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Invariant measures for subshifts arising from substitutions

of some primitive components
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Abstract. The notion of substitutions of some primitive components is introduced.

A bilateral subshift arising from a substitution of some primitive components is de-

composed into pairwise disjoint, locally compact, shift-invariant sets, on each of which

an invariant Radon measure is unique up to scaling. In terms of eigenvalues of an

incidence matrix associated with the substitution, it is completely characterized when

the unique invariant measure is finite.
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1. Introduction

It was shown by [6], [4] that any “aperiodic”, stationary, properly or-
dered Bratteli diagram gives rise to a Bratteli-Vershik system conjugate to a
bilateral subshift arising from an aperiodic, primitive substitution, and vice
versa. In [1], this correspondence was extended by successfully removing the
hypothesis of both simplicity for Bratteli diagrams and primitivity for sub-
stitutions. They showed that if B is a stationary, ordered Bratteli diagram
which admits an aperiodic Vershik map λB acting on a perfect space XB ,
then the following are equivalent:

• Bratteli-Vershik system (XB , λB) is conjugate to a subshift arising
from an aperiodic substitution;

• no restriction of λB to a minimal set is conjugate to an odometer.

They also showed a converse statement that given an aperiodic substitution
with nesting property, there exists a stationary, ordered Bratteli diagram
yielding a Bratteli-Vershik system conjugate to a subshift arising from the
substitution. In contrast to [6], [4], it is remarkable that ordered Bratteli
diagrams with more than one minimal or maximal paths play central roles
in the above-mentioned correspondence [1]; see also [9].
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On the other hand, aiming at a similar result in the class of almost
simple, ordered Bratteli diagrams [3], the second author [12] introduced
the notion of almost primitivity for substitutions, and showed that an al-
most primitive substitution generates an almost minimal subshift [3] with
a unique (up to scaling), nonatomic, invariant Radon measure. Before this
work, as pointed out in [2], a concrete almost primitive substitution was
studied in [5], which is the so-called Cantor substitution. By [7], [3], any al-
most minimal system is conjugate to the Vershik map arising from an almost
simple, ordered Bratteli diagram. It is still an open question to character-
ize a class of almost simple, ordered Bratteli diagrams whose Vershik maps
conjugate to subshifts arising from almost primitive substitutions. Actually,
this question forces us to be in a quite different situation from [6], [4], [1]:
there exists a class of non-stationary, almost simple, ordered Bratteli dia-
grams whose Vershik maps are conjugate to subshifts arising from almost
primitive substitutions; see for details [12, Remark 5.5].

Applying the correspondence [1] mentioned above and exploiting
stationary, ordered Bratteli diagrams, S. Bezuglyi, J. Kwiatkowski, K.
Medynets and B. Solomyak [2] studied invariant measures for subshifts aris-
ing from aperiodic substitutions. Roughly speaking, one of their results
showed the existence of a one-to-one correspondence between the set of er-
godic, probability (resp. nonatomic, infinite) measures for the subshift Xσ

arising from a given aperiodic substitution σ and the set of “distinguished”
eigenvectors (resp. non-distinguished eigenvalues) of the incidence matrix
Mσ of σ. One of the goals of this paper is to restructure this correspondence
in the class of substitutions of some primitive components (Definition 2.1)
without using any Bratteli diagrams. The class is so large that it includes
all the primitive or almost primitive ones, and the so-called Chacon substi-
tution as well. Some properties required for a substitution to be of some
primitive components are stronger, but the other is weaker, than properties
of substitutions studied in [2]. We will also show that a bilateral subshift
Xσ arising from a given substitution σ of some primitive components is
decomposed into finite number of pairwise disjoint, locally compact, shift-
invariant sets Xi so that an invariant Radon measure on each Xi is unique
up to scaling, and moreover, the orbit of any point in each Xi is dense in
Xi. In terms of eigenvalues of Mσ, we will also describe the same criterion
as [2] to determine when the unique invariant Radon measure is finite.

All the way to the end of this paper, we will not exploit any Bratteli
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diagrams but tools within the framework of subshifts. This standing position
is quite different from [2]. A characterization (Lemma 5.4) when a locally
compact minimal subshift over a finite alphabet has a unique (up to scaling)
invariant Radon measure will help us prove Theorem 5.5. In Section 4,
auxiliary substitutions developed by [11] play central roles when we estimate
how fast the number of the occurrences of a letter in a k-word of a given
substitution of some primitive components increases as k tends to infinity.
The auxiliary substitutions also make it possible to calculate measures of
cylinder sets with respect to invariant measures (Example 5.3).

2. Substitutions in question

We basically follow notation and terminology adopted in [4] concerning
combinatorics on words. Let A be a finite alphabet with ]A ≥ 2. Let A+

denote the set of nonempty words over A. Set A∗ = A+ ∪ {Λ}, where Λ
is the empty word. We say that u ∈ A+ occurs in v ∈ A+, or u is a factor
of v, if there exists an integer i with 1 ≤ i ≤ |v| such that v[i,i+|u|) :=
vivi+1 . . . vi+|u|−1 = u, where |v| denotes the length of v and vn is the n-th
letter of v. We refer to i as an occurrence of u in v. Given u, v ∈ A+, we
denote by N(u, v) the number of the occurrences of u in v.

A substitution σ on A is a map from A to A+. By concatenations of
words, we may define powers σk : A → A+ of σ for k ∈ N, and may enlarge
the domain of the powers to A+ or AZ. A subshift

Xσ =
{
x = (xi)i∈Z ∈ AZ;x[−i,i] := x−ix−i+1 . . . xi ∈ L(σ) for every i ∈ N}

is called a substitution dynamical system, where

L(σ) =
⋃

n∈N,a∈A

{
w ∈ A∗;w is a factor of σn(a)

}
.

A word of the form σn(a) is called an n-word. We set Ln(σ) = {w ∈
L(σ); |w| = n} for n ∈ N. We denote by Tσ the left shift on Xσ, and let
OrbTσ

(x) = {Tσ
nx;n ∈ Z} for x ∈ Xσ. Given an infinite sequence x over A,

we set L(x) = {w ∈ A∗;w is a factor of x}, and L(X) =
⋃

x∈X L(x) if X ⊂
AZ. Given u, v ∈ A∗, we denote by [u.v] a cylinder set {x ∈ Xσ;x[−|u|,|v|) =
uv}. If u = Λ, then we use the notation [v] in stead of [Λ.v]. Given x ∈ Xσ,
let δx denote the point mass concentrated on x. A positive measure on a
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locally compact metric space is called a Radon measure if it is finite on any
compact set.

The incidence matrix Mσ of σ is an A×A matrix whose (a, b)-entry is
N(b, σ(a)). Putting a linear order on A, say a1 < a2 < · · · < an, we also
write (Mσ)i,j to indicate the (ai, aj)-entry (Mσ)ai,aj

. Let us recall some
basic facts concerning square matrices. Let M be a nonnegative square
matrix. The matrix M is said to be primitive if there exists k ∈ N such
that Mk > 0, i.e. every entry of Mk is positive. We denote by Sp(M) the
set of eigenvalues of M . If λ ∈ Sp(M) is such that |η| < λ for any other
η ∈ Sp(M), then we call λ a dominant eigenvalue of M . In this case,

min
i

∑

j

Mi,j ≤ λ ≤ max
i

∑

j

Mi,j .

Perron-Frobenius Theory guarantees that any primitive matrix M has a
simple, dominant eigenvalue λ which admits a positive eigenvector. Then,
letting α and β be positive, right and left eigenvectors of M corresponding
to λ, respectively, with βα = 1, it follows that limk→∞ λ−k(Mk)ij = αiβj

for all possible i, j. See for details [8].

Definition 2.1 A substitution σ : A → A+ is said to be of some primitive
components if there is a sequence ∅ 6= A1 ( A2 ( · · · ( An−1 ( An = A

such that

( i ) for every integer i with 1 ≤ i ≤ n, it holds that σ(a) ∈ Ai
+ if a ∈ Ai;

( ii ) there exists k ∈ N such that for any integer i with 1 ≤ i ≤ n, any
a ∈ Ai \Ai−1 and any b ∈ Ai, the letter b occurs in σk(a),

where A0 = ∅. We also say that the substitution σ is of n primitive compo-
nents. We call n the number of primitive components of σ, and denote it by
nσ.

If a given substitution σ is of some primitive components, then Mσ is
written in a form:

Mσ =




Q1 0 0 · · · 0
R2,1 Q2 0 · · · 0
R3,1 R3,2 Q3 · · · 0

...
...

...
. . .

...
Rnσ,1 Rnσ,2 Rnσ,3 · · · Qnσ




(2.1)
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so that all the entries on or below diagonal of some power of Mσ are posi-
tive. Conversely, this property implies that a given substitution is of some
primitive components.

In the case nσ = 1, a substitution σ becomes primitive. Then the
subshift Xσ is minimal and uniquely ergodic; see for example [10], [11].
Throughout this paper, we assume nσ ≥ 2. Any almost primitive substitu-
tion is of two primitive components; see for details [12].

