup_{j=1}^{N} \operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)$ (a disjoint union).

Example 3.6 We shall see substitutions satisfying the hypothesis of Proposition 3.4.
(i) Set $A=\{a, b, c\}$. Let $w \in\{a, b\}^{+}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a b$, $b \mapsto a, c \mapsto w c$. Since $\{a a, a b, b a\} \subset \mathcal{L}\left(X_{\sigma_{1}}\right)$ and $b b \notin \mathcal{L}\left(\sigma_{2}\right)$, we have

$$
X_{\sigma_{2}} \backslash X_{\sigma_{1}}=\emptyset .
$$

(ii) Set $A=\{a, b, c, d\}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a b c a, b \mapsto b a c b$, $c \mapsto c b a c, d \mapsto a b b c a d$. Since $\{a a, b b\} \subset \mathcal{L}\left(\sigma_{2}\right) \backslash \mathcal{L}\left(X_{\sigma_{1}}\right)$,

$$
\begin{aligned}
X_{\sigma_{2}} \backslash X_{\sigma_{1}} & =\operatorname{Orb}_{T_{\sigma}}\left(\lim _{n \rightarrow \infty} \sigma^{n}(a) \cdot \sigma^{n}(a)\right) \\
& \cup \operatorname{Orb}_{T_{\sigma}}\left(\lim _{n \rightarrow \infty} \sigma^{n}(b) \cdot \sigma^{n}(b)\right) .
\end{aligned}
$$

(iii) Set $A=\{a, b, c, d, e\}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a, b \mapsto c b a, c \mapsto c b c$, $d \mapsto d c, e \mapsto b d e$. It follows that $X_{\sigma_{1}}=\emptyset, X_{\sigma_{2}}$ is almost minimal with a unique fixed point a^{∞},

$$
\begin{aligned}
& X_{\sigma_{3}} \backslash X_{\sigma_{2}}=\operatorname{Orb}_{T_{\sigma}}\left(\lim _{n \rightarrow \infty} \sigma^{n}(c) \cdot \sigma^{n}(c)\right) \text { and } \\
& X_{\sigma_{4}} \backslash X_{\sigma_{3}}=\operatorname{Orb}_{T_{\sigma}}\left(\lim _{n \rightarrow \infty} a^{n} \cdot \sigma^{n}(d)\right)
\end{aligned}
$$

We assume $v \neq \Lambda$ until Proposition 3.13. In view of a configuration of words:

$$
\begin{aligned}
\sigma(a b) & = & u a b v \\
\sigma^{2}(a b) & = & \sigma(u) u a b v \sigma(v) \\
\sigma^{3}(a b) & = & \sigma^{2}(u) \sigma(u) u a b v \sigma(v) \sigma^{2}(v)
\end{aligned}
$$

$$
\vdots \quad \vdots
$$

we define a point $\omega \in X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}$ by

$$
\omega=\ldots \sigma^{4}(u) \sigma^{3}(u) \sigma^{2}(u) \sigma(u) u a . b v \sigma(v) \sigma^{2}(v) \sigma^{3}(v) \sigma^{4}(v) \ldots
$$

Following [12, Definition 2.5], we make a definition:
Definition 3.7 We call the point ω a quasi-fixed point of the substitution σ. We refer to a quasi-fixed point of a power σ^{k} as a quasi-periodic point of σ. A quasi-periodic point $x \in X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}$ is said to be of a primitive type if it holds that $x_{k} \in A_{i} \backslash A_{i-1} \Leftrightarrow k=0$.

It follows from the construction of ω that
(i) for every $k \in \mathbb{N}$, there exists an integer l_{k} with $0 \leq l_{k}<\left|\sigma^{k}(b)\right|$ such
that $T_{\sigma}{ }^{l_{k}} \sigma^{k}(\omega)=\omega$;
(ii) $\mathcal{L}(\omega)=\mathcal{L}\left(\sigma_{i}\right)=\mathcal{L}\left(X_{\sigma_{i}}\right)$;
(iii) $\overline{\operatorname{Orb}_{T_{\sigma}}(\omega)}=X_{\sigma_{i}}$.

Recall that $x \in A^{\mathbb{Z}}$ is said to be positively recurrent if for every $n \in \mathbb{N}$, there is $i \in \mathbb{N}$ such that $x_{[i-n, i+n)}=x_{[-n, n)}$.

Lemma 3.8

(i) ω is aperiodic under T_{σ}.
(ii) ω is positively recurrent if and only if $v \in A_{i}{ }^{+} \backslash A_{i-1}{ }^{+}$.
(iii) Put $K_{n}=\left\{k \in \mathbb{Z} ; \omega_{[k, k+n)} \in A_{i-1}^{+}\right\}$for $n \in \mathbb{N}$. For every $n \in \mathbb{N}$, there exists $m \in \mathbb{N}$ such that $\left\{l \leq k<l+m ; k \in K_{n}\right\} \neq \emptyset$ for any $l \in \mathbb{Z}$.

Proof. Since $\omega_{(-\infty,-1]} \in A_{i-1}{ }^{-\mathbb{N}}$ and $\omega_{0} \notin A_{i-1}, \omega$ is aperiodic under T_{σ}.
If $v \in A_{i-1}{ }^{+}$, then ω is not positively recurrent, because $\omega_{n} \neq \omega_{0}$ for every $n>0$. Suppose $v_{j} \in A_{i} \backslash A_{i-1}$ with $1 \leq j \leq|v|$. Take $k \in \mathbb{N}$ so that for any $c \in A_{i} \backslash A_{i-1}$, ab occurs in $\sigma^{k}(c)$. Since for every $n \in \mathbb{N}$ and any $c \in A_{i} \backslash A_{i-1}, \sigma^{n}(a b)$ occurs in $\sigma^{n+k}(c), \omega$ is positively recurrent.

If $v \in A_{i-1}{ }^{+}$, then (iii) is trivial. Assume $v \in A_{i}{ }^{+} \backslash A_{i-1}{ }^{+}$. Given $n \in \mathbb{N}$, choose $p \in \mathbb{N}$ so that any word belonging to $\mathcal{L}_{n}\left(\sigma_{i}\right)$ occurs in $\sigma^{p}(c)$ for any $c \in A_{i} \backslash A_{i-1}$. Then, (iii) holds with $m=2 \max \left\{\max _{c \in A_{i} \backslash A_{i-1}}\left|\sigma^{p}(c)\right|, n\right\}$.

If $u=a^{|u|}$, then $\sigma(a)=a^{p}$ for some $p \in \mathbb{N}$, which forces that $i=2$, $A_{1}=\{a\}$ and σ_{2} is almost primitive. From now on, we assume $u \neq a^{|u|}$.

Consider the case $v \in A_{i-1}{ }^{+}$. It follows that $A_{i} \backslash A_{i-1}=\{b\}=\left\{\omega_{0}\right\}, \omega$ is of a primitive type, and $\overline{\operatorname{Orb}_{T_{\sigma}}(\omega)}=X_{\sigma_{i-1}} \cup \operatorname{Orb}_{T_{\sigma}}(\omega)$ (a disjoint union).

Proposition 3.9 There is a possibly empty set $\left\{x_{j} \in\left(X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}\right) \cap\right.$ $\left.A_{i-1}{ }^{\mathbb{Z}} ; 1 \leq j \leq N\right\}$ of periodic points of the substitution σ such that
(i) $X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}=\operatorname{Orb}_{T_{\sigma}}(\omega) \cup \bigcup_{j=1}^{N} \operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)$ (a disjoint union);
(ii) if x_{j} is periodic under T_{σ}, then A_{1} is a singleton, say $\{s\}$, and $x_{j}=$ s^{∞};
(iii) if x_{j} is aperiodic under T_{σ}, then $\overline{\operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)}=X_{\sigma_{i-1}} \cup \operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)$.

Proof. Assume $x \in X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}$. If $x_{k} \in A_{i} \backslash A_{i-1}$ for some $k \in \mathbb{Z}$, then $x=T_{\sigma}{ }^{k} \omega$. If $x \in A_{i-1}{ }^{\mathbb{Z}}$, then arguments in the proof of Proposition 3.4 work.

Example 3.10 We shall see substitutions satisfying the hypothesis of Proposition 3.9.
(i) Set $A=\{a, b, c, d\}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a b c a, b \mapsto b a c b$, $c \mapsto c b a c, d \mapsto a b a d c a c$. It follows that $\{a a, c c\} \subset \mathcal{L}\left(\sigma_{2}\right) \backslash \mathcal{L}\left(\sigma_{1}\right)$. Then,

$$
X_{\sigma_{2}} \backslash X_{\sigma_{1}}=\cup \operatorname{Orb}_{T_{\sigma}}(\omega) \cup \bigcup_{j=1}^{2} \operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)
$$

where $x_{1}=\lim _{n \rightarrow \infty} \sigma^{n}(a) \cdot \sigma^{n}(a)$ and $x_{2}=\lim _{n \rightarrow \infty} \sigma^{n}(c) \cdot \sigma^{n}(c)$.
(ii) Set $A=\{a, b, c, d\}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a b, b \mapsto a b$, $c \mapsto a c b, d \mapsto c d c$. Then, $X_{\sigma_{1}}=\operatorname{Orb}_{T_{\sigma}}(x)=\left\{x, T_{\sigma} x\right\}, X_{\sigma_{2}} \backslash X_{\sigma_{1}}=$ $\operatorname{Orb}_{T_{\sigma}}(\omega)$ and $X_{\sigma_{3}} \backslash X_{\sigma_{2}}=\operatorname{Orb}_{T_{\sigma}}\left(\omega^{\prime}\right)$, where $x=(b c)^{\infty} .(b c)^{\infty}, \omega=$ $\ldots \sigma^{2}(a) \sigma(a) a \cdot c b \sigma(b) \sigma^{2}(b) \ldots$, and $\omega^{\prime}=\ldots \sigma^{2}(c) \sigma(c) c . d c \sigma(c) \sigma^{2}(c)$
(iii) Set $A=\{a, b, c, d, e\}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a, b \mapsto c b a b$, $c \mapsto c b c, d \mapsto a d c, e \mapsto b d e a$. Then, $X_{\sigma_{1}}=\emptyset, X_{\sigma_{2}}$ is minimal,

$$
X_{\sigma_{3}} \backslash X_{\sigma_{2}}=\left\{a^{\infty}\right\} \cup \operatorname{Orb}_{T_{\sigma}}\left(\lim _{n \rightarrow \infty} \sigma^{n}(c) \cdot \sigma^{n}(c)\right) \cup \operatorname{Orb}_{T_{\sigma}}(\omega)
$$

and $X_{\sigma_{4}} \backslash X_{\sigma_{3}}=\emptyset$, where $\omega=a^{\infty} . d c \sigma(c) \sigma^{2}(c) \sigma^{3}(c) \ldots$
We next consider the case $v \in A_{i}{ }^{+} \backslash A_{i-1}{ }^{+}$.