Definition 2.1 allows us to define a substitution σi : Ai → Ai
+, 1 ≤

i ≤ nσ, by σi(a) = σ(a) for a ∈ Ai. The substitution σi is of i primitive
components. Since

L(σ1) ⊂ L(σ2) ⊂ · · · ⊂ L(σnσ−1) ⊂ L(σnσ ) = L(σ),

we have

Xσ1 ⊂ Xσ2 ⊂ · · · ⊂ Xσnσ−1 ⊂ Xσnσ
= Xσ,

which are all Tσ-invariant closed sets. All of Xσ2 , Xσ3 , . . . , Xσ are always
nonempty. It holds that Xσ1 = ∅ if and only if A1 is a singleton and σ(s) = s,
where A1 = {s}.

The class S of substitutions of some primitive components is different
from the class T of substitutions studied in [2]. A substitution σ : A → A+

belongs to T if and only if the following conditions are satisfied:

(1) limn→∞ |σn(a)| = ∞ for any a ∈ A;
(2) σ is aperiodic, that is, Xσ has no periodic points of Tσ;
(3) Mσ is written in a form:

Mσ =




Q1 0 · · · 0 0 · · · 0
0 Q2 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · Qs 0 · · · 0

Rs+1,1 Rs+1,2 · · · Rs+1,s Qs+1 · · · 0
...

...
...

...
. . .

...
Rm,1 Rm,2 · · · Rm,s Rm,s+1 · · · Qm




(2.2)

so that
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(a) for every integer i with 1 ≤ i ≤ m, Qi is a primitive matrix if it is
nonzero;

(b) for every integer i with s < i ≤ m, there exists an integer j with
1 ≤ j < i such that Ri,j 6= 0.

Notice that no inclusion relations hold between S and T . Neither (1) nor (2)
is required for a substitution to be of some primitive components. However,
the irreducible properties of incidence matrices required in (3) are not as
rigid as those required for substitutions of some primitive components.

The following is a key lemma to investigate recurrence property and
invariant sets for Xσ.

Lemma 2.2 Given an integer i with 1 < i ≤ nσ, there exist a ∈ Ai−1,
b ∈ Ai \ Ai−1, k ∈ N, u ∈ Ai−1

∗ and v ∈ Ai
∗ such that at least one of the

following holds:

( i ) ab ∈ L(σi) and σk(ab) = uabv;
( ii ) ba ∈ L(σi) and σk(ba) = vbau.

Proof. Put r = ]Ai. Find a0 ∈ Ai−1 and b0 ∈ Ai \ Ai−1 such that a0b0

∈ L(σi) or b0a0 ∈ L(σi). It is enough to consider only the case a0b0 ∈
L(σi). Let 1 ≤ mj < |σj(b0)| be such that σj(b0)[1,mj) ∈ Ai−1

∗ and bj :=
σj(b0)mj

∈ Ai \Ai−1. Put aj = σj(a0b0)|σj(a0)|+mj−1. Since aj1bj1 = aj2bj2

for some j2 > j1 ≥ 0, (i) holds with a = aj1 , b = bj1 and k = j2 − j1. ¤

We consider mainly the case where Lemma 2.2 (i) holds, because results
below would be verified by means of symmetric arguments also for substi-
tutions satisfying (ii) of the lemma. Since Xσk = Xσ for any k ∈ N, we may
assume Lemma 2.2 (i) with k = 1.

3. Recurrence property of σ

Throughout this section, we let a, b, i, u and v be as in Lemma 2.2 (i).
We are concerned with structure of Xσi

\Xσi−1 . Consider the case u = Λ.
Then σ(a) = a, and hence σ(b) = bv, v 6= Λ, Ai−1 = {a}, i = 2 and Xσ1 = ∅.
Lemma 3.1 ([12, Lemma 2.3]) Let τ : B → B+ be a substitution such
that τ(s) = s for some s ∈ B. Then the following are equivalent :

( i ) sp ∈ L(τ) for any p ∈ N;
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( ii ) there exist c ∈ B \ {s}, k, l ∈ N and w ∈ B∗ such that τk(c) = slcw

or τk(c) = wcsl.

Assume Lemma 3.1 (ii) with τ = σ2. Then B = A2 and s = a. If
w = Λ, then c = b and Xσ2 = {a∞}. If w 6= Λ, then σ2 is almost primitive,
so that Xσ2 is almost minimal [12, Theorem 3.8].

Assume the existence of p1 ∈ N such that ap /∈ L(σ2) if p ≥ p1. Then a
letter of A2 \A1 occurs in v, so that b occurs infinitely many times in a fixed
point ω+ := bvσ(v)σ2(v)σ3(v) · · · ∈ A2

N of σ. This implies that there exists
a periodic point ω ∈ Xσ2 of σ such that ω[0,∞) = ω+. It follows therefore
that L(Xσ2) = L(ω) and hence Xσ2 = OrbTσ

(ω).

Proposition 3.2 Xσ2 is minimal and uniquely ergodic.

Proof. Let w ∈ L(ω). We may assume σ(ω) = ω. Take k ∈ N so that w

occurs in σk(c) for any c ∈ A2 \A1. Since ω = . . . σk(ω−2)σk(ω−1).σk(ω0)σk

(ω1) . . . , w occurs in any factor of ω whose length is 2maxc∈A2\A1 |σk(c)|+
p1. This means the minimality of Xσ2 , since w occurs infinitely often in ω

with a bounded gap.
The unique ergodicity will be proved below by using Theorem 5.5. ¤

The Chacon substitution: a 7→ a, b 7→ bbab satisfies the hypothesis
of Proposition 3.2. The subshift Xσ2 may be the orbit of a shift-periodic
point. If A2 = {a, b} and σ2 is defined by a 7→ a and b 7→ bab, then
Xσ2 = {(ab)∞.(ab)∞, (ba)∞.(ba)∞}.

We assume u 6= Λ until Proposition 3.13. Consider the case v = Λ.
Denoting ua by u afresh, we may write σ(b) = ub. Observe Ai \Ai−1 = {b}.
In view of a configuration of words:

σ(b) = ub

σ2(b) = σ(u)ub

σ3(b) = σ2(u)σ(u)ub

...
...

we define a fixed point ω ∈ Ai
−N of σ by ω = . . . σ5(u)σ4(u)σ3(u)σ2(u)

σ(u)ub. Observe L(ω) = L(σi).
Assume u = a|u|. Then Ai−1 = {a}, so that i = 2. If σ(a) = a, then

Xσ2 = {a∞} and Xσ1 = ∅. If σ(a) = ap with p ≥ 2, then Xσ2 = Xσ1 =
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{a∞}. Throughout the remainder of this section, we assume u 6= a|u|. Then
one of the following holds:

• i = 2 and ]Ai−1 ≥ 2;
• i ≥ 3.

Lemma 3.3 Any word in L(Xσi) occurs infinitely often in ω. Conse-
quently, Xσi

⊂ Ai−1
Z.

Proof. Assume that some v ∈ L(Xσi
) occurs only finitely many times in

ω. Take L ∈ N so that v does not occur in ω(−∞,−L). It follows that if
vw ∈ L(Xσi) then |w| ≤ L, which is a contradiction. ¤

If {un}n∈N, {vn}n∈N ⊂ A+ satisfy the properties:

• un is a suffix of un+1 for each n ∈ N;
• vn is a prefix of vn+1 for each n ∈ N;
• limn→∞ |un| = limn→∞ |vn| = ∞,

we denote by limn→∞ un.vn a point x ∈ AZ defined by x[−|un|,|vn|) = unvn

for each n ∈ N.

Proposition 3.4 Let x ∈ Xσi
. Then the following are equivalent :

( i ) x ∈ Xσi \Xσi−1 ;
( ii ) x belongs to the orbit of a periodic point y ∈ Xσi

\Xσi−1 of σ, which
is aperiodic under Tσ, such that for some n ∈ N, y[−n,n) /∈ L(Xσi−1)
and y(−∞,−n−1], y[n,∞) ∈ L(Xσi−1).

The point y would occur in one of the following fashions. If limn→∞ |σn(c)|
= ∞ for any c ∈ A, then there exist γ, δ ∈ Ai−1 and q ∈ N such that

• γδ ∈ L(Xσi) \ L(Xσi−1);
• σqj(γ)|σqj(γ)| = γ and σqj(δ)1 = δ for any j ∈ N;
• y = limj→∞ σqj(γ).σqj(δ).

If A1 is a singleton, say {s}, then there exist γ, δ ∈ Ai−1 \ A1, p ∈ N ∪ {0}
and r ∈ N such that

• σrj(δ)|σrj(δ)| = δ and σrj(γ)1 = γ for any j ∈ N;
• y is written in one of the following forms:

y = lim
j→∞

sj .σrj(γ), y = lim
j→∞

σrj(δ).sj and y = lim
j→∞

σrj(δ).spσrj(γ).
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Proof. Assuming (i), we see (ii) in each of the cases:

(A) limn→∞ |σn(c)| = ∞ for all c ∈ A1;
(B) A1 is a singleton, say A1 = {s}, and σ(s) = s.