Definition 3.11

(i) Let $w \in A_{i}{ }^{+}$. We refer to $w_{[m, n]} \in A_{i-1}{ }^{+}$as a possible word in w if

$$
w_{\left[m^{\prime}, n^{\prime}\right]} \in A_{i-1}^{+}, \quad 1 \leq m^{\prime} \leq m, n \leq n^{\prime} \leq|u| \Rightarrow m^{\prime}=m, n^{\prime}=n
$$

(ii) Let $k^{\prime} \geq k \geq 1$ be integers and let $c \in A_{i}$. Suppose that $\sigma^{k}(c)_{[m, n]}$ (resp. $\left.\sigma^{k^{\prime}}(c)_{\left[m^{\prime}, n^{\prime}\right]}\right)$ is a possible word in $\sigma^{k}(c)\left(\right.$ resp. $\left.\sigma^{k^{\prime}}(c)\right)$. We call $\sigma^{k}(c)_{[m, n]}$ an ancestor of $\sigma^{k^{\prime}}(c)_{\left[m^{\prime}, n^{\prime}\right]}$ if

$$
\left|\sigma^{k^{\prime}-k}\left(\sigma^{k}(c)_{[1, m)}\right)\right|+1 \geq m^{\prime} \text { and }\left|\sigma^{k^{\prime}-k}\left(\sigma^{k}(c)_{[m, n]}\right)\right| \leq n^{\prime}
$$

Lemma 3.12 Set $M=\max _{c, d \in A_{i}}\{|w| ; w$ is a possible word in $\sigma(c d)\}$. Let $p \in \mathbb{N}$. Suppose that $\sigma^{k}(c)_{[j, j+n)} \in A_{i-1}^{+}$and $\sigma^{k}(c)_{j+n} \in A_{i} \backslash A_{i-1}$ for some $(c, k, j, n) \in A_{i} \backslash A_{i-1} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ with $1 \leq j \leq\left|\sigma^{k}(c)\right|$ and
$n \geq(p+M) M$. Then, there exists $c^{\prime} \in A_{i} \backslash A_{i-1}$ such that

$$
\sigma^{k}(c)_{\left[j+n-n^{\prime}, j+n-n^{\prime}+\left|\sigma^{p}\left(c^{\prime}\right)\right|\right)}=\sigma^{p}\left(c^{\prime}\right),
$$

where $n^{\prime}=\max \left\{|w| ; w \in A_{i-1}{ }^{+}, w\right.$ is a prefix of $\left.\sigma^{p}\left(c^{\prime}\right)\right\}$.
Proof. Let j^{\prime} be such that $\sigma^{k}(c)_{\left[j^{\prime}, j+n\right)}$ is a possible word in $\sigma^{k}(c)$. There exists an integer k^{\prime} with $1 \leq k^{\prime} \leq k$ such that $\sigma^{k}(c)_{\left[j^{\prime}, j+n\right)}$ does not have any ancestor in $\sigma^{k^{\prime}-1}(c)$ but does in $\sigma^{k^{\prime}}(c)$. For each integer l with $k^{\prime} \leq l \leq k$, let $\sigma^{l}(c)_{\left[j_{l}, j_{l}+n_{l}\right)}$ denote the ancestor of $\sigma^{k}(c)_{\left[j^{\prime}, j+n\right)}$. Since

$$
\begin{aligned}
(p+M) M \leq n+j-j^{\prime} & \leq n_{k^{\prime}} M+\sum_{l=k^{\prime}}^{k-1}\left(n_{l+1}-\left|\sigma\left(\sigma^{l}(c)_{\left[j_{l}, j_{l}+n_{l}\right)}\right)\right|\right) \\
& \leq M^{2}+\left(k-k^{\prime}\right) M,
\end{aligned}
$$

we obtain $k-k^{\prime} \geq p$. The conclusion holds by taking c^{\prime} to be the first letter of $A_{i} \backslash A_{i-1}$ to occur in $\sigma^{k-k^{\prime}-p}\left(\sigma^{k^{\prime}}(c)_{j_{k^{\prime}}+n_{k^{\prime}}}\right)$.

Proposition 3.13 There is a possibly empty set $\left\{x_{j} \in\left(X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}\right) \cap\right.$ $\left.A_{i-1}{ }^{\mathbb{Z}} ; 1 \leq j \leq N\right\}$ of periodic points of σ such that
(i) $\operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right) \cap \operatorname{Orb}_{T_{\sigma}}\left(x_{j^{\prime}}\right)=\emptyset$ if $j \neq j^{\prime}$;
(ii) if x_{j} is periodic under T_{σ}, then A_{1} is a singleton, say $\{s\}$, and $x_{j}=$ s^{∞};
(iii) if x_{j} is aperiodic under T_{σ}, then $\overline{\operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)}=X_{\sigma_{i-1}} \cup \operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)(a$ disjoint union);
(iv) the orbit of any point in a T_{σ}-invariant, locally compact set:

$$
\begin{equation*}
X_{i}:=X_{\sigma_{i}} \backslash\left(X_{\sigma_{i-1}} \cup \bigcup_{j=1}^{N} \operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)\right) \tag{3.1}
\end{equation*}
$$

is dense in $X_{\sigma_{i}}$, where we let $X_{\sigma_{0}}=\emptyset$.
Proof. Properties (i)~(iii) are verified by the same argument as in the proof of Proposition 3.9. Let $x^{\prime} \in X_{i}$. Let $w \in \mathcal{L}\left(X_{\sigma_{i}}\right)$. Take $p \in \mathbb{N}$ so that w is a factor of $\sigma^{p}(c)$ for all $c \in A_{i} \backslash A_{i-1}$. Fix $n \in \mathbb{N}$ with $n \geq$ $\max \left\{(p+M) M,\left|\sigma^{p}(c)\right| ; c \in A_{i} \backslash A_{i-1}\right\}$, where M is as in Lemma 3.12. Lemma 3.8 (iii) together with the fact that $\overline{\operatorname{Orb}_{T_{\sigma}}(\omega)}=X_{\sigma_{i}}$ enables us to
find $l \in \mathbb{Z}$ such that $x_{[l, l+n)}^{\prime} \in A_{i-1}^{+}$and $x_{l+n}^{\prime} \in A_{i} \backslash A_{i-1}$. Since $x_{[l, l+2 n)}^{\prime}$ is a factor of $\sigma^{k}(c)$ for some $k \in \mathbb{N}$ and some $c \in A_{i} \backslash A_{i-1}$, Lemma 3.12 ensures the existence of $d \in A_{i} \backslash A_{i-1}$ such that $\sigma^{p}(d)$ is a factor of $x_{[l, l+2 n)}^{\prime}$. Hence w is a factor of $x_{[l, l+2 n)}^{\prime}$. This completes the proof.
Example 3.14 The following substitutions satisfy the hypothesis of Proposition 3.13.
(i) Set $A=\{a, b, c\}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a b, b \mapsto a, c \mapsto a c c$. Since σ_{1} is primitive, $X_{\sigma_{1}}$ is minimal. The set $X_{\sigma_{2}} \backslash X_{\sigma_{1}}$ contains no periodic points of σ.
(ii) Set $A=\{a, b, c, d\}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a, b \mapsto b b a b, c \mapsto b c c a$. Then, $X_{\sigma_{1}}=\emptyset, X_{\sigma_{2}}$ is minimal, and $X_{\sigma_{3}} \backslash X_{\sigma_{2}}$ contains a^{∞}.

Summarizing all the facts obtained above, we achieve the following.
Theorem 3.15 Let $\sigma: A \rightarrow A^{+}$be a substitution of some primitive components. For each integer i with $1 \leq i \leq n_{\sigma}$, we have a decomposition:

$$
X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}=X_{i} \cup \operatorname{Orb}_{T_{\sigma}}\left(y_{i}\right) \cup \bigcup_{j=1}^{N_{i}} \operatorname{Orb}_{T_{\sigma}}\left(x_{i j}\right)
$$

of $X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}$ into possibly empty, locally compact, T_{σ}-invariant sets X_{i}, $\operatorname{Orb}_{T_{\sigma}}\left(y_{i}\right)$ and $\operatorname{Orb}_{T_{\sigma}}\left(x_{i j}\right)$ so that
(i) X_{i} is as in (3.1) if it is nonempty, and hence the orbit of any point in X_{i} is dense in $X_{\sigma_{i}}$;
(ii) each y_{i} is a quasi-periodic point of a primitive type;
(iii) each $x_{i j}$ is a periodic point of σ such that if it is periodic under T_{σ}, then A_{1} is a singleton, say $\{s\}$, and $x_{i j}=s^{\infty}$; otherwise, $\overline{\operatorname{Orb}_{T_{\sigma}}\left(x_{i j}\right)}$ $=X_{\sigma_{i}} \cup \operatorname{Orb}_{T_{\sigma}}\left(x_{i j}\right)$.

As a consequence,

$$
\begin{equation*}
X_{\sigma}=\bigcup_{i=1}^{n_{\sigma}} X_{i} \cup \bigcup_{i=2}^{n_{\sigma}} \operatorname{Orb}_{T_{\sigma}}\left(y_{i}\right) \cup \bigcup_{i=2}^{n_{\sigma}} \bigcup_{j=1}^{N_{i}} \operatorname{Orb}_{T_{\sigma}}\left(x_{i j}\right) \tag{3.2}
\end{equation*}
$$

The number of minimal sets of X_{σ} is at most two. The two minimal sets are $X_{\sigma_{2}}$ and $\left\{s^{\infty}\right\}$, where $A_{1}=\{s\}$. The minimal set is unique if and only if one of the following holds:
(i) $\lim _{n \rightarrow \infty}\left|\sigma^{n}(a)\right|=\infty$ for any $a \in A_{1}$;
(ii) A_{1} is a singleton, say $\{s\}$, and $s^{\infty} \notin X_{\sigma}$;
(iii) A_{1} is a singleton and σ_{2} is almost primitive.

In these cases, the unique minimal set is $X_{\sigma_{1}}, X_{\sigma_{2}}$ and $\left\{s^{\infty}\right\}$, respectively, where $A_{1}=\{s\}$.

4. Perron-Frobenius Theory for auxiliary substitutions

Let $\sigma: A \rightarrow A^{+}$be a substitution of some primitive components. Let i be an integer with $1 \leq i \leq n_{\sigma}$. Let $Q_{1}(i)$ be Q_{i} in (2.1). Let θ_{i} denote a dominant eigenvalue of $Q_{1}(i)$. Given $m \in \mathbb{N}$, define a substitution $\sigma^{(m)}$: $\mathcal{L}_{m}(\sigma) \rightarrow \mathcal{L}_{m}(\sigma)^{+}$by for $u \in \mathcal{L}_{m}(\sigma)$,

$$
\sigma^{(m)}(u)=\sigma(u)_{[1, m]}, \sigma(u)_{[2, m+1]}, \sigma(u)_{[3, m+2]}, \ldots, \sigma(u)_{\left[\left|\sigma\left(u_{1}\right)\right|,\left|\sigma\left(u_{1}\right)\right|+m-1\right]},
$$

where the commas between consecutive $\sigma(u)_{[i, m+i-1]}$'s are not new letters but just mean the separation between letters. Observe that there exists $k_{0} \in \mathbb{N}$ such that any word in $\mathcal{L}\left(\sigma_{i}\right)$ occurs in $\sigma^{k}(a)$ for any $a \in A_{i} \backslash A_{i-1}$, any integer i with $1 \leq i \leq n_{\sigma}$ and any integer $k \geq k_{0}$. Set $\mathcal{B}_{m}(i)=\{u \in$ $\left.\mathcal{L}_{m}\left(\sigma_{i+1}\right) ; u_{1} \in A_{i}\right\}$ for $0 \leq i<n_{\sigma}$. Set $\lambda_{i}=\max _{1 \leq j \leq i} \theta_{j}$ and $\eta_{i}=\max _{i \leq j \leq n_{\sigma}} \theta_{j}$ for $1 \leq i \leq n_{\sigma}$, and $\lambda=\lambda_{n_{\sigma}}$.

We devote this section to analyzing how fast entries of $M_{\sigma^{(m)}}{ }^{k}$ increase as k tends to infinity.

Lemma 4.1 With possibly empty matrices $F_{m, k}(i), G_{m}(i), Q_{m}(i)$ and $R_{m, k}(i)$, we may write that for every $k \in \mathbb{N}$,

$$
\begin{aligned}
& M_{\sigma^{(m)}}^{k}= \\
& {\left[\begin{array}{ccccccc}
Q_{m}(1)^{k} & 0 & 0 & 0 & 0 & \cdots & 0 \\
F_{m, k}(1) G_{m}(1)^{k} & 0 & 0 & 0 & \cdots & 0 & 0 \\
R_{m, k}(1) & Q_{m}(2)^{k} & 0 & 0 & \cdots & 0 & 0 \\
F_{m, k}(2) & & G_{m}(2)^{k} & 0 & \cdots & 0 & 0 \\
R_{m, k}(2) & & Q_{m}(3)^{k} & \cdots & 0 & 0 \\
& \vdots & & & \ddots & \vdots & \vdots \\
& F_{m, k}\left(n_{\sigma}-1\right) \\
& & & G_{m}\left(n_{\sigma}-1\right)^{k}\left(n_{\sigma}-1\right) & 0 \\
& & & & Q_{m}\left(n_{\sigma}\right)^{k}
\end{array}\right],}
\end{aligned}
$$

where

- $Q_{m}(i)$ is an $\mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{B}_{m}(i-1) \times \mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{B}_{m}(i-1)$ matrix;
- $G_{m}(i)$ is a $\mathcal{B}_{m}(i) \backslash \mathcal{L}_{m}\left(\sigma_{i}\right) \times \mathcal{B}_{m}(i) \backslash \mathcal{L}_{m}\left(\sigma_{i}\right)$ matrix;
- $F_{m, k}(i)$ is a $\mathcal{B}_{m}(i) \backslash \mathcal{L}_{m}\left(\sigma_{i}\right) \times \mathcal{L}_{m}\left(\sigma_{i}\right)$ matrix;
- $R_{m, k}(i)$ is an $\mathcal{L}_{m}\left(\sigma_{i+1}\right) \backslash \mathcal{B}_{m}(i) \times \mathcal{B}_{m}(i)$ matrix.

Then,
(i) the following are equivalent:
(a) $\theta_{i}=1$;
(b) $Q_{1}(i)=[1]$;
(c) $X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}=\operatorname{Orb}_{T_{\sigma}}(y) \cup \bigcup_{j=1}^{N} \operatorname{Orb}_{T_{\sigma}}\left(x_{j}\right)$ (a disjoint union)
for a quasi-periodic point $y \in X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}$ of a primitive type and for some periodic points $x_{1}, x_{2}, \ldots, x_{N} \in X_{\sigma_{i}} \backslash X_{\sigma_{i-1}}$ of σ, some of which are possibly nonexistent;
(ii) the following are equivalent:
(a) $\mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{B}_{m}(i-1)=\emptyset$;
(b) $m>1, A_{i} \backslash A_{i-1}$ is a singleton, say $\{s\}$, and $\sigma(s)=$ us for some $u \in A_{i-1}{ }^{+}$;
(iii) $Q_{m}(i)$ is a primitive matrix with a dominant eigenvalue θ_{i}, if $Q_{m}(i)$ is nonempty;
(iv) the absolute value of no eigenvalue of $G_{m}(i)$ is greater than one;
(v) there exists a set $\left\{c_{i}>0 ; 1 \leq i \leq n_{\sigma}\right\}$ such that if $u \in \mathcal{L}_{m}(\sigma) \backslash$ $\mathcal{B}_{m}\left(n_{\sigma}-1\right)$ and $v \in \mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{L}_{m}\left(\sigma_{i-1}\right)$, then $\left(M_{\sigma^{(m)}}{ }^{k}\right)_{u, v} \geq c_{i} \eta_{i}{ }^{k}$ for all sufficiently large $k \in \mathbb{N}$.

Proof. Assume that the size of $Q_{1}(i)$ is greater than one. Then, for a sufficiently large $k \in \mathbb{N}$,

$$
\theta_{i}^{k}=v_{i}^{-1} \sum_{j}\left(Q_{1}(i)^{k}\right)_{i j} v_{j}>1,
$$

where v is a positive, right eigenvector corresponding to θ_{i}. Hence, $\theta_{i}=1$ implies $Q_{1}(i)=[1]$. The other parts in (i) are straightforward by using facts from Section 3. Similarly, Statement (ii) is readily verified.

Assuming $Q_{m}(i)$ is nonempty, choose $k_{0} \in \mathbb{N}$ so that any word in $\mathcal{L}_{m}\left(\sigma_{i}\right)$
occurs in $\sigma^{k}(a)$ for any integer $k \geq k_{0}$ and any $a \in A_{i} \backslash A_{i-1}$. This implies $Q_{m}(i)^{k}>0$ if $k \geq k_{0}$. Define a $\mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{B}_{m}(i-1) \times A_{i} \backslash A_{i-1}$ matrix N by $N_{u, a}=\left(M_{\sigma}\right)_{u_{1}, a}$ for each (u, a). Then, $Q_{m}(i) N=N Q_{1}(i)$ because their (u, a)-entries are $N\left(a, \sigma^{2}\left(u_{1}\right)\right)$. If $Q_{1}(i) v=\theta_{i} v$ and $v>0$, then $Q_{m}(i) N v=$ $\theta_{i} N v$ and $N v>0$. This implies (iii).

If $\left(G_{m}(i)^{k}\right)_{u, v}>0$, then $v \in\left\{\sigma^{k}(u)_{[j, j+m)} ;\left|\sigma^{k}\left(u_{1}\right)\right|-m+2 \leq j \leq\right.$ $\left.\left|\sigma^{k}\left(u_{1}\right)\right|\right\}$. Hence, for any $k \in \mathbb{N}$, each row sum of $G_{m}(i)^{k}$ is not greater than $m-1$, which shows (iv).