Case (A). Take strictly increasing sequences {hj}j∈N, {nj}j∈N ⊂ N so that
for each j ∈ N, x[−hj ,hj) /∈ L(Xσi−1) and minc∈Ai−1 |σnj (c)| ≥ 2hj . Set

Kj =
{
k ∈ −N;x[−hj ,hj) occurs in σnj (ωk−1)σnj (ωk)

}
.

Choose c, d ∈ Ai−1 so that there exist infinitely many j’s such that
ωkj−1ωkj

= cd for some kj ∈ Kj . By replacing {nj}j∈N with its appro-
priate subsequence, we may assume that for every j ∈ N, x[−hj ,hj) is a
factor of σnj (c)σnj (d), and σnj (c)|σnj (c)| and σnj (d)1 are constant, say γ

and δ, respectively. We may assume furthermore that nj+1 − nj is con-
stant, say q, which might be the least common multiple of min{n ∈ N;
σn(γ)|σn(γ)| = γ} and min{n ∈ N;σn(δ)1 = δ}. There exists a sequence
{wj ∈ Ai−1

+;wj is a factor of σqj(γδ)}j∈N which approximates x arbitrar-
ily close, because (A) is assumed. Since x[−hj ,hj) /∈ L(Xσi−1), γδ /∈ L(Xσi−1)
and each factor x[−hj ,hj) of σqj(γ)σqj(δ) necessarily contains γδ as a fac-
tor. Observe that γδ occurs just once in x[−hj ,hj), which would imply the
shift-aperiodicity of x. Then, Tσ

kx = limj→∞ σqj(γ).σqj(δ) for some k ∈ Z,
which is a periodic point of σ.

Case (B). We have i ≥ 3. By Lemma 3.1, s∞ /∈ Xσi
\Xσi−1 . Take strictly

increasing sequences {hj}j , {nj}j ⊂ N such that for every j ∈ N, x[−hj ,hj)

/∈ L(Xσi−1) and minc∈Ai−1\A1 |σnj (c)| ≥ 2hj . For each j ∈ N, there exist
kj ∈ −N and pj , qj ≥ 0 such that

• x[−hj ,hj) occurs in σnj (ω[kj−qj ,kj+pj+1]);
• ωkj

, ωkj+pj+1 ∈ Ai−1 \A1;
• ω[kj−qj ,kj) and ω[kj+1,kj+pj ] are powers of s.

Similar arguments to those in Case (A) may allow us to assume the existence
of w, w′ ∈ L(σi−1), δ, γ, ε ∈ Ai−1 \A1 and r ∈ N such that

• for each j ∈ N, x[−hj ,hj) is a factor of sqj σrj(w)spj σrj(w′);
• for each j ≥ 0, the first and the last letters of Ai−1 \ A1 to occur in

σrj(w) are δ and γ, respectively;
• for each j ≥ 0, the first letter of Ai−1 \A1 to occur in σrj(w′) is ε.
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Let mj be an occurrence of x[−hj ,hj) in sqj σrj(w)spj σrj(w′). Put m′
j =

mj + 2hj − 1. It might be sufficient to consider the following cases:

( I ) ]{j ∈ N; 1 ≤ mj ≤ qj} = ∞;
(II) ]{j ∈ N; 0 < mj − qj ≤ |σrj(w)|} = ∞.

Let us first consider Case (I). Let lj = max{l ≥ 0; sl is a prefix of
σrj(w′)}. Assume ]{j ∈ N;m′

j ≤ qj + |σrj(w)| + pj + lj} = ∞. Since
x /∈ Xσi−1 ∪{s∞}, there exists {jk}k ⊂ N such that limk→∞(qjk

−mjk
) = ∞

or limk→∞(m′
jk
− qjk

− |σrjk(w)|) = ∞. Hence, we may assume that either
for every k, the first letter of σrjk(w) is γ, or for every k, the last letter of
σrjk(w) is δ. Then, one of the following holds:

• Tσ
kx = limj→∞ sj .σrj(γ) for some k ∈ Z, and spγ /∈ L(Xσi−1) for

some p ∈ N;
• Tσ

kx = limj→∞ σrj(δ).sj for some k ∈ Z, and δsp /∈ L(Xσi−1) for
some p ∈ N.

This shows the conclusion.
Let us assume ]{j ∈ N;m′

j > pj + |σrj(w)| + qj + lj} = ∞. If for any
p ∈ N, δspε occurs in x, then each of them occurs infinitely many times in
ω. However, it is impossible, because the last (resp. first) letter of Ai−1 \A1

to occur in σrj(δ) (resp. σrj(ε)) is δ (resp. ε). Hence, {pj}j is bounded,
and the last (resp. first) letter of σrj(δ) (resp. σrj(ε)) is δ (resp. ε). Then,
Tσ

kx = limj→∞ σrj(γ).σrj(sp).σrj(δ) for some k ∈ Z and some p ∈ N, and
we have γspδ /∈ L(Xσi−1). The same argument works also in Case (II). This
completes the proof. ¤

The following is an immediate consequence of Proposition 3.4.

Corollary 3.5 There is a possibly empty set {xj ∈ Xσi\Xσi−1 ; 1 ≤ j ≤ N}
of periodic points of σ such that

( i ) OrbTσ
(xj) = Xσi−1 ∪ OrbTσ

(xj) (a disjoint union) for any integer j

with 1 ≤ j ≤ N ;
( ii ) Xσi \Xσi−1 =

⋃N
j=1 OrbTσ (xj) (a disjoint union).

Example 3.6 We shall see substitutions satisfying the hypothesis of
Proposition 3.4.

( i ) Set A = {a, b, c}. Let w ∈ {a, b}+. Define σ : A → A+ by a 7→ ab,
b 7→ a, c 7→ wc. Since {aa, ab, ba} ⊂ L(Xσ1) and bb /∈ L(σ2), we have
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Xσ2 \Xσ1 = ∅.
( ii ) Set A = {a, b, c, d}. Define σ : A → A+ by a 7→ abca, b 7→ bacb,

c 7→ cbac, d 7→ abbcad. Since {aa, bb} ⊂ L(σ2) \ L(Xσ1),

Xσ2 \Xσ1 = OrbTσ

(
lim

n→∞
σn(a).σn(a)

)

∪ OrbTσ

(
lim

n→∞
σn(b).σn(b)

)
.

(iii) Set A = {a, b, c, d, e}. Define σ : A → A+ by a 7→ a, b 7→ cba, c 7→ cbc,
d 7→ dc, e 7→ bde. It follows that Xσ1 = ∅, Xσ2 is almost minimal
with a unique fixed point a∞,

Xσ3 \Xσ2 = OrbTσ

(
lim

n→∞
σn(c).σn(c)

)
and

Xσ4 \Xσ3 = OrbTσ

(
lim

n→∞
an.σn(d)

)
.

We assume v 6= Λ until Proposition 3.13. In view of a configuration of
words:

σ(ab) = uabv

σ2(ab) = σ(u)uabvσ(v)

σ3(ab) = σ2(u)σ(u)uabvσ(v)σ2(v)
...

...

we define a point ω ∈ Xσi
\Xσi−1 by

ω = . . . σ4(u)σ3(u)σ2(u)σ(u)ua.bvσ(v)σ2(v)σ3(v)σ4(v) . . .

Following [12, Definition 2.5], we make a definition:

Definition 3.7 We call the point ω a quasi-fixed point of the substitution
σ. We refer to a quasi-fixed point of a power σk as a quasi-periodic point of
σ. A quasi-periodic point x ∈ Xσi \Xσi−1 is said to be of a primitive type
if it holds that xk ∈ Ai \Ai−1 ⇔ k = 0.

It follows from the construction of ω that

( i ) for every k ∈ N, there exists an integer lk with 0 ≤ lk < |σk(b)| such
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that Tσ
lkσk(ω) = ω;

( ii ) L(ω) = L(σi) = L(Xσi
);

(iii) OrbTσ (ω) = Xσi .

Recall that x ∈ AZ is said to be positively recurrent if for every n ∈ N, there
is i ∈ N such that x[i−n,i+n) = x[−n,n).

Lemma 3.8
( i ) ω is aperiodic under Tσ.
( ii ) ω is positively recurrent if and only if v ∈ Ai

+ \Ai−1
+.

(iii) Put Kn = {k ∈ Z;ω[k,k+n) ∈ Ai−1
+} for n ∈ N. For every n ∈ N,

there exists m ∈ N such that {l ≤ k < l + m; k ∈ Kn} 6= ∅ for any
l ∈ Z.

Proof. Since ω(−∞,−1] ∈ Ai−1
−N and ω0 /∈ Ai−1, ω is aperiodic under Tσ.

If v ∈ Ai−1
+, then ω is not positively recurrent, because ωn 6= ω0 for

every n > 0. Suppose vj ∈ Ai \ Ai−1 with 1 ≤ j ≤ |v|. Take k ∈ N so that
for any c ∈ Ai \ Ai−1, ab occurs in σk(c). Since for every n ∈ N and any
c ∈ Ai \Ai−1, σn(ab) occurs in σn+k(c), ω is positively recurrent.

If v ∈ Ai−1
+, then (iii) is trivial. Assume v ∈ Ai

+\Ai−1
+. Given n ∈ N,

choose p ∈ N so that any word belonging to Ln(σi) occurs in σp(c) for any
c ∈ Ai \Ai−1. Then, (iii) holds with m = 2 max{maxc∈Ai\Ai−1 |σp(c)|, n}.

¤

If u = a|u|, then σ(a) = ap for some p ∈ N, which forces that i = 2,
A1 = {a} and σ2 is almost primitive. From now on, we assume u 6= a|u|.

Consider the case v ∈ Ai−1
+. It follows that Ai \Ai−1 = {b} = {ω0}, ω

is of a primitive type, and OrbTσ
(ω) = Xσi−1 ∪OrbTσ

(ω) (a disjoint union).

Proposition 3.9 There is a possibly empty set {xj ∈ (Xσi \ Xσi−1) ∩
Ai−1

Z; 1 ≤ j ≤ N} of periodic points of the substitution σ such that

( i ) Xσi \Xσi−1 = OrbTσ (ω) ∪⋃N
j=1 OrbTσ (xj) (a disjoint union);

( ii ) if xj is periodic under Tσ, then A1 is a singleton, say {s}, and xj =
s∞;

(iii) if xj is aperiodic under Tσ, then OrbTσ
(xj) = Xσi−1 ∪OrbTσ

(xj).

Proof. Assume x ∈ Xσi
\ Xσi−1 . If xk ∈ Ai \ Ai−1 for some k ∈ Z, then

x = Tσ
kω. If x ∈ Ai−1

Z, then arguments in the proof of Proposition 3.4
work. ¤
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Example 3.10 We shall see substitutions satisfying the hypothesis of
Proposition 3.9.

( i ) Set A = {a, b, c, d}. Define σ : A → A+ by a 7→ abca, b 7→ bacb,
c 7→ cbac, d 7→ abadcac. It follows that {aa, cc} ⊂ L(σ2) \ L(σ1).
Then,

Xσ2 \Xσ1 = ∪OrbTσ
(ω) ∪

2⋃

j=1

OrbTσ
(xj),

where x1 = limn→∞ σn(a).σn(a) and x2 = limn→∞ σn(c).σn(c).
( ii ) Set A = {a, b, c, d}. Define σ : A → A+ by a 7→ ab, b 7→ ab,

c 7→ acb, d 7→ cdc. Then, Xσ1 = OrbTσ
(x) = {x, Tσx}, Xσ2 \Xσ1 =

OrbTσ (ω) and Xσ3 \Xσ2 = OrbTσ (ω′), where x = (bc)∞.(bc)∞, ω =
. . . σ2(a)σ(a)a.cbσ(b)σ2(b) . . . , and ω′ = . . . σ2(c)σ(c)c.dcσ(c)σ2(c)
. . . .

(iii) Set A = {a, b, c, d, e}. Define σ : A → A+ by a 7→ a, b 7→ cbab,
c 7→ cbc, d 7→ adc, e 7→ bdea. Then, Xσ1 = ∅, Xσ2 is minimal,

Xσ3 \Xσ2 = {a∞} ∪OrbTσ

(
lim

n→∞
σn(c).σn(c)

)
∪OrbTσ (ω),

and Xσ4 \Xσ3 = ∅, where ω = a∞.dcσ(c)σ2(c)σ3(c) . . . .

We next consider the case v ∈ Ai
+ \Ai−1

+.

Definition 3.11
( i ) Let w ∈ Ai

+. We refer to w[m,n] ∈ Ai−1
+ as a possible word in w if

w[m′,n′] ∈ Ai−1
+, 1 ≤ m′ ≤ m, n ≤ n′ ≤ |u| ⇒ m′ = m, n′ = n.

( ii ) Let k′ ≥ k ≥ 1 be integers and let c ∈ Ai. Suppose that σk(c)[m,n]

(resp. σk′(c)[m′,n′]) is a possible word in σk(c) (resp. σk′(c)). We call
σk(c)[m,n] an ancestor of σk′(c)[m′,n′] if

∣∣σk′−k(σk(c)[1,m))
∣∣ + 1 ≥ m′ and

∣∣σk′−k(σk(c)[m,n])
∣∣ ≤ n′.

Lemma 3.12 Set M = maxc,d∈Ai{|w|;w is a possible word in σ(cd)}.
Let p ∈ N. Suppose that σk(c)[j,j+n) ∈ Ai−1

+ and σk(c)j+n ∈ Ai \ Ai−1

for some (c, k, j, n) ∈ Ai \ Ai−1 × N × N × N with 1 ≤ j ≤ |σk(c)| and
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n ≥ (p + M)M . Then, there exists c′ ∈ Ai \Ai−1 such that

σk(c)[j+n−n′,j+n−n′+|σp(c′)|) = σp(c′),

where n′ = max{|w|;w ∈ Ai−1
+, w is a prefix of σp(c′)}.

Proof. Let j′ be such that σk(c)[j′,j+n) is a possible word in σk(c). There
exists an integer k′ with 1 ≤ k′ ≤ k such that σk(c)[j′,j+n) does not have any
ancestor in σk′−1(c) but does in σk′(c). For each integer l with k′ ≤ l ≤ k,
let σl(c)[jl,jl+nl) denote the ancestor of σk(c)[j′,j+n). Since

(p + M)M ≤ n + j − j′ ≤ nk′M +
k−1∑

l=k′

(
nl+1 − |σ(σl(c)[jl,jl+nl))|

)

≤ M2 + (k − k′)M,

we obtain k−k′ ≥ p. The conclusion holds by taking c′ to be the first letter
of Ai \Ai−1 to occur in σk−k′−p(σk′(c)jk′+nk′ ). ¤

Proposition 3.13 There is a possibly empty set {xj ∈ (Xσi \ Xσi−1) ∩
Ai−1

Z; 1 ≤ j ≤ N} of periodic points of σ such that

( i ) OrbTσ (xj) ∩OrbTσ (xj′) = ∅ if j 6= j′;
( ii ) if xj is periodic under Tσ, then A1 is a singleton, say {s}, and xj =

s∞;
(iii) if xj is aperiodic under Tσ, then OrbTσ

(xj) = Xσi−1 ∪ OrbTσ
(xj) (a

disjoint union);
(iv) the orbit of any point in a Tσ-invariant, locally compact set :

Xi := Xσi
\

(
Xσi−1 ∪

N⋃

j=1

OrbTσ
(xj)

)
(3.1)

is dense in Xσi
, where we let Xσ0 = ∅.

Proof. Properties (i)∼(iii) are verified by the same argument as in the
proof of Proposition 3.9. Let x′ ∈ Xi. Let w ∈ L(Xσi). Take p ∈ N so
that w is a factor of σp(c) for all c ∈ Ai \ Ai−1. Fix n ∈ N with n ≥
max{(p + M)M, |σp(c)|; c ∈ Ai \ Ai−1}, where M is as in Lemma 3.12.
Lemma 3.8 (iii) together with the fact that OrbTσ

(ω) = Xσi
enables us to
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find l ∈ Z such that x′[l,l+n) ∈ Ai−1
+ and x′l+n ∈ Ai \ Ai−1. Since x′[l,l+2n)

is a factor of σk(c) for some k ∈ N and some c ∈ Ai \ Ai−1, Lemma 3.12
ensures the existence of d ∈ Ai \Ai−1 such that σp(d) is a factor of x′[l,l+2n).
Hence w is a factor of x′[l,l+2n). This completes the proof. ¤

Example 3.14 The following substitutions satisfy the hypothesis of
Proposition 3.13.

( i ) Set A = {a, b, c}. Define σ : A → A+ by a 7→ ab, b 7→ a, c 7→ acc.
Since σ1 is primitive, Xσ1 is minimal. The set Xσ2 \Xσ1 contains no
periodic points of σ.

( ii ) Set A = {a, b, c, d}. Define σ : A → A+ by a 7→ a, b 7→ bbab, c 7→ bcca.
Then, Xσ1 = ∅, Xσ2 is minimal, and Xσ3 \Xσ2 contains a∞.

Summarizing all the facts obtained above, we achieve the following.

Theorem 3.15 Let σ : A → A+ be a substitution of some primitive
components. For each integer i with 1 ≤ i ≤ nσ, we have a decomposition:

Xσi \Xσi−1 = Xi ∪OrbTσ (yi) ∪
Ni⋃

j=1

OrbTσ (xij)

of Xσi
\ Xσi−1 into possibly empty, locally compact, Tσ-invariant sets Xi,

OrbTσ
(yi) and OrbTσ

(xij) so that

( i ) Xi is as in (3.1) if it is nonempty, and hence the orbit of any point
in Xi is dense in Xσi ;

( ii ) each yi is a quasi-periodic point of a primitive type;
(iii) each xij is a periodic point of σ such that if it is periodic under Tσ,

then A1 is a singleton, say {s}, and xij = s∞; otherwise, OrbTσ
(xij)

= Xσi
∪OrbTσ

(xij).