In the remainder of this proof, let us show (v). Take $k_{0} \in \mathbb{N}$ so that $R_{m, k}(i)>0$ for any integer $k \geq k_{0}$ and any integer i with $1 \leq i<n_{\sigma}$. Put $M_{i}=M_{\sigma_{i}(m)}$ for $1 \leq i \leq n_{\sigma}$. Put

$$
M_{i}=\left[\begin{array}{ccc}
M_{i-1} & 0 & 0 \\
F & G & 0 \\
R & R^{\prime} & Q
\end{array}\right]
$$

where $G=G_{m}(i-1)$ and $Q=Q_{m}(i)$. Define $F^{\prime}, R_{k_{0}}, R_{k_{0}}^{\prime}$ by

$$
M_{i}^{k_{0}}=\left[\begin{array}{ccc}
M_{i-1} k_{0} & 0 & 0 \\
F^{\prime} & G^{k_{0}} & 0 \\
R_{k_{0}} & R_{k_{0}}^{\prime} & Q^{k_{0}}
\end{array}\right]
$$

Reducing $M_{i}{ }^{k_{0}+k}=M_{i}{ }^{k_{0}} M_{i}{ }^{k}=M_{i}{ }^{k} M_{i}{ }^{k_{0}}$, we obtain that for every integer $k \in \mathbb{N}$,

$$
\begin{aligned}
& M_{i}^{k_{0}+k} \geq\left[\begin{array}{ccc}
M_{i-1}^{k_{0}+k} & 0 & 0 \\
0 & G^{k_{0}+k} & 0 \\
Q^{k} R_{k_{0}} & Q^{k} R_{k_{0}}^{\prime} & Q^{k_{0}+k}
\end{array}\right] \text { and } \\
& M_{i}^{k_{0}+k} \geq\left[\begin{array}{ccc}
M_{i-1}^{k_{0}+k} & 0 & 0 \\
0 & G^{k_{0}+k} & 0 \\
R_{k_{0}} M_{i-1}^{k} & R_{k_{0}}^{\prime} G & Q^{k_{0}+k}
\end{array}\right] .
\end{aligned}
$$

This shows the conclusion in the case $i=n_{\sigma}$. Applying this argument to M_{i-2} instead of M_{i}, we obtain the conclusion in the case $i=n_{\sigma}-1$. Repeating the argument, we may obtain (v).

Lemma 4.2 Set $i_{\min }=\min _{\theta_{i}=\lambda} i$ and $i_{\max }=\max _{\theta_{i}=\lambda} i$. Suppose $\lambda>1$. Then,
(i) a right eigenvector $\alpha=\left(\alpha_{u}\right)_{u \in \mathcal{L}_{m}(\sigma)}$ of $M_{\sigma^{(m)}}$ corresponding to λ may be chosen so that $\left(\alpha_{u}\right)_{u \in \mathcal{B}_{m}\left(i_{\max }-1\right)}=0$ and $\left(\alpha_{u}\right)_{u \in \mathcal{L}_{m}(\sigma) \backslash \mathcal{B}_{m}\left(i_{\max }-1\right)}>$ 0 ;
(ii) a left eigenvector $\beta=\left(\beta_{u}\right)_{u \in \mathcal{L}_{m}(\sigma)}$ of $M_{\sigma^{(m)}}$ corresponding to λ may be chosen so that $\left(\beta_{u}\right)_{u \in \mathcal{L}_{m}\left(\sigma_{i_{\text {min }}}\right)}>0$ and $\left(\beta_{u}\right)_{u \in \mathcal{L}_{m}(\sigma) \backslash \mathcal{L}_{m}\left(\sigma_{i_{\text {min }}}\right)}=0$;
(iii) λ is a simple, dominant eigenvalue of $M_{\sigma^{(m)}}$.

Proof. Put $\alpha^{\prime}=\left(\alpha_{u}\right)_{u \in \mathcal{B}_{m}\left(n_{\sigma}-1\right)}, \alpha^{\prime \prime}=\left(\alpha_{u}\right)_{u \in \mathcal{L}_{m}(\sigma) \backslash \mathcal{B}_{m}\left(n_{\sigma}-1\right)}$ and

$$
P_{m}(i)=\left[\begin{array}{cc}
M_{\sigma_{i}(m)} & 0 \\
F_{m, 1}(i) & G_{m}(i)
\end{array}\right] .
$$

In order to prove (i), it is sufficient to show the following statements:
(a) if $\theta_{n_{\sigma}}>\lambda_{n_{\sigma}-1}$, then $\alpha^{\prime}=0$ and $\alpha^{\prime \prime}$ may be chosen to be positive;
(b) if $\lambda_{i}=\lambda$ and ξ is a right eigenvector of $P_{m}(i)$ corresponding to λ_{i} such that $\xi^{\prime}:=\left(\xi_{u}\right)_{u \in \mathcal{L}_{m}\left(\sigma_{i}\right)} \geq 0$ and $\xi^{\prime} \neq 0$, then $\left(\xi_{u}\right)_{u \in \mathcal{B}_{m}(i) \backslash \mathcal{L}_{m}\left(\sigma_{i}\right)}>0$;
(c) if $\theta_{n_{\sigma}}=\lambda_{n_{\sigma}-1}$ and $\alpha^{\prime} \geq 0$, then $\alpha^{\prime}=0$ and $\alpha^{\prime \prime}$ may be chosen to be positive;
(d) if $\theta_{n_{\sigma}}<\lambda_{n_{\sigma}-1}, \alpha^{\prime} \geq 0$ and $\alpha^{\prime} \neq 0$, then $\alpha^{\prime \prime}$ may be chosen to be positive.

If $\theta_{n_{\sigma}}>\lambda_{n_{\sigma}-1}$, then clearly $\alpha^{\prime}=0$, and hence we may choose $\alpha^{\prime \prime}$ to be positive. Assuming the hypothesis of (b), since for a sufficiently large $k \in \mathbb{N}$,

$$
\begin{equation*}
\left(\xi_{u}\right)_{u \in \mathcal{B}_{m}(i) \backslash \mathcal{L}_{m}\left(\sigma_{i}\right)}=\lambda_{i}^{-k} \sum_{j=0}^{\infty}\left\{\lambda_{i}^{-k} G_{m}(i)^{k}\right\}^{j} F_{m, k}(i) \xi^{\prime}>0 \tag{4.1}
\end{equation*}
$$

we obtain (b). Assume the hypothesis of (c). If $\alpha^{\prime} \neq 0$, then reducing $M_{\sigma^{(m)}}{ }^{k} \alpha=\theta_{n_{\sigma}}{ }^{k} \alpha$, we obtain a contradiction that for a sufficiently large $k \in \mathbb{N}$,

$$
\begin{equation*}
0=\delta\left\{\theta_{n_{\sigma}}{ }^{k} I-Q_{m}\left(n_{\sigma}\right)^{k}\right\} \alpha^{\prime \prime}=\delta R_{m, k}\left(n_{\sigma}-1\right) \alpha^{\prime}>0, \tag{4.2}
\end{equation*}
$$

where δ is a positive, left eigenvector of $Q_{m}\left(n_{\sigma}\right)$ corresponding to $\theta_{n_{\sigma}}$. Statement (d) is obtained in the same manner as used to obtain (4.1).

Put $\beta^{\prime}=\left(\beta_{u}\right)_{u \in \mathcal{B}_{m}\left(n_{\sigma}-1\right)}$ and $\beta^{\prime \prime}=\left(\beta_{u}\right)_{u \in \mathcal{L}_{m}(\sigma) \backslash \mathcal{B}_{m}\left(n_{\sigma}-1\right)}$. In order to prove (ii), it might be sufficient to show the following statements:
(1) if $\lambda_{n_{\sigma}-1} \geq \theta_{n_{\sigma}}$, then $\beta^{\prime \prime}=0$;
(2) if $\lambda_{n_{\sigma}-1}<\theta_{n_{\sigma}}$, then β^{\prime} may be chosen to be positive;
(3) if $\lambda_{n_{\sigma}-1}=\lambda$ and ξ is a left eigenvector of $P_{m}\left(n_{\sigma}-1\right)$ corresponding to
λ, then $\xi_{u}=0$ for any $u \in \mathcal{B}_{m}\left(n_{\sigma}-1\right) \backslash \mathcal{L}_{m}\left(\sigma_{n_{\sigma}-1}\right)$.
Statement (3) follows from Lemma 4.1 (iv). If $\lambda_{n_{\sigma}-1}>\theta_{n_{\sigma}}$, then $\beta^{\prime \prime}=0$. Assume $\lambda_{n_{\sigma}-1}=\theta_{n_{\sigma}}$. If $\beta^{\prime \prime} \neq 0$, then we may assume $\beta^{\prime \prime}>0$. This yields a contradiction similar to (4.1). Assume $\lambda_{n_{\sigma}-1}<\theta_{n_{\sigma}}$. We may assume $\beta^{\prime \prime}>0$. In a similar way to obtaining (4.2), we may see (2). Statement (iii) is a consequence of the above argument.

Remark 4.3 Perron-Frobenius Theory for matrices in (2.2) is discussed also in [2]. In fact, more general facts are stated in Theorem 3.1 therein.