As a consequence,

Xσ =
nσ⋃

i=1

Xi ∪
nσ⋃

i=2

OrbTσ
(yi) ∪

nσ⋃

i=2

Ni⋃

j=1

OrbTσ
(xij). (3.2)

The number of minimal sets of Xσ is at most two. The two minimal
sets are Xσ2 and {s∞}, where A1 = {s}. The minimal set is unique if and
only if one of the following holds:
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( i ) limn→∞ |σn(a)| = ∞ for any a ∈ A1;
( ii ) A1 is a singleton, say {s}, and s∞ /∈ Xσ;
(iii) A1 is a singleton and σ2 is almost primitive.

In these cases, the unique minimal set is Xσ1 , Xσ2 and {s∞}, respectively,
where A1 = {s}.

4. Perron-Frobenius Theory for auxiliary substitutions

Let σ : A → A+ be a substitution of some primitive components. Let
i be an integer with 1 ≤ i ≤ nσ. Let Q1(i) be Qi in (2.1). Let θi denote
a dominant eigenvalue of Q1(i). Given m ∈ N, define a substitution σ(m) :
Lm(σ) → Lm(σ)+ by for u ∈ Lm(σ),

σ(m)(u) = σ(u)[1,m], σ(u)[2,m+1], σ(u)[3,m+2], . . . , σ(u)[|σ(u1)|,|σ(u1)|+m−1],

where the commas between consecutive σ(u)[i,m+i−1]’s are not new letters
but just mean the separation between letters. Observe that there exists
k0 ∈ N such that any word in L(σi) occurs in σk(a) for any a ∈ Ai \ Ai−1,
any integer i with 1 ≤ i ≤ nσ and any integer k ≥ k0. Set Bm(i) = {u ∈
Lm(σi+1);u1 ∈ Ai} for 0 ≤ i < nσ. Set λi = max1≤j≤i θj and
ηi = maxi≤j≤nσ

θj for 1 ≤ i ≤ nσ, and λ = λnσ
.

We devote this section to analyzing how fast entries of Mσ(m)
k increase

as k tends to infinity.

Lemma 4.1 With possibly empty matrices Fm,k(i), Gm(i), Qm(i) and
Rm,k(i), we may write that for every k ∈ N,

Mσ(m)
k =




Qm(1)k 0 0 0 0 · · · 0 0
Fm,k(1) Gm(1)k 0 0 0 · · · 0 0

Rm,k(1) Qm(2)k 0 0 · · · 0 0
Fm,k(2) Gm(2)k 0 · · · 0 0

Rm,k(2) Qm(3)k · · · 0 0
...

. . .
...

...
Fm,k(nσ − 1) Gm(nσ − 1)k 0

Rm,k(nσ − 1) Qm(nσ)k




,
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where

• Qm(i) is an Lm(σi) \ Bm(i− 1)× Lm(σi) \ Bm(i− 1) matrix ;
• Gm(i) is a Bm(i) \ Lm(σi)× Bm(i) \ Lm(σi) matrix ;
• Fm,k(i) is a Bm(i) \ Lm(σi)× Lm(σi) matrix ;
• Rm,k(i) is an Lm(σi+1) \ Bm(i)× Bm(i) matrix.

Then,

( i ) the following are equivalent :
(a) θi = 1;
(b) Q1(i) = [1];

(c) Xσi
\Xσi−1 = OrbTσ

(y) ∪
N⋃

j=1

OrbTσ
(xj) (a disjoint union)

for a quasi-periodic point y ∈ Xσi
\Xσi−1 of a primitive type and

for some periodic points x1, x2, . . . , xN ∈ Xσi
\Xσi−1 of σ, some

of which are possibly nonexistent ;
( ii ) the following are equivalent :

(a) Lm(σi) \ Bm(i− 1) = ∅;
(b) m > 1, Ai \Ai−1 is a singleton, say {s}, and σ(s) = us for some

u ∈ Ai−1
+;

(iii) Qm(i) is a primitive matrix with a dominant eigenvalue θi, if Qm(i)
is nonempty ;

(iv) the absolute value of no eigenvalue of Gm(i) is greater than one;
( v ) there exists a set {ci > 0; 1 ≤ i ≤ nσ} such that if u ∈ Lm(σ) \

Bm(nσ − 1) and v ∈ Lm(σi) \Lm(σi−1), then (Mσ(m)
k)u,v ≥ ciηi

k for
all sufficiently large k ∈ N.

Proof. Assume that the size of Q1(i) is greater than one. Then, for a
sufficiently large k ∈ N,

θi
k = vi

−1
∑

j

(Q1(i)k)ijvj > 1,

where v is a positive, right eigenvector corresponding to θi. Hence, θi = 1
implies Q1(i) = [1]. The other parts in (i) are straightforward by using facts
from Section 3. Similarly, Statement (ii) is readily verified.

Assuming Qm(i) is nonempty, choose k0 ∈ N so that any word in Lm(σi)
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occurs in σk(a) for any integer k ≥ k0 and any a ∈ Ai \ Ai−1. This implies
Qm(i)k

> 0 if k ≥ k0. Define a Lm(σi) \ Bm(i − 1) × Ai \ Ai−1 matrix N

by Nu,a = (Mσ)u1,a for each (u, a). Then, Qm(i)N = NQ1(i) because their
(u, a)-entries are N(a, σ2(u1)). If Q1(i)v = θiv and v > 0, then Qm(i)Nv =
θiNv and Nv > 0. This implies (iii).

If (Gm(i)k)u,v > 0, then v ∈ {σk(u)[j,j+m); |σk(u1)| − m + 2 ≤ j ≤
|σk(u1)|}. Hence, for any k ∈ N, each row sum of Gm(i)k is not greater
than m− 1, which shows (iv).

In the remainder of this proof, let us show (v). Take k0 ∈ N so that
Rm,k(i) > 0 for any integer k ≥ k0 and any integer i with 1 ≤ i < nσ. Put
Mi = Mσi

(m) for 1 ≤ i ≤ nσ. Put

Mi =




Mi−1 0 0
F G 0
R R′ Q


,

where G = Gm(i− 1) and Q = Qm(i). Define F ′, Rk0 , R
′
k0

by

Mi
k0 =




Mi−1
k0 0 0

F ′ Gk0 0
Rk0 R′k0

Qk0


.

Reducing Mi
k0+k = Mi

k0Mi
k = Mi

kMi
k0 , we obtain that for every integer

k ∈ N,

Mi
k0+k ≥




Mi−1
k0+k 0 0

0 Gk0+k 0
QkRk0 QkR′k0

Qk0+k


 and

Mi
k0+k ≥




Mi−1
k0+k 0 0

0 Gk0+k 0
Rk0Mi−1

k Rk0
′G Qk0+k


.

This shows the conclusion in the case i = nσ. Applying this argument
to Mi−2 instead of Mi, we obtain the conclusion in the case i = nσ − 1.
Repeating the argument, we may obtain (v). ¤
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Lemma 4.2 Set imin = minθi=λ i and imax = maxθi=λ i. Suppose λ > 1.
Then,

( i ) a right eigenvector α = (αu)u∈Lm(σ) of Mσ(m) corresponding to λ may
be chosen so that (αu)u∈Bm(imax−1) = 0 and (αu)u∈Lm(σ)\Bm(imax−1) >

0;
( ii ) a left eigenvector β = (βu)u∈Lm(σ) of Mσ(m) corresponding to λ may

be chosen so that (βu)u∈Lm(σimin ) > 0 and (βu)u∈Lm(σ)\Lm(σimin ) = 0;
(iii) λ is a simple, dominant eigenvalue of Mσ(m) .

Proof. Put α′ = (αu)u∈Bm(nσ−1), α′′ = (αu)u∈Lm(σ)\Bm(nσ−1) and

Pm(i) =
[
Mσi

(m) 0
Fm,1(i) Gm(i)

]
.

In order to prove (i), it is sufficient to show the following statements:

(a) if θnσ
> λnσ−1, then α′ = 0 and α′′ may be chosen to be positive;

(b) if λi = λ and ξ is a right eigenvector of Pm(i) corresponding to λi such
that ξ′ := (ξu)u∈Lm(σi) ≥ 0 and ξ′ 6= 0, then (ξu)u∈Bm(i)\Lm(σi) > 0;

(c) if θnσ = λnσ−1 and α′ ≥ 0, then α′ = 0 and α′′ may be chosen to be
positive;

(d) if θnσ
< λnσ−1, α′ ≥ 0 and α′ 6= 0, then α′′ may be chosen to be

positive.

If θnσ > λnσ−1, then clearly α′ = 0, and hence we may choose α′′ to be
positive. Assuming the hypothesis of (b), since for a sufficiently large k ∈ N,

(ξu)u∈Bm(i)\Lm(σi) = λi
−k

∞∑

j=0

{
λi
−kGm(i)k

}j
Fm,k(i)ξ′ > 0, (4.1)

we obtain (b). Assume the hypothesis of (c). If α′ 6= 0, then reducing
Mσ(m)

kα = θnσ

kα, we obtain a contradiction that for a sufficiently large
k ∈ N,

0 = δ
{
θnσ

kI −Qm(nσ)k}
α′′ = δRm,k(nσ − 1)α′ > 0, (4.2)

where δ is a positive, left eigenvector of Qm(nσ) corresponding to θnσ . State-
ment (d) is obtained in the same manner as used to obtain (4.1).



298 M. Hama and H. Yuasa

Put β′ = (βu)u∈Bm(nσ−1) and β′′ = (βu)u∈Lm(σ)\Bm(nσ−1). In order to
prove (ii), it might be sufficient to show the following statements:

(1) if λnσ−1 ≥ θnσ , then β′′ = 0;
(2) if λnσ−1 < θnσ

, then β′ may be chosen to be positive;
(3) if λnσ−1 = λ and ξ is a left eigenvector of Pm(nσ − 1) corresponding to

λ, then ξu = 0 for any u ∈ Bm(nσ − 1) \ Lm(σnσ−1).

Statement (3) follows from Lemma 4.1 (iv). If λnσ−1 > θnσ , then β′′ = 0.
Assume λnσ−1 = θnσ

. If β′′ 6= 0, then we may assume β′′ > 0. This yields
a contradiction similar to (4.1). Assume λnσ−1 < θnσ

. We may assume
β′′ > 0. In a similar way to obtaining (4.2), we may see (2). Statement (iii)
is a consequence of the above argument. ¤

Remark 4.3 Perron-Frobenius Theory for matrices in (2.2) is discussed
also in [2]. In fact, more general facts are stated in Theorem 3.1 therein.

Lemma 4.4 Suppose θi > 1. If θi > λi−1, then for any u ∈ Lm(σi) \
Bm(i− 1) and any v ∈ Lm(σi),

lim
k→∞

(
θi
−kMσ(m)

k
)
u,v

= αuβv > 0. (4.3)

If θi ≤ λi−1, then there exist {γu > 0;u ∈ Lm(σi) \ Bm(i − 1)} and
{δv > 0; v ∈ Lm(σi) \ Lm(σi′−1)} such that

lim
k→∞

(
θi
−kMσ(m)

k
)
u,v

=

{∞ if v ∈ Lm(σi′−1);

γuδv otherwise,
(4.4)

where, putting I = {1 ≤ i0 < i; θi1 < θi for any integer i1 with i0 ≤ i1 < i},

i′ =

{
i if I = ∅;
min I otherwise.

Proof. We may assume i = nσ. Let s denote the size of Mσ(m) .
Suppose θi > λi−1. Let N be a matrix which puts θi

−1Mσ(m) into a
Jordan normal form:
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N−1(θi
−1Mσ(m))N =




1 0 0 · · · 0
0 ε1/λ ∗ · · · 0
0 0 ε2/λ · · · 0
...

...
...

. . .
...

0 0 0 · · · εs−1/λ




,

where ε1, ε2, . . . , εs−1 are eigenvalues of Mσ(m) other than λ. We obtain
(4.3), since

N−1
(

lim
k→∞

θi
−kMσ(m)

k
)
N =




1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


,

and since the first column and the first row of N and N−1 are α and β,
respectively.

Assume θi = λi−1. In this case, ηj = θi for any integer j with 1 ≤ j < i.
Let N be a matrix which puts θi

−1Mσ(m) into a Jordan normal form:

N−1(θi
−1Mσ(m))N = J :=




1 1/λ · · · 0 0 0 . . . 0
0 1 · · · 0 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 · · · 1 1/λ 0 · · · 0
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 εr+1/λ · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · εs/λ




,

where εr+1, εr+2, . . . , εs are eigenvalues of Mσ(m) other than λ. By
Lemma 4.2, the multiplicity r of the eigenvalue λ is greater than one.

Set {1 ≤ p ≤ nσ; θp = λ} = {imin = i1 < i2 < · · · < ir = nσ}. Set
sp = ]Lm(σip) for 1 ≤ p ≤ r. Let ξ be such that ξ(Mσ(m) − λI) = β. Put
ξ′ = (ξj)s1

j=1 and ξ′′ = (ξj)j>s1 . If ξ′′ = 0, then ξ′(M
σ

(m)
i1

− λI) = β′ :=

(βj)s1
j=1. This yields a contradiction that 0 = ξ′(M

σ
(m)
i1

− λI)ζ = β′ζ > 0,

where ζ is a nonnegative, right eigenvector of Mσi1
(m) corresponding to λ.

Hence, ξ′′ is a left eigenvector of the matrix:
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Gm(i1) 0 · · · 0
∗ Qm(i1 + 1) · · · 0
...

...
. . .

...
∗ ∗ · · · Qm(nσ)




corresponding to λ. Using techniques developed in the proof of Lemma 4.2,
we may verify that given an integer j with s1 < j ≤ s, ξj 6= 0 if and
only if s1 < j ≤ s2. Let ρ be such that ρ(Mσ(m) − λI) = ξ. The same
argument shows that given an integer j with s2 < j ≤ s, ρj 6= 0 if and only
if s2 < j ≤ s3.

Repeating this argument, we may see that given an integer p with 1 ≤
p ≤ r, the p-th row ξ of N−1 satisfies the properties:

• ξj 6= 0 if sr−p < j ≤ sr−p+1;
• ξj = 0 if sr−p+1 < j ≤ s,

where s0 = 0. Since given integers p, q with 1 ≤ p < r and 1 ≤ q ≤ r − p,
limk→∞(Jk)p,p+q/kt > 0 if and only if t = q, it follows that under the
extended arithmetics,

lim
k→∞

θi
−kMσ(m)

k = N( lim
k→∞

Jk)N−1

=




0
...
0

αr′+1 ∗
αr′+2

...
αs







1 ∞ · · · ∞
0 1 · · · ∞
...

...
. . .

... 0
0 0 · · · 1

0 0




·




∗ · · · ∗ ∗ · · · ∗ . . . ξsr−1+1 · · · ξs

...
...

...
...

...
...

∗ · · · ∗ ξs2+1 · · · ξs3 . . . 0 · · · 0
β1 · · · βs1 0 · · · 0 · · · 0 · · · 0

∗
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=




∗
αr′+1 ∞ · · · ∞ 0 · · · 0
αr′+2 ∞ · · · ∞ 0 · · · 0

...
...

...
...

...
αs ∞ · · · ∞ 0 · · · 0




·




∗ · · · ∗ ∗ · · · ∗ . . . ξsr−1+1 · · · ξs

...
...

...
...

...
...

∗ · · · ∗ ξs2+1 · · · ξs3 . . . 0 · · · 0
β1 · · · βs1 0 · · · 0 · · · 0 · · · 0

∗




=




∗
∞ ∞ · · · ∞ αr′+1ξsr−1+1 αr′+1ξsr−1+2 · · · αr′+1ξs

∞ ∞ · · · ∞ αr′+2ξsr−1+1 αr′+2ξsr−1+2 · · · αr′+2ξs

...
...

...
...

...
...

∞ ∞ · · · ∞ αsξsr−1+1 αsξsr−1+2 · · · αsξs




,

where r′ = ]Bm(nσ − 1).
Assume θi < λi−1. Put M = {(Mσ(m))u,v}u,v∈Lm(σ)\Lm(σi′−1)

. It fol-
lows that θi is a simple, dominant eigenvalue of M . Since similar statements
to Lemma 4.2 holds for this matrix M , arguments used to show (4.3) of this
lemma show the second half of (4.4). The other half is obtained by using
Lemma 4.1 (v). ¤

Example 4.5

( i ) Set A = {a, b, c}. Define σ : A → A+ by a 7→ a4, b 7→ ab3, c 7→ cbc.
Then

Mσ =




4 0 0
1 3 0
0 1 2


, θ1 = 4, θ2 = 3, θ3 = 2, α =




2
2
1


, β = [1 0 0].
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It follows that L2(σ) = {aa, ab, ba, bb, bc, ca, cb}, L2(σ1) = {aa}, B2(1)
= {aa, ab}, L2(σ2) = {aa, ab, ba, bb}, B2(2) = {aa, ab, ba, bb, bc}. We
have

σ(2)(aa) = aa, aa, aa, aa; σ(2)(ab) = aa, aa, aa, aa;

σ(2)(ba) = ab, bb, bb, ba; σ(2)(bb) = ab, bb, bb, ba;

σ(2)(bc) = ab, bb, bb, bc; σ(2)(ca) = cb, bc, ca;

σ(2)(cb) = cb, bc, ca,

and

Mσ(2) =




4 0 0 0 0 0 0
4 0 0 0 0 0 0
0 1 1 2 0 0 0
0 1 1 2 0 0 0
0 1 0 2 1 0 0
0 0 0 0 1 1 1
0 0 0 0 1 1 1




, α =




2
2
2
2
2
1
1




, β = [1 0 0 0 0 0 0].