Lemma 4.4 Suppose $\theta_{i}>1$. If $\theta_{i}>\lambda_{i-1}$, then for any $u \in \mathcal{L}_{m}\left(\sigma_{i}\right) \backslash$ $\mathcal{B}_{m}(i-1)$ and any $v \in \mathcal{L}_{m}\left(\sigma_{i}\right)$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\theta_{i}^{-k} M_{\sigma^{(m)}}^{k}\right)_{u, v}=\alpha_{u} \beta_{v}>0 \tag{4.3}
\end{equation*}
$$

If $\theta_{i} \leq \lambda_{i-1}$, then there exist $\left\{\gamma_{u}>0 ; u \in \mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{B}_{m}(i-1)\right\}$ and $\left\{\delta_{v}>0 ; v \in \mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{L}_{m}\left(\sigma_{i^{\prime}-1}\right)\right\}$ such that

$$
\lim _{k \rightarrow \infty}\left(\theta_{i}^{-k} M_{\sigma^{(m)}}^{k}\right)_{u, v}= \begin{cases}\infty & \text { if } v \in \mathcal{L}_{m}\left(\sigma_{i^{\prime}-1}\right) \tag{4.4}\\ \gamma_{u} \delta_{v} & \text { otherwise }\end{cases}
$$

where, putting $I=\left\{1 \leq i_{0}<i ; \theta_{i_{1}}<\theta_{i}\right.$ for any integer i_{1} with $\left.i_{0} \leq i_{1}<i\right\}$,

$$
i^{\prime}= \begin{cases}i & \text { if } I=\emptyset \\ \min I & \text { otherwise }\end{cases}
$$

Proof. We may assume $i=n_{\sigma}$. Let s denote the size of $M_{\sigma^{(m)}}$.
Suppose $\theta_{i}>\lambda_{i-1}$. Let N be a matrix which puts $\theta_{i}^{-1} M_{\sigma^{(m)}}$ into a Jordan normal form:

$$
N^{-1}\left(\theta_{i}^{-1} M_{\sigma^{(m)}}\right) N=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & \epsilon_{1} / \lambda & * & \cdots & 0 \\
0 & 0 & \epsilon_{2} / \lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \epsilon_{s-1} / \lambda
\end{array}\right]
$$

where $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{s-1}$ are eigenvalues of $M_{\sigma^{(m)}}$ other than λ. We obtain (4.3), since

$$
N^{-1}\left(\lim _{k \rightarrow \infty} \theta_{i}^{-k} M_{\sigma^{(m)}}^{k}\right) N=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

and since the first column and the first row of N and N^{-1} are α and β, respectively.

Assume $\theta_{i}=\lambda_{i-1}$. In this case, $\eta_{j}=\theta_{i}$ for any integer j with $1 \leq j<i$. Let N be a matrix which puts $\theta_{i}{ }^{-1} M_{\sigma^{(m)}}$ into a Jordan normal form:

$$
N^{-1}\left(\theta_{i}^{-1} M_{\sigma(m)}\right) N=J:=\left[\begin{array}{cccccccc}
1 & 1 / \lambda & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1 & 1 / \lambda & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \epsilon_{r+1} / \lambda & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & \epsilon_{s} / \lambda
\end{array}\right],
$$

where $\epsilon_{r+1}, \epsilon_{r+2}, \ldots, \epsilon_{s}$ are eigenvalues of $M_{\sigma^{(m)}}$ other than λ. By Lemma 4.2, the multiplicity r of the eigenvalue λ is greater than one.

Set $\left\{1 \leq p \leq n_{\sigma} ; \theta_{p}=\lambda\right\}=\left\{i_{\text {min }}=i_{1}<i_{2}<\cdots<i_{r}=n_{\sigma}\right\}$. Set $s_{p}=\sharp \mathcal{L}_{m}\left(\sigma_{i_{p}}\right)$ for $1 \leq p \leq r$. Let ξ be such that $\xi\left(M_{\sigma^{(m)}}-\lambda I\right)=\beta$. Put $\xi^{\prime}=\left(\xi_{j}\right)_{j=1}^{s_{1}}$ and $\xi^{\prime \prime}=\left(\xi_{j}\right)_{j>s_{1}}$. If $\xi^{\prime \prime}=0$, then $\xi^{\prime}\left(M_{\sigma_{i_{1}}^{(m)}}-\lambda I\right)=\beta^{\prime}:=$ $\left(\beta_{j}\right)_{j=1}^{s_{1}}$. This yields a contradiction that $0=\xi^{\prime}\left(M_{\sigma_{i_{1}}^{(m)}}-\lambda I\right) \zeta=\beta^{\prime} \zeta>0$, where ζ is a nonnegative, right eigenvector of $M_{\sigma_{i_{1}}(m)}$ corresponding to λ. Hence, $\xi^{\prime \prime}$ is a left eigenvector of the matrix:

$$
\left[\begin{array}{cccc}
G_{m}\left(i_{1}\right) & 0 & \cdots & 0 \\
* & Q_{m}\left(i_{1}+1\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & Q_{m}\left(n_{\sigma}\right)
\end{array}\right]
$$

corresponding to λ. Using techniques developed in the proof of Lemma 4.2, we may verify that given an integer j with $s_{1}<j \leq s, \xi_{j} \neq 0$ if and only if $s_{1}<j \leq s_{2}$. Let ρ be such that $\rho\left(M_{\sigma^{(m)}}-\lambda I\right)=\xi$. The same argument shows that given an integer j with $s_{2}<j \leq s, \rho_{j} \neq 0$ if and only if $s_{2}<j \leq s_{3}$.

Repeating this argument, we may see that given an integer p with $1 \leq$ $p \leq r$, the p-th row ξ of N^{-1} satisfies the properties:

- $\xi_{j} \neq 0$ if $s_{r-p}<j \leq s_{r-p+1}$;
- $\xi_{j}=0$ if $s_{r-p+1}<j \leq s$,
where $s_{0}=0$. Since given integers p, q with $1 \leq p<r$ and $1 \leq q \leq r-p$, $\lim _{k \rightarrow \infty}\left(J^{k}\right)_{p, p+q} / k^{t}>0$ if and only if $t=q$, it follows that under the extended arithmetics,

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \theta_{i}^{-k} M_{\sigma^{(m)}}^{k}=N\left(\lim _{k \rightarrow \infty} J^{k}\right) N^{-1} \\
& =\left[\begin{array}{cc}
0 & \\
\vdots & \\
0 & \\
\alpha_{r^{\prime}+1} & * \\
\alpha_{r^{\prime}+2} & \\
\vdots & \\
\alpha_{s} &
\end{array}\right]\left[\begin{array}{ccccc}
1 & \infty & \cdots & \infty & \\
0 & 1 & \cdots & \infty & \\
\vdots & \vdots & \ddots & \vdots & 0 \\
0 & 0 & \cdots & 1 & \\
& & 0 & & 0
\end{array}\right] \\
& {\left[\begin{array}{cccccccccc}
* & \cdots & * & * & \cdots & * & \cdots & \xi_{s_{r-1}+1} & \cdots & \xi_{s} \\
\vdots & & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\
* & \cdots & * & \xi_{s_{2}+1} & \cdots & \xi_{s_{3}} & \cdots & 0 & \cdots & 0 \\
\beta_{1} & \cdots & \beta_{s_{1}} & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
& & & & & * & & & & \\
& & & & & & & & &
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccccccc}
& & & & & & \\
& & & & & \\
\alpha_{r^{\prime}+1} & \infty & \cdots & \infty & 0 & \cdots & 0 \\
\alpha_{r^{\prime}+2} & \infty & \cdots & \infty & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & & \vdots \\
\alpha_{s} & \infty & \cdots & \infty & 0 & \cdots & 0
\end{array}\right] \\
& {\left[\begin{array}{cccccccccc}
* & \cdots & * & * & \cdots & * & \cdots & \xi_{s_{r-1}+1} & \cdots & \xi_{s} \\
\vdots & & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\
* & \cdots & * & \xi_{s_{2}+1} & \cdots & \xi_{s_{3}} & \cdots & 0 & \cdots & 0 \\
\beta_{1} & \cdots & \beta_{s_{1}} & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
& & & & * & & & & &
\end{array}\right]} \\
& =\left[\begin{array}{cccccccc}
& & & & \\
& & \\
\infty & \infty & \cdots & \infty & \alpha_{r^{\prime}+1} \xi_{s_{r-1}+1} & \alpha_{r^{\prime}+1} \xi_{s_{r-1}+2} & \cdots & \alpha_{r^{\prime}+1} \xi_{s} \\
\infty & \infty & \cdots & \infty & \alpha_{r^{\prime}+2} \xi_{s_{r-1}+1} & \alpha_{r^{\prime}+2} \xi_{s_{r-1}+2} & \cdots & \alpha_{r^{\prime}+2} \xi_{s} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
\infty & \infty & \cdots & \infty & \alpha_{s} \xi_{s_{r-1}+1} & \alpha_{s} \xi_{s_{r-1}+2} & \cdots & \alpha_{s} \xi_{s}
\end{array}\right],
\end{aligned}
$$

where $r^{\prime}=\sharp \mathcal{B}_{m}\left(n_{\sigma}-1\right)$.
Assume $\theta_{i}<\lambda_{i-1}$. Put $M=\left\{\left(M_{\sigma^{(m)}}\right)_{u, v}\right\}_{u, v \in \mathcal{L}_{m}(\sigma) \backslash \mathcal{L}_{m}\left(\sigma_{i^{\prime}-1}\right)}$. It follows that θ_{i} is a simple, dominant eigenvalue of M. Since similar statements to Lemma 4.2 holds for this matrix M, arguments used to show (4.3) of this lemma show the second half of (4.4). The other half is obtained by using Lemma 4.1 (v).