( ii ) Set A = {a, b, c, d}. Define σ : A → A+ by a 7→ aa, b 7→ ab3c3,
c 7→ abc5, d 7→ abcd2. Then

Mσ =




2 0 0 0
1 3 3 0
1 1 5 0
1 1 1 2


, θ1 = 2, θ2 = 6, θ3 = 2, α =




0
2
2
1


, β = [1 1 3 0].

It follows that L2(σ) = {aa, ab, bb, bc, ca, cc, cd, da, dd}, L2(σ1) =
{aa}, B2(1) = {aa, ab}, L2(σ2) = {aa, ab, bb, bc, ca, cc}, B2(2) =
{aa, ab, bb, bc, ca, cc, cd}. We have

σ(2)(aa) = aa, aa; σ(2)(ab) = aa, aa;

σ(2)(bb) = ab, bb, bb, bc, cc, cc, ca; σ(2)(bc) = ab, bb, bb, bc, cc, cc, ca;

σ(2)(ca) = ab, bc, cc, cc, cc, cc, ca; σ(2)(cc) = ab, bc, cc, cc, cc, cc, ca;

σ(2)(cd) = ab, bc, cc, cc, cc, cc, ca; σ(2)(da) = ab, bc, cd, dd, da;

σ(2)(dd) = ab, bc, cd, dd, da,
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and

Mσ(2) =




2 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
0 1 2 1 1 2 0 0 0
0 1 2 1 1 2 0 0 0
0 1 0 1 1 4 0 0 0
0 1 0 1 1 4 0 0 0
0 1 0 1 1 4 0 0 0
0 1 0 1 0 0 1 1 1
0 1 0 1 0 0 1 1 1




, α =




0
0
2
2
2
2
2
1
1




,

β = [1 2 1 2 2 7 0 0 0].

5. Invariant measures for Xσ

Let σ : A → A+ be a substitution of some primitive components. Let
i ∈ N be 1 < i ≤ nσ.

Corollary 5.1 Suppose θi > 1. Let a ∈ Ai \Ai−1, v ∈ L(σi), m = |v| and
u ∈ Lm(σi) with u1 = a.

( i ) If θi > λi−1, then

lim
k→∞

N(v, σk(a))
|σk(a)| =

βv∑
w∈Lm(σi)

βw
.

( ii ) If θi ≤ λi−1, then

lim
k→∞

1
θi

k
N(v, σk(a)) =

{∞ if v ∈ Lm(σi′−1);

γuδv otherwise.

(iii) If v /∈ L(σi′−1), then

lim
k→∞

N(v, σk(a))∑
b∈Ai\Ai−1

N(b, σk(a))
=

δv∑
w∈Lm(σi)\Bm(i−1)

δw
.

Proof. Put τ = σ(m). Assume θi > λi−1. Since for every k ∈ N,
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|σk(a)| = |τk(u)|;
N(v, τk(u))− (m− 1) ≤ N(v, σk(a)) ≤ N(v, τk(u)),

it follows from Lemma 4.4 that

lim
k→∞

N(v, σk(a))
|σk(a)| = lim

k→∞
N(v, τk(u))
|τk(u)|

= lim
k→∞

(Mτ
k)u,v∑

w∈Lm(σi)

(Mτ
k)u,w

=
βv∑

w∈Lm(σi)

βw
.

Assume θi ≤ λi−1. Since

lim
k→∞

1
θi

k
N(v, σk(a)) = lim

k→∞
1

θi
k
(Mτ

k)u,v,

(ii) follows from Lemma 4.4. It follows from Lemma 4.4 again that

lim
k→∞

N(v, σk(a))∑
b∈Ai\Ai−1

N(b, σk(a))
= lim

k→∞
(Mτ

k)u,v∑
w∈Lm(σi)\Bm(i−1)

(Mτ
k)u,w

=
δv∑

w∈Lm(σi)\Bm(i−1)

δw
. ¤

Suppose that Xi in (3.2) is nonempty. Lemma 4.1 (i) allows us to
assume θi > 1. Let ω ∈ Xi be a quasi-fixed point of the substitution σ,
so that for each k ∈ N, there are integers mk ≥ 0 and nk > 0 such that
ω[−mk,nk) = σk(ω0). Then, the following holds.

Proposition 5.2

( i ) If λi−1 < θi, then the weak∗ limit

µi = lim
k→∞

1
mk + nk

nk−1∑

j=−mk

δTσ
jω

exists.
( ii ) If λi−1 ≥ θi, then Xi has an infinite, invariant Radon measure νi
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characterized by the fact that for any v ∈ L(σi),

νi([v]) = lim
k→∞

1
θi

k

nk−1∑

j=−mk

δTσ
jω([v]).

Proof. Let v ∈ L(σi). Put m = |v|.
Assuming λi−1 < θi, it follows from Corollary 5.1 (i) that

µi([v]) = lim
k→∞

1
|σk(ω0)|N(v, σk(ω0)) =

βv∑
w∈Lm(σi)

βw
.

Assume λi−1 ≥ θi. Define an extended, real-valued, set function ν̃i on
the ring C = {[u.v];uv ∈ L(σi)} of cylinder sets by

ν̃i([u.v]) = lim
k→∞

1
θi

k

nk−1∑

j=−mk

δTσ
jω([u.v]) = lim

k→∞
1

θi
k
N(uv, σk(ω0)) = γwδuv,

where w ∈ L|uv|(σi) with w1 = ω0. The set function ν̃i is countably ad-
ditive, and also, finite on any compact open subset of Xi. Hence, ν̃i is
uniquely extended to a Tσ-invariant, Radon measure νi on Xi. It follows
from Corollary 5.1 that ν is infinite. ¤

It might be worthwhile noticing that given an integer j with 1 ≤ j ≤ i,
νi(Xσj \Xσj−1) = ∞ iff 1 ≤ j < i′.

Example 5.3

( i ) Let σ be as in Example 4.5 (i). Then, Xσ1 = {a∞} has an invariant
probability measure µ1 = δa∞ , and Xσ2 \ Xσ1 and Xσ3 \ Xσ2 have
infinite invariant measures ν2 and ν3, respectively. The measures of
cylinder sets with respect to ν2 or ν3 can be calculated as follows:

ν2([a]) = ∞, ν2([b]) = 1, ν2([aa]) = ∞, ν2([ab]) = 1/3,

ν2([ba]) = 1/3, ν2([bb]) = 2/3, ν3([a]) = ∞, ν3([b]) = ∞,

ν3([c]) = 1, ν3([aa]) = ∞, ν3([aa]) = ∞, ν3([ab]) = ∞,

ν3([ba]) = ∞, ν3([bb]) = ∞, ν3([bc]) = 1, ν3([ca]) = 1/2,

ν3([cb]) = 1/2.
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( ii ) Set A = {a, b, c, d, e}. Define σ : A → A+ by a 7→ ab, b 7→ a, c 7→
acd, d 7→ adc, e 7→ dece. Then, θ1 = (1 +

√
5)/2, θ2 = θ3 = 2. It

follows from Proposition 5.2 that Xσ1 and Xσ2 have invariant proba-
bility measures µ1 and µ2, respectively, and that Xσ3 has an infinite
invariant measure ν3. The measures of cylinder sets with respect to
µ1, µ2 and ν3 are calculated as follows:

µ1([a]) = (
√

5− 1)/2, µ1([b]) = (3−
√

5)/2, µ1([aa]) =
√

5− 2,

µ1([ab]) = (3−
√

5)/2, µ1([ba]) = (3−
√

5)/2, µ2([a]) = 1/2,

µ2([b]) = 1/4, µ2([c]) = 1/8, µ2([d]) = 1/8

µ2([aa]) = 1/8, µ2([ab]) = 1/4, µ2([ba]) = 1/4,

µ2([ac]) = 1/16, µ2([ad]) = 1/16, µ2([ca]) = 1/16,

µ2([cd]) = 1/16, µ2([da]) = 1/16, µ2([dc]) = 1/16,

ν3([a]) = ∞, ν3([b]) = ∞, ν3([c]) = ∞,

ν3([d]) = ∞, ν3([e]) = 1, ν3([aa]) = ∞,

ν3([ab]) = ∞, ν3([ba]) = ∞, ν3([ac]) = ∞,

ν3([ad]) = ∞, ν3([ca]) = ∞, ν3([cd]) = ∞,

ν3([da]) = ∞, ν3([dc]) = ∞, ν3([dd]) = 1/4,

ν3([ce]) = 1/2, ν3([de]) = 1/2, ν3([ea]) = 1/2,

ν3([ec]) = 1/2.

The following lemma plays a crucial role in showing that µi or νi is a
unique invariant measure for Xi.