Example 4.5

(i) Set $A=\{a, b, c\}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a^{4}, b \mapsto a b^{3}, c \mapsto c b c$. Then

$$
M_{\sigma}=\left[\begin{array}{lll}
4 & 0 & 0 \\
1 & 3 & 0 \\
0 & 1 & 2
\end{array}\right], \theta_{1}=4, \theta_{2}=3, \theta_{3}=2, \alpha=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right], \beta=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

It follows that $\mathcal{L}_{2}(\sigma)=\{a a, a b, b a, b b, b c, c a, c b\}, \mathcal{L}_{2}\left(\sigma_{1}\right)=\{a a\}, \mathcal{B}_{2}(1)$ $=\{a a, a b\}, \mathcal{L}_{2}\left(\sigma_{2}\right)=\{a a, a b, b a, b b\}, \mathcal{B}_{2}(2)=\{a a, a b, b a, b b, b c\}$. We have

$$
\begin{array}{rlrl}
\sigma^{(2)}(a a) & =a a, a a, a a, a a ; & & \sigma^{(2)}(a b)=a a, a a, a a, a a ; \\
\sigma^{(2)}(b a) & =a b, b b, b b, b a ; & \sigma^{(2)}(b b)=a b, b b, b b, b a ; \\
\sigma^{(2)}(b c) & =a b, b b, b b, b c ; & \sigma^{(2)}(c a)=c b, b c, c a ; \\
\sigma^{(2)}(c b) & =c b, b c, c a, &
\end{array}
$$

and
$M_{\sigma^{(2)}}=\left[\begin{array}{lllllll}4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\right], \alpha=\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1\end{array}\right], \quad \beta=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(ii) Set $A=\{a, b, c, d\}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a a, b \mapsto a b^{3} c^{3}$, $c \mapsto a b c^{5}, d \mapsto a b c d^{2}$. Then
$M_{\sigma}=\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 1 & 3 & 3 & 0 \\ 1 & 1 & 5 & 0 \\ 1 & 1 & 1 & 2\end{array}\right], \theta_{1}=2, \theta_{2}=6, \theta_{3}=2, \alpha=\left[\begin{array}{l}0 \\ 2 \\ 2 \\ 1\end{array}\right], \beta=\left[\begin{array}{llll}1 & 1 & 3 & 0\end{array}\right]$.
It follows that $\mathcal{L}_{2}(\sigma)=\{a a, a b, b b, b c, c a, c c, c d, d a, d d\}, \mathcal{L}_{2}\left(\sigma_{1}\right)=$ $\{a a\}, \mathcal{B}_{2}(1)=\{a a, a b\}, \mathcal{L}_{2}\left(\sigma_{2}\right)=\{a a, a b, b b, b c, c a, c c\}, \mathcal{B}_{2}(2)=$ $\{a a, a b, b b, b c, c a, c c, c d\}$. We have

$$
\begin{array}{rlrl}
\sigma^{(2)}(a a) & =a a, a a ; & & \sigma^{(2)}(a b)=a a, a a \\
\sigma^{(2)}(b b) & =a b, b b, b b, b c, c c, c c, c a ; & \sigma^{(2)}(b c)=a b, b b, b b, b c, c c, c c, c a \\
\sigma^{(2)}(c a) & =a b, b c, c c, c c, c c, c c, c a ; & \sigma^{(2)}(c c)=a b, b c, c c, c c, c c, c c, c a \\
\sigma^{(2)}(c d) & =a b, b c, c c, c c, c c, c c, c a ; & \sigma^{(2)}(d a)=a b, b c, c d, d d, d a \\
\sigma^{(2)}(d d) & =a b, b c, c d, d d, d a, & &
\end{array}
$$

and

$$
\begin{aligned}
M_{\sigma^{(2)}} & =\left[\begin{array}{lllllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 4 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 4 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 4 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1
\end{array}\right], \quad \alpha=\left[\begin{array}{l}
0 \\
0 \\
2 \\
2 \\
2 \\
2 \\
2 \\
1 \\
1
\end{array}\right], \\
\beta & =\left[\begin{array}{lllllllll}
1 & 2 & 1 & 2 & 2 & 7 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

5. Invariant measures for $\boldsymbol{X}_{\boldsymbol{\sigma}}$

Let $\sigma: A \rightarrow A^{+}$be a substitution of some primitive components. Let $i \in \mathbb{N}$ be $1<i \leq n_{\sigma}$.

Corollary 5.1 Suppose $\theta_{i}>1$. Let $a \in A_{i} \backslash A_{i-1}, v \in \mathcal{L}\left(\sigma_{i}\right), m=|v|$ and $u \in \mathcal{L}_{m}\left(\sigma_{i}\right)$ with $u_{1}=a$.
(i) If $\theta_{i}>\lambda_{i-1}$, then

$$
\lim _{k \rightarrow \infty} \frac{N\left(v, \sigma^{k}(a)\right)}{\left|\sigma^{k}(a)\right|}=\frac{\beta_{v}}{\sum_{w \in \mathcal{\mathcal { L } _ { m }}\left(\sigma_{i}\right)} \beta_{w}}
$$

(ii) If $\theta_{i} \leq \lambda_{i-1}$, then

$$
\lim _{k \rightarrow \infty} \frac{1}{\theta_{i}{ }^{k}} N\left(v, \sigma^{k}(a)\right)= \begin{cases}\infty & \text { if } v \in \mathcal{L}_{m}\left(\sigma_{i^{\prime}-1}\right) \\ \gamma_{u} \delta_{v} & \text { otherwise }\end{cases}
$$

(iii) If $v \notin \mathcal{L}\left(\sigma_{i^{\prime}-1}\right)$, then

$$
\lim _{k \rightarrow \infty} \frac{N\left(v, \sigma^{k}(a)\right)}{\sum_{b \in A_{i} \backslash A_{i-1}} N\left(b, \sigma^{k}(a)\right)}=\frac{\delta_{v}}{\sum_{w \in \mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{B}_{m}(i-1)} \delta_{w}}
$$

Proof. Put $\tau=\sigma^{(m)}$. Assume $\theta_{i}>\lambda_{i-1}$. Since for every $k \in \mathbb{N}$,

$$
\begin{gathered}
\left|\sigma^{k}(a)\right|=\left|\tau^{k}(u)\right| \\
N\left(v, \tau^{k}(u)\right)-(m-1) \leq N\left(v, \sigma^{k}(a)\right) \leq N\left(v, \tau^{k}(u)\right),
\end{gathered}
$$

it follows from Lemma 4.4 that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{N\left(v, \sigma^{k}(a)\right)}{\left|\sigma^{k}(a)\right|} & =\lim _{k \rightarrow \infty} \frac{N\left(v, \tau^{k}(u)\right)}{\left|\tau^{k}(u)\right|} \\
& =\lim _{k \rightarrow \infty} \frac{\left(M_{\tau}{ }^{k}\right)_{u, v}}{\sum_{w \in \mathcal{\mathcal { L } _ { m }}\left(\sigma_{i}\right)}\left(M_{\tau}{ }^{k}\right)_{u, w}}=\frac{\beta_{v}}{\sum_{w \in \mathcal{\mathcal { L } _ { m }}\left(\sigma_{i}\right)} \beta_{w}} .
\end{aligned}
$$

Assume $\theta_{i} \leq \lambda_{i-1}$. Since

$$
\lim _{k \rightarrow \infty} \frac{1}{\theta_{i}{ }^{k}} N\left(v, \sigma^{k}(a)\right)=\lim _{k \rightarrow \infty} \frac{1}{\theta_{i}{ }^{k}}\left(M_{\tau}^{k}\right)_{u, v}
$$

(ii) follows from Lemma 4.4. It follows from Lemma 4.4 again that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{N\left(v, \sigma^{k}(a)\right)}{\sum_{b \in A_{i} \backslash A_{i-1}} N\left(b, \sigma^{k}(a)\right)} & =\lim _{k \rightarrow \infty} \frac{\left(M_{\tau}{ }^{k}\right)_{u, v}}{\sum_{w \in \mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{B}_{m}(i-1)}\left(M_{\tau}{ }^{k}\right)_{u, w}} \\
& =\frac{\delta_{v}}{\sum_{w \in \mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{B}_{m}(i-1)} \delta_{w}}
\end{aligned}
$$

Suppose that X_{i} in (3.2) is nonempty. Lemma 4.1 (i) allows us to assume $\theta_{i}>1$. Let $\omega \in X_{i}$ be a quasi-fixed point of the substitution σ, so that for each $k \in \mathbb{N}$, there are integers $m_{k} \geq 0$ and $n_{k}>0$ such that $\omega_{\left[-m_{k}, n_{k}\right)}=\sigma^{k}\left(\omega_{0}\right)$. Then, the following holds.

Proposition 5.2

(i) If $\lambda_{i-1}<\theta_{i}$, then the weak ${ }^{*}$ limit

$$
\mu_{i}=\lim _{k \rightarrow \infty} \frac{1}{m_{k}+n_{k}} \sum_{j=-m_{k}}^{n_{k}-1} \delta_{T_{\sigma}{ }^{j} \omega}
$$

exists.
(ii) If $\lambda_{i-1} \geq \theta_{i}$, then X_{i} has an infinite, invariant Radon measure ν_{i}
characterized by the fact that for any $v \in \mathcal{L}\left(\sigma_{i}\right)$,

$$
\nu_{i}([v])=\lim _{k \rightarrow \infty} \frac{1}{\theta_{i}{ }^{k}} \sum_{j=-m_{k}}^{n_{k}-1} \delta_{T_{\sigma}{ }^{j} \omega}([v]) .
$$

Proof. Let $v \in \mathcal{L}\left(\sigma_{i}\right)$. Put $m=|v|$.
Assuming $\lambda_{i-1}<\theta_{i}$, it follows from Corollary 5.1 (i) that

$$
\mu_{i}([v])=\lim _{k \rightarrow \infty} \frac{1}{\left|\sigma^{k}\left(\omega_{0}\right)\right|} N\left(v, \sigma^{k}\left(\omega_{0}\right)\right)=\frac{\beta_{v}}{\sum_{w \in \overline{\mathcal{L}_{m}\left(\sigma_{i}\right)}} \beta_{w}} .
$$

Assume $\lambda_{i-1} \geq \theta_{i}$. Define an extended, real-valued, set function $\tilde{\nu_{i}}$ on the ring $\mathscr{C}=\left\{[u . v] ; u v \in \mathcal{L}\left(\sigma_{i}\right)\right\}$ of cylinder sets by

$$
\tilde{\nu_{i}}([u . v])=\lim _{k \rightarrow \infty} \frac{1}{\theta_{i}{ }^{k}} \sum_{j=-m_{k}}^{n_{k}-1} \delta_{T_{\sigma}{ }^{j} \omega}([u . v])=\lim _{k \rightarrow \infty} \frac{1}{\theta_{i}^{k}} N\left(u v, \sigma^{k}\left(\omega_{0}\right)\right)=\gamma_{w} \delta_{u v}
$$

where $w \in \mathcal{L}_{|u v|}\left(\sigma_{i}\right)$ with $w_{1}=\omega_{0}$. The set function $\tilde{\nu_{i}}$ is countably additive, and also, finite on any compact open subset of X_{i}. Hence, $\tilde{\nu_{i}}$ is uniquely extended to a T_{σ}-invariant, Radon measure ν_{i} on X_{i}. It follows from Corollary 5.1 that ν is infinite.