Lemma 5.4 Let X ⊂ AZ be a locally compact, minimal subshift. Let T

denote the left shift on X. Let K ⊂ X be a nonempty, compact open set.
Choose a point ω ∈ K which returns to K infinitely many times, say at
0 = k0 < k1 < k2 < · · · . Then, the following are equivalent :

( i ) X has a unique (up to scaling), invariant Radon measure;
( ii ) for any v ∈ L(X) such that [v] ⊂ K,

lim
n→∞

1
n

N
(
v, ω[kj ,kj+n]

)
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converges to a constant uniformly in j ≥ 0.

Furthermore, if these conditions hold, then the unique invariant measure is
ergodic.

Proof. If X is non-compact, then this is a consequence of [12, Theorem 4.5];
see also the proof of [12, Corollary 4.6].

If X is compact, then it is sufficient to consider when the first return
map TK induced on K by T is uniquely ergodic, because there exists a
one-to-one correspondence between the set of T -invariant probability mea-
sures and the set of TK-invariant probability measures. It follows from [11,
Theorem IV. 13] that given a minimal homeomorphism S on a totally dis-
connected, compact metric space Y , S is uniquely ergodic if and only if for
an arbitrarily chosen point y ∈ Y , it holds that for any nonempty, clopen
set F ⊂ Y , there exists a constant c such that

lim
n→∞

1
n

n−1∑

i=0

χF (Si+jy) → c as n →∞, uniformly in j ≥ 0,

where χF is the characteristic function of F . We obtain the conclusion by
applying this criterion with S = TK , y = ω and F = [v]. ¤

Theorem 5.5 Let

Xσ =
nσ⋃

i=1

Xi ∪
nσ⋃

i=2

OrbTσ
(yi) ∪

nσ⋃

i=2

Ni⋃

j=1

OrbTσ
(xij)

be the decomposition (3.2). The counting measure on each OrbTσ
(xij) is

ergodic. The measure is finite if and only if the point xij is a fixed point of
Tσ. The counting measure on each OrbTσ (yi) is an ergodic, infinite measure.

If Xi 6= ∅, then an invariant Radon measure on Xi provided with the
relative topology is unique up to scaling, and ergodic. This measure is finite
if θi > λi−1, and infinite if θi ≤ λi−1.

Proof. In view of Lemma 4.1 (i) and Proposition 5.2, it is enough for us to
show the uniqueness of an invariant measure under the assumption θi > 1.
Put {0 = k0 < k1 < k2 < · · · } = {k ≥ 0;ωk ∈ Ai \ Ai−1}. Suppose that a
word v ∈ L(σi) contains a letter in Ai \Ai−1 as a factor. Put
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∆v =
δv∑

w∈Lm(σi)\Bm(i−1)

δw
.

It is sufficient to prove that N(v, ω[kj ,kj+n])/n → ∆v as n → ∞, uniformly
in j ≥ 0. Let ε > 0. Choose p ∈ N so that

3
{

min
a,b∈Ai\Ai−1

N(a, σp(b))
}−1

<
1
4
|v|−1ε;

∣∣∣∣N(v, σp(b))−∆v

∑

a∈Ai\Ai−1

N(a, σp(b))
∣∣∣∣

<
1
4
ε

∑

a∈Ai\Ai−1

N(a, σp(b)) for any b ∈ Ai \Ai−1.

Choose an integer n0 ≥ 2maxa∈A |σp(a)| so that for all integers n ≥ n0,

2∆vn−1 max
a∈A

|σp(a)|+ 2n−1 max
a∈A

|σp(a)| < 1
4
ε.

Since ω and σp(ω) coincide up to a shift by some digits, for every integer
j ≥ 0 there exist q ∈ N, r ∈ N and s, t ∈ A∗ such that

• s is a suffix of σp(ωq−1);
• t is a prefix of σp(ωq+r+1);
• ω[kj ,kj+n] = sσp(ωq)σp(ωq+1) . . . σp(ωq+r)t.

Let n ≥ n0 and j ≥ 0 be arbitrary integers. Since

N(v, ω[kj ,kj+n]) ≤ |s|+ |t|+
∑

q≤l≤q+r
ωl∈Ai\Ai−1

N(v, σp(ωl))

+ |v|]{q − 1 ≤ l ≤ q + r + 1;ωl ∈ Ai \Ai−1},
we obtain

∣∣∣∣N(v, ω[kj ,kj+n])−
∑

q≤l≤q+r
ωl∈Ai\Ai−1

N(v, σp(ωl))
∣∣∣∣

≤ 2max
a∈A

|σp(a)|+ |v|]{q − 1 ≤ l ≤ q + r + 1;ωl ∈ Ai \Ai−1}.
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However, since

]{q − 1 ≤ l ≤ q + r + 1;ωl ∈ Ai \Ai−1}∑
q≤l≤q+r

ωl∈Ai\Ai−1

∑
a∈Ai\Ai−1

N(a, σp(ωl))

≤ ]{q − 1 ≤ l ≤ q + r + 1;ωl ∈ Ai \Ai−1}
]{q ≤ l ≤ q + r;ωl ∈ Ai \Ai−1} min

a,b∈Ai\Ai−1

N(a, σp(b))

≤ 3
{

min
a,b∈Ai\Ai−1

N(a, σp(b))
}−1

≤ 1
4
|v|−1ε,

we obtain
∣∣∣∣
1
n

N(v, ω[kj ,kj+n])−
1
n

∑
q≤l≤q+r

ωl∈Ai\Ai−1

N(v, σp(ωl))
∣∣∣∣

<
1
4
ε + |v| · 1

4
|v|−1ε · 1

n

∑
q≤l≤q+r

ωl∈Ai\Ai−1

∑

a∈Ai\Ai−1

N(a, σp(ωl)) ≤ 1
2
ε.

Also, we have
∣∣∣∣
1
n

∑
q≤l≤q+r

ωl∈Ai\Ai−1

N(v, σp(ωl))−∆v

∣∣∣∣

≤ 1
n

∑
q≤l≤q+r

ωl∈Ai\Ai−1

∣∣∣∣N(v, σp(ωl))−∆v

∑

a∈Ai\Ai−1

N(a, σp(ωl))
∣∣∣∣

+ 2∆vn−1 max
a∈A

|σp(a)|

<
1
4
ε · 1

n

∑
q≤l≤q+r

ωl∈Ai\Ai−1

∑

a∈Ai\Ai−1

N(a, σp(ωl)) +
1
4
ε ≤ 1

2
ε.

Finally,
∣∣∣∣
1
n

N(v, ω[kj ,kj+n])−∆v

∣∣∣∣ < ε.
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This completes the proof. ¤

We are now in a position to see the unique ergodicity left to be proved
in Proposition 3.2. Assume the hypothesis of the proposition, so that θ1 = 1
and θ2 > 1. Let ω be the fixed point of σ as in the proposition. For this ω,
the proof of Theorem 5.5 may reach the same conclusion, that is, the first
return map of Xσ2 induced on Xσ2 \ [a] is uniquely ergodic. This means the
unique ergodicity of Xσ2 .

Corollary 5.6 The subshift Xσ is uniquely ergodic if and only if one of
the following holds:

( i ) λ = θ1 > 1;
( ii ) θ1 = 1, λ = θ2 > 1, and s∞ /∈ Xσ, where A1 = {s}.
(iii) λ = 1;

Proof. Assume that Xσ is uniquely ergodic. In view of Theorem 3.15, we
first consider the case where limn→∞ |σn(a)| = ∞ for any a ∈ A1. Since Xσ1

is the unique minimal set and θ1 > 1, Theorem 5.5 implies that θi < θ1 for
any integer i with 1 < i ≤ nσ. This corresponds to (i). We then consider the
case where A1 is a singleton, say {s}, and s∞ /∈ Xσ. Then, σ2 must satisfy
the hypothesis of Proposition 3.2, and hence θ2 > 1. Theorem 5.5 implies
θ2 > θi for any integer i with 2 < i ≤ nσ. This corresponds to (ii). We
then consider the case where A1 is a singleton and σ2 is almost primitive.
In this case, {s∞} is the unique minimal set, where A1 = {s}. It follows
from Theorem 5.5 again that θ2 = θ3 = · · · = θnσ

= 1. This corresponds to
(iii). The converse implication is straightforward in view of Lemma 4.1 (i),
Theorems 3.15 and 5.5. ¤

Among the examples studied above, uniquely ergodic systems are ex-
actly (i), (ii) of Example 3.6, (i), (ii) of Example 3.10, and (i) of Example 4.5.

Remark 5.7 In [2], θi is said to be distinguished if θi > λi−1. It follows
from Lemma 4.1 (i) and Theorem 5.5 that the case θi = 1 corresponds
to the counting measure on OrbTσ

(yi) or OrbTσ
(xij). This kind of result

is not obtained by [2]. Compare Theorem 5.5 and Corollary 5.6 with [2,
Corollary 5.5].
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edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
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