It might be worthwhile noticing that given an integer j with $1 \leq j \leq i$, $\nu_{i}\left(X_{\sigma_{j}} \backslash X_{\sigma_{j-1}}\right)=\infty$ iff $1 \leq j<i^{\prime}$.

Example 5.3

(i) Let σ be as in Example 4.5 (i). Then, $X_{\sigma_{1}}=\left\{a^{\infty}\right\}$ has an invariant probability measure $\mu_{1}=\delta_{a \infty}$, and $X_{\sigma_{2}} \backslash X_{\sigma_{1}}$ and $X_{\sigma_{3}} \backslash X_{\sigma_{2}}$ have infinite invariant measures ν_{2} and ν_{3}, respectively. The measures of cylinder sets with respect to ν_{2} or ν_{3} can be calculated as follows:

$$
\begin{aligned}
& \nu_{2}([a])=\infty, \quad \nu_{2}([b])=1, \quad \nu_{2}([a a])=\infty, \quad \nu_{2}([a b])=1 / 3, \\
& \nu_{2}([b a])=1 / 3, \quad \nu_{2}([b b])=2 / 3, \quad \nu_{3}([a])=\infty, \quad \nu_{3}([b])=\infty, \\
& \nu_{3}([c])=1, \quad \nu_{3}([a a])=\infty, \quad \nu_{3}([a a])=\infty, \quad \nu_{3}([a b])=\infty, \\
& \nu_{3}([b a])=\infty, \quad \nu_{3}([b b])=\infty, \quad \nu_{3}([b c])=1, \quad \nu_{3}([c a])=1 / 2, \\
& \nu_{3}([c b])=1 / 2 .
\end{aligned}
$$

(ii) Set $A=\{a, b, c, d, e\}$. Define $\sigma: A \rightarrow A^{+}$by $a \mapsto a b, b \mapsto a, c \mapsto$ $a c d, d \mapsto a d c, e \mapsto d e c e$. Then, $\theta_{1}=(1+\sqrt{5}) / 2, \theta_{2}=\theta_{3}=2$. It follows from Proposition 5.2 that $X_{\sigma_{1}}$ and $X_{\sigma_{2}}$ have invariant probability measures μ_{1} and μ_{2}, respectively, and that $X_{\sigma_{3}}$ has an infinite invariant measure ν_{3}. The measures of cylinder sets with respect to μ_{1}, μ_{2} and ν_{3} are calculated as follows:

$$
\begin{aligned}
\mu_{1}([a]) & =(\sqrt{5}-1) / 2, & \mu_{1}([b]) & =(3-\sqrt{5}) / 2, \\
\mu_{1}([a b]) & =(3-\sqrt{5}) / 2, & \mu_{1}([b a a]) & =\sqrt{5}-2, \\
\mu_{2}([b]) & =1 / 4, & \mu_{2}([c]) & =1 / 8, \\
\mu_{2}([a a]) & =1 / 8, & \mu_{2}([a b]) & =1 / 4, \\
\mu_{2}([a c]) & =1 / 16, & \mu_{2}([a d]) & =1 / 16, \\
\mu_{2}([c d]) & =1 / 16, & \mu_{2}([d a]) & =1 / 16, \\
\nu_{3}([a]) & =\infty, & \mu_{2}([d]) & =1 / 8 \\
\nu_{3}([d]) & =\infty, & \mu_{2}([b a]) & =1 / 4, \\
\nu_{3}([a b]) & =\infty, & \mu_{2}([c a]) & =1 / 16, \\
\nu_{3}([a d]) & =\infty, & \mu_{2}([d c]) & =1 / 16, \\
\nu_{3}([d a]) & =\infty, & \nu_{3}([e]) & =1, \\
\nu_{3}([c e]) & =1 / 2, & \nu_{3}([c a]) & =\infty, \\
\nu_{3}([e c]) & =1 / 2 . & \nu_{3}([d c]) & =\infty,
\end{aligned}
$$

The following lemma plays a crucial role in showing that μ_{i} or ν_{i} is a unique invariant measure for X_{i}.

Lemma 5.4 Let $X \subset A^{\mathbb{Z}}$ be a locally compact, minimal subshift. Let T denote the left shift on X. Let $K \subset X$ be a nonempty, compact open set. Choose a point $\omega \in K$ which returns to K infinitely many times, say at $0=k_{0}<k_{1}<k_{2}<\cdots$. Then, the following are equivalent:
(i) X has a unique (up to scaling), invariant Radon measure;
(ii) for any $v \in \mathcal{L}(X)$ such that $[v] \subset K$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} N\left(v, \omega_{\left[k_{j}, k_{j+n}\right]}\right)
$$

converges to a constant uniformly in $j \geq 0$.
Furthermore, if these conditions hold, then the unique invariant measure is ergodic.

Proof. If X is non-compact, then this is a consequence of [12, Theorem 4.5]; see also the proof of [12, Corollary 4.6].

If X is compact, then it is sufficient to consider when the first return map T_{K} induced on K by T is uniquely ergodic, because there exists a one-to-one correspondence between the set of T-invariant probability measures and the set of T_{K}-invariant probability measures. It follows from [11, Theorem IV. 13] that given a minimal homeomorphism S on a totally disconnected, compact metric space Y, S is uniquely ergodic if and only if for an arbitrarily chosen point $y \in Y$, it holds that for any nonempty, clopen set $F \subset Y$, there exists a constant c such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \chi_{F}\left(S^{i+j} y\right) \rightarrow c \text { as } n \rightarrow \infty, \text { uniformly in } j \geq 0
$$

where χ_{F} is the characteristic function of F. We obtain the conclusion by applying this criterion with $S=T_{K}, y=\omega$ and $F=[v]$.

Theorem 5.5 Let

$$
X_{\sigma}=\bigcup_{i=1}^{n_{\sigma}} X_{i} \cup \bigcup_{i=2}^{n_{\sigma}} \operatorname{Orb}_{T_{\sigma}}\left(y_{i}\right) \cup \bigcup_{i=2}^{n_{\sigma}} \bigcup_{j=1}^{N_{i}} \operatorname{Orb}_{T_{\sigma}}\left(x_{i j}\right)
$$

be the decomposition (3.2). The counting measure on each $\operatorname{Orb}_{T_{\sigma}}\left(x_{i j}\right)$ is ergodic. The measure is finite if and only if the point $x_{i j}$ is a fixed point of T_{σ}. The counting measure on each $\operatorname{Orb}_{T_{\sigma}}\left(y_{i}\right)$ is an ergodic, infinite measure.

If $X_{i} \neq \emptyset$, then an invariant Radon measure on X_{i} provided with the relative topology is unique up to scaling, and ergodic. This measure is finite if $\theta_{i}>\lambda_{i-1}$, and infinite if $\theta_{i} \leq \lambda_{i-1}$.

Proof. In view of Lemma 4.1 (i) and Proposition 5.2, it is enough for us to show the uniqueness of an invariant measure under the assumption $\theta_{i}>1$. Put $\left\{0=k_{0}<k_{1}<k_{2}<\cdots\right\}=\left\{k \geq 0 ; \omega_{k} \in A_{i} \backslash A_{i-1}\right\}$. Suppose that a word $v \in \mathcal{L}\left(\sigma_{i}\right)$ contains a letter in $A_{i} \backslash A_{i-1}$ as a factor. Put

$$
\Delta_{v}=\frac{\delta_{v}}{\sum_{w \in \mathcal{L}_{m}\left(\sigma_{i}\right) \backslash \mathcal{B}_{m}(i-1)} \delta_{w}} .
$$

It is sufficient to prove that $N\left(v, \omega_{\left[k_{j}, k_{j+n}\right]}\right) / n \rightarrow \Delta_{v}$ as $n \rightarrow \infty$, uniformly in $j \geq 0$. Let $\epsilon>0$. Choose $p \in \mathbb{N}$ so that

$$
\begin{aligned}
& 3\left\{\min _{a, b \in A_{i} \backslash A_{i-1}} N\left(a, \sigma^{p}(b)\right)\right\}^{-1}<\frac{1}{4}|v|^{-1} \epsilon \\
& \left|N\left(v, \sigma^{p}(b)\right)-\Delta_{v} \sum_{a \in A_{i} \backslash A_{i-1}} N\left(a, \sigma^{p}(b)\right)\right| \\
& \quad<\frac{1}{4} \epsilon \sum_{a \in A_{i} \backslash A_{i-1}} N\left(a, \sigma^{p}(b)\right) \text { for any } b \in A_{i} \backslash A_{i-1} .
\end{aligned}
$$

Choose an integer $n_{0} \geq 2 \max _{a \in A}\left|\sigma^{p}(a)\right|$ so that for all integers $n \geq n_{0}$,

$$
2 \Delta_{v} n^{-1} \max _{a \in A}\left|\sigma^{p}(a)\right|+2 n^{-1} \max _{a \in A}\left|\sigma^{p}(a)\right|<\frac{1}{4} \epsilon
$$

Since ω and $\sigma^{p}(\omega)$ coincide up to a shift by some digits, for every integer $j \geq 0$ there exist $q \in \mathbb{N}, r \in \mathbb{N}$ and $s, t \in A^{*}$ such that

- s is a suffix of $\sigma^{p}\left(\omega_{q-1}\right)$;
- t is a prefix of $\sigma^{p}\left(\omega_{q+r+1}\right)$;
- $\omega_{\left[k_{j}, k_{j+n}\right]}=s \sigma^{p}\left(\omega_{q}\right) \sigma^{p}\left(\omega_{q+1}\right) \ldots \sigma^{p}\left(\omega_{q+r}\right) t$.

Let $n \geq n_{0}$ and $j \geq 0$ be arbitrary integers. Since

$$
\begin{aligned}
N\left(v, \omega_{\left[k_{j}, k_{j+n}\right]}\right) \leq & |s|+|t|+\sum_{\substack{q \leq l \leq q+r \\
\omega_{l} \in A_{i} \backslash A_{i-1}}} N\left(v, \sigma^{p}\left(\omega_{l}\right)\right) \\
& +|v| \sharp\left\{q-1 \leq l \leq q+r+1 ; \omega_{l} \in A_{i} \backslash A_{i-1}\right\},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \left|N\left(v, \omega_{\left[k_{j}, k_{j+n}\right]}\right)-\sum_{\substack{q \leq l \leq q+r \\
\omega_{l} \in A_{i} \backslash A_{i-1}}} N\left(v, \sigma^{p}\left(\omega_{l}\right)\right)\right| \\
& \quad \leq 2 \max _{a \in A}\left|\sigma^{p}(a)\right|+|v| \sharp\left\{q-1 \leq l \leq q+r+1 ; \omega_{l} \in A_{i} \backslash A_{i-1}\right\} .
\end{aligned}
$$

However, since

$$
\begin{aligned}
& \sharp\left\{q-1 \leq l \leq q+r+1 ; \omega_{l} \in A_{i} \backslash A_{i-1}\right\} \\
& \sum_{\substack{q \leq l \leq q+r \\
\omega_{l} \in A_{i} \backslash A_{i-1}}} N\left(a, \sigma^{p}\left(\omega_{l}\right)\right) \\
& \quad \leq \frac{\sharp\left\{q-1 \leq l \leq q+r+1 ; \omega_{l} \in A_{i} \backslash A_{i-1}\right\}}{\sharp\left\{q \leq l \leq q+r ; \omega_{l} \in A_{i} \backslash A_{i-1}\right\} \min _{a, b \in A_{i} \backslash A_{i-1}} N\left(a, \sigma^{p}(b)\right)} \\
& \quad \leq 3\left\{\min _{a, b \in A_{i} \backslash A_{i-1}} N\left(a, \sigma^{p}(b)\right)\right\}^{-1} \leq \frac{1}{4}|v|^{-1} \epsilon,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \left|\frac{1}{n} N\left(v, \omega_{\left[k_{j}, k_{j+n}\right]}\right)-\frac{1}{n} \sum_{\substack{q \leq l \leq q+r \\
\omega_{l} \in A_{i} \backslash A_{i-1}}} N\left(v, \sigma^{p}\left(\omega_{l}\right)\right)\right| \\
& \quad<\frac{1}{4} \epsilon+|v| \cdot \frac{1}{4}|v|^{-1} \epsilon \cdot \frac{1}{n} \sum_{\substack{q \leq l \leq q+r \\
\omega_{l} \in A_{i} \backslash A_{i-1}}} \sum_{a \in A_{i} \backslash A_{i-1}} N\left(a, \sigma^{p}\left(\omega_{l}\right)\right) \leq \frac{1}{2} \epsilon .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\left\lvert\, \frac{1}{n}\right. & \sum_{\substack{q \leq l \leq q+r \\
\omega_{l} \in A_{i} \backslash A_{i-1}}} N\left(v, \sigma^{p}\left(\omega_{l}\right)\right)-\Delta_{v} \mid \\
& \leq \frac{1}{n} \sum_{\substack{q \leq l \leq q+r \\
\omega_{l} \in A_{i} \backslash A_{i-1}}}\left|N\left(v, \sigma^{p}\left(\omega_{l}\right)\right)-\Delta_{v} \sum_{a \in A_{i} \backslash A_{i-1}} N\left(a, \sigma^{p}\left(\omega_{l}\right)\right)\right| \\
& +2 \Delta_{v} n^{-1} \max _{a \in A}\left|\sigma^{p}(a)\right| \\
& <\frac{1}{4} \epsilon \cdot \frac{1}{n} \sum_{\substack{q \leq l \leq q+r \\
\omega_{l} \in A_{i} \backslash A_{i-1}}} \sum_{a \in A_{i} \backslash A_{i-1}} N\left(a, \sigma^{p}\left(\omega_{l}\right)\right)+\frac{1}{4} \epsilon \leq \frac{1}{2} \epsilon .
\end{aligned}
$$

Finally,

$$
\left|\frac{1}{n} N\left(v, \omega_{\left[k_{j}, k_{j+n}\right]}\right)-\Delta_{v}\right|<\epsilon .
$$

This completes the proof.
We are now in a position to see the unique ergodicity left to be proved in Proposition 3.2. Assume the hypothesis of the proposition, so that $\theta_{1}=1$ and $\theta_{2}>1$. Let ω be the fixed point of σ as in the proposition. For this ω, the proof of Theorem 5.5 may reach the same conclusion, that is, the first return map of $X_{\sigma_{2}}$ induced on $X_{\sigma_{2}} \backslash[a]$ is uniquely ergodic. This means the unique ergodicity of $X_{\sigma_{2}}$.

Corollary 5.6 The subshift X_{σ} is uniquely ergodic if and only if one of the following holds:
(i) $\lambda=\theta_{1}>1$;
(ii) $\theta_{1}=1, \lambda=\theta_{2}>1$, and $s^{\infty} \notin X_{\sigma}$, where $A_{1}=\{s\}$.
(iii) $\lambda=1$;

Proof. Assume that X_{σ} is uniquely ergodic. In view of Theorem 3.15, we first consider the case where $\lim _{n \rightarrow \infty}\left|\sigma^{n}(a)\right|=\infty$ for any $a \in A_{1}$. Since $X_{\sigma_{1}}$ is the unique minimal set and $\theta_{1}>1$, Theorem 5.5 implies that $\theta_{i}<\theta_{1}$ for any integer i with $1<i \leq n_{\sigma}$. This corresponds to (i). We then consider the case where A_{1} is a singleton, say $\{s\}$, and $s^{\infty} \notin X_{\sigma}$. Then, σ_{2} must satisfy the hypothesis of Proposition 3.2, and hence $\theta_{2}>1$. Theorem 5.5 implies $\theta_{2}>\theta_{i}$ for any integer i with $2<i \leq n_{\sigma}$. This corresponds to (ii). We then consider the case where A_{1} is a singleton and σ_{2} is almost primitive. In this case, $\left\{s^{\infty}\right\}$ is the unique minimal set, where $A_{1}=\{s\}$. It follows from Theorem 5.5 again that $\theta_{2}=\theta_{3}=\cdots=\theta_{n_{\sigma}}=1$. This corresponds to (iii). The converse implication is straightforward in view of Lemma 4.1 (i), Theorems 3.15 and 5.5.

Among the examples studied above, uniquely ergodic systems are exactly (i), (ii) of Example 3.6, (i), (ii) of Example 3.10, and (i) of Example 4.5.

Remark 5.7 In [2], θ_{i} is said to be distinguished if $\theta_{i}>\lambda_{i-1}$. It follows from Lemma 4.1 (i) and Theorem 5.5 that the case $\theta_{i}=1$ corresponds to the counting measure on $\operatorname{Orb}_{T_{\sigma}}\left(y_{i}\right)$ or $\operatorname{Orb}_{T_{\sigma}}\left(x_{i j}\right)$. This kind of result is not obtained by [2]. Compare Theorem 5.5 and Corollary 5.6 with [2, Corollary 5.5].

References

[1] Bezuglyi S., Kwiatkowski J. and Medynets K., Aperiodic substitution systems and their Bratteli diagrams. Ergodic Theory Dynam. Systems 29(1) (2009), 37-72.
[2] Bezuglyi S., Kwiatkowski J., Medynets K. and Solomyak B., Invariant measures on stationary Bratteli diagrams. Ergodic Theory Dynam. Systems 30(4) (2010), 973-1007.
[3] Danilenko A., Strong orbit equivalence of locally compact Cantor minimal systems. Internat. J. Math. 12(1) (2001), 113-123.
[4] Durand F., Host B. and Skau C., Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergodic Theory Dynam. Systems 19 (1999), 953-993.
[5] Fisher A., Integer Cantor sets and an order-two ergodic theorem. Ergodic Theory Dynam. Systems 13 (1992), 45-64.
[6] Forrest A., K-groups associated with substitution minimal systems. Israel J. Math. 98 (1997), 101-139.
[7] Herman R., Putnam I. and Skau C., Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3 (1992), 827-864.
[8] Lind D. and Marcus B., An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1999.
[9] Medynets K., Cantor aperiodic systems and Bratteli diagrams. C. R. Math. Acad. Sci. Paris 342 (2006), 43-46.
[10] Pytheas Fogg N., Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Math., vol. 1794, Springer-Verlag, Berlin, 2002, edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
[11] Queffélec M., Substitution Dynamical Systems - Spectral Analysis. Lecture Notes in Math., vol. 1294, Springer-Verlag, Berlin-New York, 1987.
[12] Yuasa H., Invariant measures for the subshifts arising from non-primitive substitutions. J. Anal. Math. 102(1) (2007), 143-180.
M. Hama

Department of English Language and Literature Bunkyo Gakuin College
1-19-1 Mukougaoka, Bunkyo-ku
Tokyo 113-8668, Japan
E-mail: mhama@ell.u-bunkyo.ac.jp
H. Yuasa

17-23-203 Idanakano-cho, Nakahara-ku, Kawasaki Kanagawa 211-0034, Japan
E-mail: hisatoshi_yuasa@ybb.ne.jp

